
L A N G U A G E 
D E V E L O P M E N T 
R E S E A R C H 
 
An Open Science Journal 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Volume 1      |      Issue 1      |      December 2021 

ISSN 0000-0000-00 
  



About the journal
Language Development Research: An Open-Science Journal was established in 2020 to meet the field's need for
a peer- reviewed journal that is committed to fully open science: LDR charges no fees for readers or
authors, and mandates full sharing of materials, data and analysis code. The intended audience is all
researchers and professionals with an interest in language development and related fields: first language
acquisition; typical and atypical language development; the development of spoken, signed or written
languages; second language learning; bi- and multilingualism; artificial language learning; adult
psycholinguistics; computational modeling; communication in nonhuman animals etc. The journal is
managed by its editorial board and is not owned or published by any public or private company,
registered charity or nonprofit organization.

Child Language Data Exchange System
Language Development Research is the official journal of the TalkBank system, comprising the CHILDES,
PhonBank, HomeBank, FluencyBank, Multilingualism and Clinical banks, the CLAN so�ware (used by
hundreds of researchers worldwide to analyze children's spontaneous speech data), and the
Info-CHILDES mailing list, the de-facto mailing list for the field of child language development with over
1,600 subscribers.

Diamond Open Access
Language Development Research is published using the Diamond Open Access model (also known as
“Platinum” or “Universal” OA). The journal does not charge users for access (e.g., subscription or
download fees) or authors for publication (e.g., article processing charges).
Clarifying revision made upon discovery of errata. Reissued on 20 December 2023.

Hosting
The Carnegie Mellon University Library Publishing Service (LPS) hosts the journal on a Janeway
Publishing Platform with its manuscript management system (MMS) used for author submissions.

License
Language Development Research is published by TalkBank and the Carnegie Mellon University Library
Publishing Service. Authors retain the copyright to their published content. This work is distributed
under the terms of the Creative Commons Attribution-Noncommercial 4.0 International license
(https://creativecommons.org/licenses/by-nc/4.0/), which permits any use, reproduction and distribution
of the work for noncommercial purposes with no further permissions required provided the original
work is attributed as specified under the terms of this Creative Commons license.

Peer Review and Submissions
All submissions are reviewed by a minimum of two peer reviewers, and one of our Action Editors, all
well- established senior researchers, chosen to represent a wide range of theoretical and methodological
expertise. Action Editors select peer reviewers based on their expertise and experience in publishing
papers in the relevant topic area.

Submissions and Publication Cycle
We invite submissions that meet our criteria for rigour, without regard to the perceived novelty or
importance of the findings. We publish general and special-topic articles (“Special Collections”) on a
rolling basis to ensure rapid, cost-free publication for authors.

Language Development Research is published once a year, in December, with each issue containing the
articles produced over the previous 12 months. Individual articles are published online as soon as they
are produced. For citation purposes, articles are identified by the year of first publication and digital
object identifier (DOI).

https://creativecommons.org/licenses/by-nc/4.0/
https://ldr.lps.library.cmu.edu/site/editorialteam/


 
 
 
 
 

 

  
Editor 

 Ben Ambridge, University of Liverpool                                      Email LanguageDevelopmentResearch@Liverpool.ac.uk 

Action Editors 
 Alex Cristia, École Normale Supérieure  Michael C. Frank, Stanford University 
 Vera Kempe, Abertay University  Victoria Knowland, Newcastle University 
 Brian MacWhinney, Carnegie Mellon University  Aliyah Morgenstern, Université Sorbonne Nouvelle 
 Amanda Owen Van Horne, University of Delaware  Lisa S. Pearl, University of California, Irvine 

Founders 
 Ben Ambridge, University of Liverpool  Brian MacWhinney, Carnegie Mellon University 

Head of the Editorial Board 
 Patricia Brooks, City University New York 

Editorial Board 
 Javier Aguado-Orea 
 Sheffield Hallam University 

 David Barner 
 University of California, San Diego 

 Dorothy Bishop 
 University of Oxford 

 Arielle Borovsky 
 Purdue University 

 Patricia Brooks 
 City University of New York 

 Ana Castro 
 Universidade NOVA de Lisboa 

 Jean-Pierre Chevrot 
 Université Grenoble Alpes 

 Philip Dale 
 University of New Mexico 

 Beatriz de Diego 
 Midwestern University 

 Natalia Gagarina 
 Leibniz-Zentrum Allgemeine Sprachwissenschaft 

 Steven Gillis 
 Universiteit Antwerpen 

 Josh Hartshorne 
 Boston College 

 Lisa Hsin 
 American Institutes for Research 

 Jeff Lidz 
 University of Maryland 

 Sam Jones 
 University of Lancaster 

 Weiyi Ma 
 University of Arkansas 

 Danielle Matthews 
 University of Sheffield 

 Katherine Messenger 
 University of Warwick 

 Monique Mills 
 University of Houston 

 Toby Mintz 
 University of Southern California 

 Courtenay Norbury 
 University College London 

 Kirsten Read 
 Santa Clara University 

 Tom Roeper 
 University of Massachusetts, Amherst 

 Caroline Rowland 
 Max Planck Institute for Psycholinguistics 

 Melanie Soderstrom 
 University of Manitoba 

 Sharon Unsworth 
 Radboud University 

 Virve-Anneli Vihman 
 Tartu Ülikooli 

 Daniel Walter 
 Emory University 

 Frank Wijnen 
 Utrecht Institute of Linguistics 

 Tania Zamuner 
 University of Ottawa 

In Memoriam 
 Donna Jackson-Maldonado, Universidad Autónoma de Querétaro 
 Editorial Board Member 2020-2021 



 
 
 
 
 

 

Table of Contents 
Volume 1, Issue 1, 31 December 2021 

1 
Language Development Research Editorial: Why do we need another journal? Language Development 
Research 
Ben Ambridge 

doi: 10.34842/yxh6-kz16  

9 
Features of lexical richness in children’s books: Comparisons with child-directed speech 
Nicola Dawson, Yaling Hsiao, Alvin Wei Ming Tan, Nilanjana Banerji, and Kate Nation  

doi: 10.34842/5we1-yk94  

55 
Web-CDI: A system for online administration of the MacArthur-Bates Communicative Development 
Inventories 
Benjamin E. deMayo, Danielle Kellier, Mika Braginsky, Christina Bergmann, Cielke Hendriks, Caroline F. 
Rowland, Michael C. Frank, and Virginia A. Marchman  

doi: 10.34758/kr8e-w591  

99 
Passive sentence reversal errors in autism: Replicating Ambridge, Bidgood, and Thomas (2020) 
Samuel Jones, Madeline Dooley, and Ben Ambridge  

doi:  10.34842/g1zk-3715 

123  
Can phones, syllables, and words emerge as side-products of cross-situational audiovisual learning? 
— A computational investigation 
Khazar Khorrami and Okko Räsänen 

doi: 10.34842/w3vw-s845 

193  
Expectation Violation Enhances the Development of New Abstract Syntactic Representations: 
Evidence from an Artificial Language Learning Study 
Giulia Bovolenta and Emma Marsden 

doi: 10.34842/c7t4-pz50 

245 
Children’s language abilities predict success in remote communication contexts  
Karla K. McGregor, Ronald Pomper, Nichole Eden, Timothy Arbisi-Kelm, Nancy Ohlmann, Shivani Gajre, 
and Erin Smolak 

doi: 10.34758/rzsq-zd16  

283 
Sleep behaviour in children with language disorder 
Victoria C.P. Knowland, Mohreet Rauni, M. Gareth Gaskell, Sarah Walker, Elaine van Rijn, Lisa-Marie 
Henderson, and Courtenay Norbury 

doi: 10.34842/fs09-ga12 



Language Development Research Editorial: 
Why do we need another journal? 

Ben Ambridge 
University of Liverpool, UK 

Abstract: Language Development Research  is a platinum Open Access journal that commits to 
publishing “any empirical or theoretical paper that is relevant to the field of language development 
and that meets our criteria for rigour, without regard to the perceived novelty or importance of the 
findings”. This commitment is designed to reduce publication bias and incentives to engage in 
questionable research practices. 

Keywords: Language Development Research; publication bias; questionable research practices; 
HARKing; p-hacking. 

Corresponding author(s): Ben Ambridge, Department of Psychology, University of Liverpool, Bedford 
St South, Liverpool, L79 7ZA, UK. Email: Ben.Ambridge@Liverpool.ac.uk. 

ORCID ID(s): https://orcid.org/0000-0003-2389-8477 

Citation: Ambridge, B. (2021). Language Development Research Editorial: Why do we need another 
journal? Language Development Research , 1(1), p 1-8.  DOI: 10.34842/yxh6-kz16 

Language Development Research 1

Volume 1, Issue 1, 31 December 2021

mailto:Ben.Ambridge@Liverpool.ac.uk
https://orcid.org/0000-0003-2389-8477


Why does the field of language development need a new journal? On the face of it, we 
are already well served. In addition to the non-specialist journals, we have several 
general child-language journals (i.e., journals concerned primarily with language 
acquisition and development in the pre-school and early-school years), plus specialist 
journals focussing on language disorders, second language learning, and 
bilingualism, as well as various linguistics journals. 
 
The problem is that the vast majority of these journals, including – in my estimation 
– all existing language-development journals, are selective journals. That is, they 
endeavour to publish the best of the submissions that they receive. Exactly what 
constitutes the “best” is rarely made explicit, but selectivity is implicit in the 
superlatives in journal “About” statements, and in the hierarchy of journals in the 
heads of seasoned researchers. 
 
Publishing only those papers that make a sufficiently novel or important contribution 
sounds laudable, until we consider the flip side: a reluctance to publish papers that 
don’t reach a journal’s (implicit) criteria for novelty, importance or broad interest; for 
example, because they replicate or extend a previous study, or because they report 
null findings, or findings that are simply unclear or messy. 
 
Selectivity – selection on the basis of factors other than scientific rigour – distorts the 
scientific literature by introducing three major biases into the publication process (de 
Vries, Roest, de Jonge, Cuijpers, Munafò & Bastiaansen, 2018): (a) publication bias, 
whereby studies with null results are rejected or never submitted in the first place, 
(b) outcome-reporting bias, whereby researchers drop groups, conditions or sub-
studies that fail to show a clear and/or desired effect and (c) spin, drawing conclusions 
that are not merited by the findings. Finally, if null findings do make it into the 
literature, they are less likely to be cited. Using the example of antidepressant drugs, 
de Vries et al (2018) show how these biases translate an evidence base that is, in 
reality, almost exactly 50/50 (the FDA classified 53/105 trials as positive) into a 
literature that offers overwhelmingly positive support for these drugs’ efficacy (see 
Figure 1, reproduced from Figure 1 in de Vries et al, 2018). 
 
Perhaps most seriously of all, selectivity all but compels fundamentally-honest 
researchers to engage in questionable research practices (John, Loewenstein & 
Prelec, 2012) such as p-hacking (Simons, Nelson & Simonsohn, 2011) – rerunning 
analyses with different coding, exclusions, covariates, transformations, statistical 
tests, sample sizes, and so on – and hypothesising after results are known (HARKing; 
Kerr, 1998), “reframing” the paper around a serendipitous finding that was not 
originally the question of primary interest (or even, in some cases, “fishing” or “data 
mining”: collecting data in a purely exploratory fashion and only afterwards 
formulating theoretical claims or hypotheses). Sometimes these practices are 
intentional. Sometimes, and with the best of intentions, journal reviewers and editors 
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even request them explicitly. Sometimes they are entirely unintentional. After all, 
decisions have to be made regarding coding, exclusions, transformations and so on, 
and if one set of decisions allows us to see the otherwise-obscured effect that we 
confidently expected to be there all along, we are likely to genuinely believe that this 
is the correct one. 
 

 
Figure 1. How publication bias, outcome-reporting bias, spin and citation bias skew 
the evidence base (from de Vries et al, 2018, creative commons licence). 
 
 
The good news is that, at least in some fields, we seem to be moving in the right 
direction. Eason, Hamlin and Sommerville’s (2017) survey of infancy researchers 
found that relatively few reported adding participants until p is <0.05 (2%), adding 
participants until they are confident that there is or is not an effect (11%), excluding 
dependent measures that yielded nonsignificant results (5%) or results that were 

Language Development Research 3

Volume 1, Issue 1, 31 December 2021



inconsistent with the initial hypothesis (1%), exploring different transformations of 
their data and using the most favourable one (1%), or planning statistical analyses 
only once the data are in hand (5%). These are encouraging findings. How, then, can 
we ensure that all subfields of language development research make similar progress, 
and that the many “null” findings that are likely to appear as a result of these more 
stringent research practices are published? The answer, in my view, is to stop basing 
publication decisions on studies’ findings, thereby removing a major incentive to 
selectively report, HARK or p-hack. But how? 
 
One way to do so is via registered reports, whereby studies are reviewed, and accepted 
in principle, based on their methods and analysis plans, before any data are collected 
(Chambers, 2013). To their credit, several journals in our field now offer this format. 
This is an entirely positive development, and we offer the registered-report option 
too. Indeed, although the format is relatively young, there is already some evidence 
to suggest that registered reports reduce publication bias quite dramatically. Allen 
and Mehler (2019) report that around 60% of registered reports in the domains of 
biomedical and psychological science produce “null” findings, as opposed to around 
12% for traditional articles. Focussing on psychology, Scheel, Schijen and Lakens 
(submitted) find null rates of 56% and just 4% for registered reports and traditional 
articles respectively. These findings are dramatic, but the very low rates of null 
findings in traditional articles suggest that registered reports cannot solve the 
problem of publication bias alone, if journals continue to apply criteria of novelty or 
importance to articles outside the registered report stream.  
 
A second way to avoid basing publishing decision on studies’ findings is by 
committing to “publish any empirical or theoretical paper that is relevant to the 
field…and that meets our criteria for rigour, without regard to the perceived novelty 
or importance of the findings”, as set out in Language Development Research’s 
policies and procedures. There already exist several general journals with similar 
policies – Royal Society Open Science, Frontiers and, to some extent, PLOS ONE (2020; 
though “Submissions that replicate or are derivative of existing work will likely be 
rejected if authors do not provide adequate justification”) – but these are general 
journals that are not necessarily familiar to many language-development researchers. 
More problematically, all have article processing charges upwards of $1,000, for most 
article types. 
 
Yet even this commitment may not go far enough. Chris Chambers, a former editor 
of PLOS ONE, notes that, in his experience, “When expert reviewers see null results, 
they are more likely to go on the hunt for imperfections in the methodology or 
rationale. This bias is especially insidious because although it is thoroughly results-
driven, it requires no explicit reference to the results at all” (Chambers, 2020). The 
third and final way, then, in which Language Development Research strives to avoid 
basing publishing decision on studies’ findings is by offering a results-redacted 
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format. This format allows authors to submit for peer-review articles with no Results 
or Discussion sections, even if – unlike for registered reports – the data have been 
analysed and these sections written. Our intention is that this format will allow peer-
reviewers and action editors to evaluate papers solely on the basis of their theoretical 
and empirical rigour, without being unconsciously swayed by the results.  
 
We will not, however, be requiring all empirical articles to use either the registered-
report or results-redacted format. As Whitaker and Guest (2020) point out, invoking 
the “buffet model” of Bergmann (2019; as cited in Whitaker & Guest, 2020: 35), 
“Binging from the many different topics that fall under open scholarship will leave 
you feeling overwhelmed and exhausted”. We take the view, then, that it is better to 
accept conventional, results-included articles than to force would-be LDR authors to 
“bite off more than they can chew” and risk driving them back to traditional “closed” 
journals. 
 
Similarly, while we generally require all experimental materials, data and analysis 
code to be made available in a public repository prior to publication, exemptions will 
be granted when this is required to ensure participant confidentiality (particularly 
with hard-to-reach samples or clinical groups), to comply with local laws and 
regulations, or for copyright reasons (e.g., when researchers use a copyrighted 
standardized test). While open-science hardliners might take the view that 
researchers should not rely on data that cannot be legally or feasibly anonymized 
(e.g., certain video recordings) or use copyrighted tests, we take the “buffet” view: 
Some open science is better than no open science, and little would be gained by 
driving such papers to traditional “closed” journals. It is important to note at this point 
that the policies and procedures summarized here (and approved by our Editorial 
Board) will be kept under review, and evolve in line with discussions of open science 
practices both in our field and more generally. 
 
In the meantime, our commitment to publishing any relevant paper that meets our 
criteria for rigour, though motivated primarily by openness and transparency, brings 
with it some additional – perhaps unexpected – benefits. First, because we do not 
screen papers for potential impact, or for their appeal to a wide readership, 
“relevance to the field of language development (typical and atypical, mono-, bi- and 
multi-lingual) is broadly construed so as to include, for example, studies of second 
language learning (or artificial language learning) in older children or adults, studies 
of nonhuman animals, computational modelling studies, studies or theories of the 
adult endpoint etc., provided that they are relevant to the issue of language 
development”. Second, for the same reason, we need not impose any restrictions on 
the types of article that we publish. In addition to registered reports, results-redacted 
papers and “regular” empirical papers, we will consider literature reviews, 
systematic-reviews, meta-analyses, papers that present new research or analysis 
tools, theoretical articles, responses to previous articles, book reviews, and even new 
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types of papers that have yet to be devised. Third, unlike journals that are restricted 
to a fixed number of issues and pages per year, Language Development Research has 
no need to impose any limits with regard to the number of words, pages or references 
in a given article.  
 
Fourth, we very much hope that, by not imposing criteria of impact or broad interest, 
LDR will be accessible to, and inclusive of, researchers who study and/or belong to 
under-represented populations. On the subject of representativeness, I note that 
while our current team of Action Editors is relatively representative of the field in 
terms of gender (with 5/7 female researchers), and is not entirely Anglophone (3/7 
have a first language that is not English), they are drawn entirely from WEIRD 
societies (Western, educated, industrialized, rich and democratic; Henrich, Heine & 
Norenzayan, 2010), specifically the USA, UK and France. As a member of just about 
every privileged category that exists, all I can say is that I am aware of the issue of 
representativeness, and will do my best to address it. With regard to inclusivity and 
accessibility, we have taken some very small steps, by requiring alternative text for 
figures and allowing abstracts in multiple languages, but we must do more. In the 
meantime, key to inclusivity and accessibility is our commitment that the journal will 
always be free of charge to both readers and authors (i.e., “diamond” or “platinum” 
open access). 
 
How can we survive with no income? Simple: We have no expenditure. The journal 
runs on the open-source Janeway platform and is hosted for free by Carnegie Mellon 
University’s Library Publishing Service. For this, we must thank my co-founder Brian 
MacWhinney, who – via the Child Language Dates Exchange System 
(https://childes.talkbank.org/) – pioneered Open Science before the term was coined, 
and who kindly agreed to make LDR the official journal of the Talkbank system, which 
includes the info-CHILDES mailing list: the de-facto mailing list for our field. Of 
course, Carnegie Mellon are bearing some costs; not least the time of Rikk Mulligan, 
lead of the Library Publishing Service, who put in many hours setting up the journal. 
But the total cost to Carnegie Mellon can be no greater than a handful of APCs, let 
alone journal subscriptions.  
 
In my view, then, the model we are adopting for LDR, whereby journal hosting costs 
are borne by universities in lieu of savings elsewhere, is one that can and should be 
replicated in other fields. After all, via our salaries, our institutions are already 
funding the writing, reviewing and editing of journal articles; there is no reason for 
them to baulk at the final financial hurdle of hosting them. We can do this. For the 
good of our field, for the good of science, we have to do this. 
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Abstract: Access to children’s books via shared reading may be a particularly rich source of linguistic input in the early 
years. To understand how exposure to book language supports children’s learning, it is important to identify how book 
language differs to everyday conversation. We created a picture book corpus from 160 texts commonly read to children 
aged 0-5 years (around 320,000 words). We first quantified how the language of children’s books differs from child-
directed speech (compiled from 10 corpora in the CHILDES UK database, around 3.8 million words) on measures of 
lexical richness (diversity, density, sophistication), part of speech distributions, and structural properties. We also iden-
tified the words occurring in children’s books that are most uniquely representative of book language. We found that 
children’s book language is lexically denser, more lexically diverse, and comprises a larger proportion of rarer word 
types compared to child-directed speech. Nouns and adjectives are more common in book language whereas pronouns 
are more common in child-directed speech. Book words are more structurally complex in relation to both number of 
phonemes and morphological structure. They are also later acquired, more abstract, and more emotionally arousing 
than the words more common in child-directed speech. Written language provides unique linguistic input even in the 
pre-school years, well before children can read for themselves. 
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Introduction 
 
Children learn from the language they hear (e.g., Cameron-Faulkner et al., 2003; Weisleder & Fer-
nald, 2013). Evidence from longitudinal studies and computational modelling shows that children 
who experience greater amounts of sophisticated and diverse child-directed talk develop larger vo-
cabularies and better reading skills, and are at an advantage in early school achievement (Chang & 
Monaghan, 2019; Hart & Risley, 1995; Hoff, 2003; Huttenlocher et al., 1991, 2010; Jones & Rowland, 
2017; Pan et al., 2005; Rowe, 2008, 2012). Yet children’s language experiences in the early years 
vary widely. These differences have been linked to caregiver language competence and socio-eco-
nomic status (Hart & Risley, 1995; Hoff, 2003; Huttenlocher et al., 2010; Weisleder & Fernald, 2013), 
but language use may vary within, as well as between, home environments. Shared reading might be 
a particularly important source of language input, not least because it elicits more complex language 
and more words per minute from caregivers compared to other contexts, such as mealtimes and play 
(Demir-Lira et al., 2019; Weizman & Snow, 2001). In this paper we investigate in detail the language 
of children’s books to specify the quantity and nature of lexical input they offer, relative to the lan-
guage that children encounter via everyday speech. 
 
Corpus analyses consistently demonstrate that written language departs from spoken language in 
several ways. These differences are well-documented in texts and speech aimed at adults. Overall, 
written language tends to be more syntactically complex and more lexically diverse than spoken 
language (Malvern et al., 2004; Roland et al., 2007), although patterns of language use may also re-
flect other factors, such as formality and genre (Biber, 1993). In part, linguistic differences across 
modality reflect the decontextualized nature of written language. As spoken language typically takes 
place in the ‘here and now’, communication is supported through gesture, facial expression and in-
tonation. Spoken utterances that are incomplete or ambiguous may not pose a barrier to compre-
hension if meaning is apparent from the communication context. Speech may also be adapted in the 
moment to rectify breakdowns in communication (Clark, 2020; Healey, de Ruiter, et al., 2018; Hea-
ley, Mills, et al., 2018). In the absence of these nonverbal cues and bi-directional dynamics, written 
language depends more on choice of words and sentence structures to communicate information 
effectively (Snow, 2010). 
 
Turning to children, books provide exposure to syntactic structures that occur rarely in speech. Mon-
tag (2019) showed that even in texts targeted at very young children (i.e. picture books), passive 
sentences and relative clauses occurred more frequently than in child-directed speech. Similar find-
ings were reported by Cameron-Faulkner and Noble (2013), who found that canonical sentence 
structures (comprising subject-verb-[object]) and complex sentence constructions (containing two 
or more lexical verbs) were more frequent in children’s books than child-directed speech, whereas 
questions were more common in speech than in books. Differences also emerge at the lexical level. 
Montag et al. (2015) calculated type-token ratio curves for a corpus of picture books and a corpus 
of child-directed speech, revealing that books contained more unique word types than speech at any 
given sample size. This pattern held true both at the corpus level, and in comparisons between indi-
vidual books and conversations. Strikingly, even when compared to speech between two adults, chil-
dren’s picture books contain more unique rare word types (Massaro, 2015). 
 
Together, these corpus comparisons suggest that children who frequently participate in shared 
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reading activities are regularly exposed to more advanced linguistic content than children who do 
not. These differences matter, given that language input is closely tied to language development and 
that regular access to books in the early years is not universal across children (Hart & Risley, 1995). 
Identifying and characterising common linguistic properties of children’s books is an important 
starting point for understanding the impact of variation in access to books on children’s language 
development. To this end, we introduce a new children’s picture book corpus and identify critical 
properties of book language, focusing on its lexical content. 
 
Lexical richness broadly refers to the quality of words in a language sample. It encompasses a num-
ber of measurable lexical properties, including lexical diversity, lexical density and lexical sophisti-
cation (Jarvis, 2013; Malvern et al., 2004; Read, 2000). Lexical diversity provides an indication of 
vocabulary breadth and is usually measured using type-token ratios (or type-token ratio curves; 
Montag et al., 2015, 2018). Lexical diversity tells us about the range of words in a text and has been 
widely adopted as a measure of language quality or proficiency (e.g., Malvern et al., 2004). Measures 
of lexical density capture the proportion of lexical items (usually defined as nouns, lexical verbs, 
adjectives and adverbs derived from adjectives) in a language sample relative to the total number of 
words (Ure, 1971). A higher proportion of lexical items in a language sample is indicative of denser 
information content compared to a sample with a higher proportion of function words (e.g., prepo-
sitions, conjunctions and pronouns). Lexical density is highly correlated with lexical diversity (Jo-
hansson, 2008), but conceptually, they measure distinct features. Hypothetically, it is possible for a 
text to have a high density of lexical items that are repeated frequently, or conversely, a text that 
uses a diverse range of vocabulary, but includes a high proportion of function words. 
 
Like lexical density, measures of lexical sophistication shed light on the types of words contained 
within a language sample, and in particular, whether those words are skewed towards one end of 
the frequency distribution. One approach is to calculate the number of unique word types within a 
corpus after having accounted for the most frequent word types according to a general language 
corpus (Massaro, 2015). Adopting this method, Massaro reported that children’s picture books con-
tained around three times the number of rare word types of child-directed speech, and around one-
and-a-half times the number observed in adult-adult speech. Alternatively, cumulative proportions 
of word tokens in a given corpus can be plotted against the rank frequency of those words in a gen-
eral language corpus, providing additional information on the frequency distributions of the most 
common words across different corpora (Hayes, 1988; Hayes & Ahrens, 1988). 
 
In summary, existing evidence indicates that children’s books are more lexically diverse (Montag et 
al., 2015) and contain a higher proportion of rarer word types (Massaro, 2015) than child-directed 
speech. This indicates that the language of children’s books is disproportionately skewed towards 
lexical items from the lower end of the frequency distribution. However, little is currently known 
about the properties of these words and lexical density has not been directly compared across these 
sources. This matters when we consider that children who are read to less frequently in the early 
years will gain less exposure to such words. Our aim here is to identify words that are relatively 
common in children’s books, but which appear infrequently in child-directed speech, and to analyse 
their lexical properties. This will allow us to highlight the types of words that may be particularly 
impacted by variation in exposure to books in the early years. 
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Aims and Hypotheses 
 
We created a new children’s picture book corpus and selected samples of child-directed speech from 
the UK CHILDES corpora. This allowed us to fulfil three aims. Our first aim was to replicate Montag 
et al.’s (2015) analysis of lexical diversity in a new and larger set of children’s picture books. Our 
second aim was to extend cross-modality comparisons to other measures of lexical richness (lexical 
density and lexical sophistication), along with part of speech distributions, word length, and mor-
phological complexity. Our third aim was to identify the words most uniquely representative of chil-
dren’s books, and to examine how they differ from words more common in child-directed speech in 
relation to key psycholinguistic properties, namely age of acquisition (the age at which a word is 
learned; Kuperman et al., 2012), concreteness (the extent to which a word references a perceptible 
entity, or conversely, how abstract it is; Brysbaert et al., 2014), arousal (the intensity of emotion 
elicited by a word; Warriner et al., 2013), and valence (how pleasant a word is judged to be; Warriner 
et al., 2013). If the words most typical of books are more advanced and more abstract than words 
more common to child-directed speech, then children who regularly participate in shared reading 
activities will have more opportunity to encode the phonological forms and meanings of such words, 
and to experience them across diverse contexts. These experiences not only enhance oral vocabulary 
knowledge (Weizman & Snow, 2001), but also lay the foundations for reading development (Gough 
& Tunmer, 1986; Perfetti & Hart, 2002), even before children are able to read independently.   
 
Following Montag et al. (2015), we predicted that our set of children’s picture books would contain 
more diverse vocabulary than child-directed speech targeted at a similar age range. We also pre-
dicted that books would contain a higher proportion of content words, and more sophisticated vo-
cabulary, relative to speech (Massaro, 2015, 2017). We further anticipated that differences would 
emerge in structural complexity and part of speech distributions. If the vocabulary of picture books 
is more sophisticated than that of child-directed speech, we would expect these words to be longer, 
and for books to contain a higher proportion of morphologically complex words. Given previous 
comparisons of written and spoken material in adult language samples, we expected differences to 
emerge in part of speech distributions across children’s books and child-directed speech, in partic-
ular in the balance of nouns and pronouns (Biber et al., 1998; Hudson, 1994). Finally, we predicted 
that the words we identified as most representative of ‘book language’ would have a higher age of 
acquisition, and would be more abstract, more emotionally arousing, and evoke stronger positive 
and negative emotions than the words more typical of child-directed speech. 
 
We present our findings in two parts. First, we describe our corpora and the methods used to com-
pare lexical richness across book language and child-directed speech. We then introduce the key-
word methodology used to identify words most and least representative of book language before 
comparing their psycholinguistic properties.   
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Method 
 

Corpora and Corpus Processing 
 
Picture Book Corpus 
 
The picture book corpus comprised 160 children’s fiction books with a total word count of 319,435. 
These books were purchased for the purposes of this research, and were selected to be representa-
tive of the type of reading material children encounter in shared reading contexts in the UK. To this 
end, we generated an initial list of titles with a target age range of 0-7 years from a combination of 
retailer bestseller lists and recommendations from literacy charities, book review sites, and teach-
ers. The final list included the titles that were cited most frequently across these sources (see Ap-
pendix A for the final selection of book titles; the full corpus can be found at https://osf.io/zta29/). 
The vast majority of books in the corpus were picture books, but a small number of longer texts that 
might be read to young children were also included (e.g., The BFG). The content of these books was 
transcribed as plain text files by undergraduate psychology students. We included text that appeared 
in illustrations and appendages (for example, text in speech bubbles) in the transcription on the 
basis that caregivers would likely read these words aloud in addition to the main body of text.  
 
The plain text files containing the transcribed picture books were converted to CHAT Transcription 
Format (.cha) files so that they could be processed using Computerised Language Analysis (CLAN) 
software (MacWhinney, 2000). The ‘mor’ function in CLAN was used to lemmatise and generate 
part-of-speech tagging for all words within the corpus. The output .cha files were then converted to 
XML and parsed using the XML package in R (R Developement Core Team, 2017), with the data out-
putted to .csv files, which were used in subsequent analyses. 
 
Spoken Language Corpus 
 
This was generated from 10 corpora from the English-UK section of the CHILDES database 
(MacWhinney, 2000). The sample comprised all suitable corpora from this collection, with the ex-
ception of those that focused on specific populations (e.g., children with language impairments). The 
final set of 10 corpora (see Appendix B; the full set of corpora are accessible via the link above) 
contained transcripts of interactions between 190 different children aged 6 weeks to 6 years and 
their caregivers, siblings, other family members and research investigators. Recordings took place 
across a variety of contexts, but typically involved structured and free play activities between chil-
dren and their caregivers, as well as everyday routines such as mealtimes and bedtimes. Across all 
recordings, utterances produced by the child were filtered out, such that the final dataset contained 
only talk directed to the child for a total word count of 3,853,976.  The CHILDES corpora were down-
loaded in CHAT format and had already been processed using CLAN. As above, these files were con-
verted to XML and parsed using R, with data outputted to .csv files in the same format as the picture 
book corpus. 
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Procedure 
 
(i) Corpus Comparisons 
 

Lexical Diversity. Following Montag et al. (2015), we calculated type-token ratio curves to 
show the number of unique word types in each corpus at various token sample sizes. We took this 
approach because type-token ratios decrease as the number of tokens in a sample increases: the 
more words there are in a language sample, the more likely it is that words will be repeated (Montag 
et al., 2018). Because our spoken language corpus is considerably larger than our picture book cor-
pus, it was not possible to compare the two corpora on a single measure of lexical diversity. We 
adopted Montag et al.'s (2015) method of calculating type-token ratios for multiple random samples 
from each corpus, ranging from 100 to 50,000 words in size, and increasing in increments of 100 
words each time. One hundred simulations were generated at each sample size, each based on a new 
random sample, and type-token ratios were calculated as the mean type count across the 100 simu-
lations divided by the sample size.   
 

Lexical Density. Each lemma token was coded as ‘lexical’ or ‘non-lexical’. Lexical lemmas were 
defined as nouns (excluding proper nouns and pronouns), adjectives, verbs (excluding modal verbs, 
such as ‘do’, ‘will’, ‘can’, ‘must’, ‘shall’, ‘may’, and auxiliary verbs ‘be’, ‘have’ and ‘get’) and adverbs 
derived from adjectives (e.g., ‘fast’ and ‘happily’). All other tokens were coded as ‘non-lexical’. We 
calculated lexical density by dividing the number of lexical items by the total number of lemmas in 
each individual text or conversation (Berman & Nir, 2010; Strömqvist et al., 2002). 
 

Lexical Sophistication. Following Hayes (1988; also Hayes & Ahrens, 1988), we generated cu-
mulative frequency curves showing the proportion of each corpus accounted for by the 1,000 most 
common words in English. We decided to use the SUBTLEX-UK database as our reference, which lists 
frequencies for around 160,000 words generated from subtitles of British television programmes 
(van Heuven et al., 2014). We chose this as our reference database for two reasons. Firstly, these 
frequencies have been shown to explain 4% more variance in word processing times than other 
large general language corpora (e.g., the British National Corpus; van Heuven et al., 2014). Secondly, 
we reasoned that television subtitles represent a hybrid between written and spoken language as 
they typically record scripted speech, and therefore this approach would not be biased towards one 
modality over the other. 
 
Our analysis was based on the cleaned version of the SUBTLEX-UK frequency list, with digits and 
non-alphanumerical symbols removed. We further eliminated all proper nouns from the list, and 
then ranked the list by token frequency across all broadcasts and selected the top 1,000 words. We 
calculated the cumulative proportion of tokens in the picture book and spoken language corpora 
accounted for by the 1,000 most common words in the reference list. We noted some inconsistencies 
in the tokenised forms of words between the SUBTLEX list and our corpora processed by CLAN (for 
example, contracted forms such as n’t in the word wasn’t was listed as a token in the SUBTLEX list, 
but not in our corpora). This meant that a number of items in the 1,000 most common words re-
turned a frequency of 0 or a very low frequency in the picture book and spoken corpora. Therefore, 
we checked all entries in the SUBTLEX list that occurred with 0 frequency in either corpus to ensure 
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that this was truly due to non-occurrence, and not inconsistency in tokenisation. In the case of in-
consistency, we manually corrected the relevant entries in our corpora to align with the tokenised 
form in the SUBTLEX list. Finally, we plotted cumulative frequencies as a proportion of total corpus 
size against rank order of the 1,000 most common words.  
 

Part of Speech. The automatic part of speech tags generated by CLAN were combined into 
broad lexical categories. For example, CLAN provides a unique tag for each different type of pronoun: 
these were reclassified for the purposes of our analysis as ‘pronouns’. Our focus was on the major 
parts of speech, including nouns, lexical verbs, adjectives, adverbs, pronouns and determiners. All 
other tags, including modal and auxiliary verbs, proper nouns and communicators (e.g., ‘ah’) were 
coded as miscellaneous. 

 
Structural Properties. We calculated word length in number of phonemes using the Carnegie 

Mellon Pronouncing Dictionary (Carnegie Mellon University, 2014) as the reference database. Data 
on number of phonemes were available for 84% words in the picture book corpus and 79% of the 
words in the spoken language corpus. We also recorded the morphological structure of the words in 
each text or conversation. We calculated the percentage of morphologically complex lemmas in each 
text or conversation (i.e. ignoring inflected word forms), and recorded whether complex words were 
derivations (e.g., teacher), compounds (e.g., football) or words that were formed through both com-
pound and derivational processes (e.g., footballer). Our coding of morphological structure was based 
on information available in the MorphoLex (Sánchez-Gutiérrez et al., 2018) and MorphoQuantics 
(Laws & Ryder, 2014) databases. Lemmatised forms output by CLAN were checked for errors (e.g., 
stems that comprised only one segment of a compound – foot instead of football) and inconsistencies 
with lemmatised forms in our morphology reference databases (for example, we included inflec-
tional suffixes in the lemmatised form of nouns derived from verbs – the writing on the page – or 
participle adjectives, such as the painted bench). Any identified errors or inconsistencies were man-
ually corrected. Morphological information was available for 97% of the words in the picture book 
corpus and 95% of the words in the spoken language corpus. 
 
(ii) Keyword Analysis 
 
We followed the method outlined by Kilgarriff (2009; see also Kilgarriff, 2001) to identify the words 
most representative of the picture book corpus. We started by filtering out tokens tagged as proper 
nouns or letters, and we also removed tokens with missing part of speech information. We then 
mapped the remaining tokens to the list of corrected lemmas used in the analysis of morphology, 
with the exception that inflectional suffixes (-ed and -ing) were removed to align with lemmatised 
forms in the age of acquisition, concreteness and affective ratings (see below). 
 
Taking the picture book corpus as the focus corpus, and the spoken language corpus as the reference 
corpus, we calculated a keyness score for each word that appeared in the former. The keyness score 
for a given word is the ratio of normalised frequency in the focus corpus to normalised frequency in 
the reference corpus. We used average reduced frequencies in place of raw frequencies to account 
for the dispersion of a word across the corpus. This is an adjusted frequency measure which is based 
on the distances between consecutive occurrences of a given word in a corpus (Hlaváčová, 2006; 
Savický & Hlaváčová, 2002). This approach addresses the issue of ‘burstiness’: words that occur with 
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high concentration within a small section of a corpus (e.g., within the same document), but sparsely 
elsewhere. Two words with the same raw frequency may differ on average reduced frequency if one 
is more evenly distributed across the corpus than the other. For a word that is completely evenly 
distributed, the average reduced frequency will be equivalent to the raw frequency. 
 
A keyness score of 1 means that a word appears with equal frequency (per million) in each corpus, 
whereas a score greater than 1 indicates that the word occurs more frequently in the focus corpus 
than the reference corpus, and a score below 1 indicates that the word occurs less frequently in the 
focus corpus than the reference corpus. Given the problem of calculating ratios for words occurring 
in the focus corpus, but not at all in the reference corpus, we added a constant of 10 to all normalised 
frequencies before calculating keyness. We selected this value as the constant because it focuses the 
keyword analysis on the lower end of the frequency spectrum (Kilgarriff, 2009), which we consid-
ered to be important when identifying the words that children were unlikely to encounter in every-
day conversation, but which they would experience through regular exposure to book language. We 
have included output from additional keyword analyses in Supplementary Materials (available on 
the OSF project page https://osf.io/zta29/) which focus on keywords in higher frequency ranges. 
 
Once we had generated a keyness score for each item in the picture book corpus, we ranked them 
and selected the 500 words with highest keyness scores (i.e. the words most representative of the 
book language corpus; hereafter ‘book+ words’), and the 500 words with the lowest keyness scores 
(the words least representative of books; hereafter ‘book− words’). We chose to focus on 500 words 
from each end of the spectrum as this was approximately the largest sample for which all words in 
the book− set had a keyness score of less than 1, indicating that they occurred with greater relative 
frequency in the spoken language corpus compared to the picture book corpus. See Appendix C for 
a reduced list of the 50 book+ and 50 book− words with the most extreme keyness scores. 
 
We then compared the two sets of words on a number of psycholinguistic properties to examine 
what characterises the words that children experience through book language, and how they differ 
to words more typical of child-directed speech.   
 

Age of acquisition. We analysed the age at which our two sets of words are typically acquired 
using ratings from Kuperman et al. (2012). These norms are generated by asking adults to rate the 
age at which they think they learned a word, with lower ratings indicating that a word is acquired 
earlier in development. 

 
Concreteness. This was based on ratings from adults (Brysbaert et al., 2014), where partici-

pants were asked to rate the extent to which a word refers to something perceptible (i.e. something 
that can be directly experienced via any of the five senses), or conversely, the extent to which a 
word’s meaning is defined using other words. Ratings range from 1 for words that are highly abstract 
(e.g., would) to 5 for words that are highly concrete (e.g., apple).   

 
Arousal. We examined emotional arousal using norms from Warriner et al. (2013). Partici-

pants in this study were asked to rate the intensity of emotion elicited by a given word, ranging from 
1 for ‘calm’ (e.g., librarian) to 9 for ‘excited’ (e.g., insanity).  
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Valence. Our valence ratings were also taken from Warriner et al. (2013). These ratings indi-
cate the extent to which a word evokes positive or negative emotions, and also range from 1-9 where 
1 represents ‘sad’ (e.g., murder), and 9 ‘happy’ (e.g., sunshine). Because our hypothesis relates to the 
extremity of valence ratings, rather than the direction of the effect, we transformed the mean valence 
rating for each word by centring it at the midpoint of the scale (i.e. 5, representing a neutral re-
sponse), and calculating deviation from that point irrespective of direction. For example, a mean 
rating of 5 was allocated a score of 0, and mean ratings of 4 and 6 were each scored as 1. 
 

Results 
 
(i) Corpus Comparisons 
 
Lexical Diversity  
 
The mean number of word types at each sample size for the picture book and spoken language cor-
pora are presented in Figure 1. The data show that, at any given sample size, the picture book corpus 
contains a greater number of unique word types than the spoken language corpus. Differences also 
emerge in the slopes of the lines. The picture book corpus shows a steeper type-token ratio curve 
compared to the spoken language corpus, indicating a greater increase in unique word types per 
unit increase in word tokens. 
 

 
Figure 1. Mean number of word types at different sized samples of word tokens randomly selected 
from the picture book and spoken language corpora 
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Lexical Density  
 
Figure 2 plots percentage lexical density for each individual text in the picture book corpus (n = 
160), and each contiguous sample of child-directed speech in the spoken language corpus (n = 
1616). The picture books contain a significantly higher percentage of content words (M = 43.77; SD 
= 7.00) compared to samples of child-directed speech (M = 28.56; SD = 2.65): t(163.55) = 27.29, p 
< .0001. 
 
 

 
 
Figure 2. Percentage lexical density across picture book and spoken language corpora, plotted by 
individual document (picture book corpus) and conversation (spoken language corpus) 

 
We then examined whether lexical density varies by text genre. Specifically, we compared lexical 
density in texts written in a narrative style to those written in rhyme. It might be that rhyming texts 
would be more lexically dense than narrative texts, given the focus on imagery, rhythm and phono-
logical properties of words. Texts adopting a partial rhyming structure were included in the ‘rhyme’ 
category, provided they were clearly written in verse. However, texts that were predominantly writ-
ten in prose (e.g., a text comprising a collection of stories which included one story written in verse) 
were categorised as ‘narrative’. Analysis revealed that percentage lexical density was indeed signif-
icantly greater in the rhyming texts (n = 62; M = 47.32; SD = 8.24) compared to the narrative texts 
(n = 98; M = 41.52; SD = 4.95): t(89.03) = -4.99; p < .0001 – see Figure 3). Inspection of the data 
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distributions indicated an outlier in the set of rhyming texts with a lexical density score of 80%. We 
reanalysed the data without this outlier, but this did not alter the outcome.  Note that while lexical 
density was greater in the rhyming texts, narrative texts (M = 41.52; SD = 4.95) were still more 
dense than child-directed speech (M = 28.56; SD = 2.65). 
 

 
 
Figure 3. Lexical density by text type 

 
Finally, we examined whether differences in lexical density across the book and spoken language 
corpora were driven by a proportionate increase across all lexical word classes, or a higher concen-
tration of words from a particular word class. To do this, we calculated the frequency of nouns, verbs, 
adjectives and adverbs as a percentage of total lexical items in each corpus (Figure 4). If greater 
lexical density in the picture book corpus is equally distributed across word class, then there should 
be little difference across corpora in the frequency of each part of speech as a proportion of total 
lexical items. However, Figure 4 indicates a greater relative proportion of nouns and adjectives in 
the picture book corpus, and a lower proportion of verbs. 
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Figure 4. Frequency of part of speech tags as a percentage of total content words in the picture 
book and spoken language corpora 

 
Lexical Sophistication 
 
Figure 5 plots the cumulative proportion of total tokens in each corpus accounted for by the 1,000 
most common words in English (with SUBTLEX-UK television subtitles as the reference database), 
ranked in order of frequency on the log10 scale. The intercept at the left y-axis shows the proportion 
of each corpus accounted for the most common word according to SUBTLEX frequencies (the): 5% 
of the picture book corpus, and 3% of the spoken corpus. The point at which the curve intersects the 
right y-axis shows the proportion of each corpus accounted for by the 1,000 most common words: 
72% of the picture book corpus, and 79% of the spoken corpus. The curves show that the words in 
picture books and child-directed speech are differently distributed along the frequency spectrum. A 
higher proportion of words in child-directed speech are among the most common words in the lan-
guage overall, whereas picture books contain a higher proportion of words that fall outside this set. 
Therefore, access to picture books increases the likelihood that children will experience rarer word 
types that they would not otherwise encounter through conversation alone.  
 
The curves also reveal an interesting pattern about the distributions of the most common words 
across the two modalities. As expected, the 1,000 most frequent words accounted for a larger pro-
portion of total tokens in the spoken language corpus compared to the book corpus, yet the most 
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common words account for a higher proportion of words in the picture book corpus. Closer inspec-
tion of the top 10 words revealed that this effect was primarily driven by a higher proportion of 
articles (the, a) and conjunctions (and) in the book corpus, whereas the proportion of pronouns 
(you) and demonstratives (that) was greater in the spoken language corpus. We examine part of 
speech distributions in more detail next. 
 

 
 
Figure 5. Cumulative proportions of total tokens plotted against rank of 1,000 most common 
words 

 
Part of Speech Distributions 
 
Figure 6 shows frequency of occurrence (per million words) of each of the major lexical categories 
across the two corpora. Adjectives, conjunctions and coordinators, determiners, nouns, and prepo-
sitions all occurred with greater relative frequency in the picture book corpus compared to the spo-
ken language corpus. Only pronouns were more frequent in spoken language, along with items 
classed as ‘miscellaneous’, which included proper nouns, auxiliary and modal verbs, and communi-
cators (e.g., ah). 
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Figure 6. Part of speech distributions (frequency per million words) across picture book and spo-
ken language corpora 

 
We conducted further analyses to examine the distributions of different types of pronoun and deter-
miner across the two corpora. Figure 7 indicates that differences in pronoun frequency across pic-
ture books and child-directed speech are driven mostly by the large number of personal (you), 
demonstrative (this), and interrogative (what) pronouns in speech relative to books. While deter-
miners are more frequent overall in books compared to speech, this is particularly the case for arti-
cles (the) and possessives (her), whereas demonstrative determiners (these), just as demonstrative 
pronouns, show the opposite trend. 
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Figure 7. Pronoun (upper panel) and determiner (lower panel) distributions across picture book 
and spoken language corpora with examples from each category 
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Word Length 
 
Figure 8 shows phoneme count distributions across corpora. We set a maximum cut-off of 10 pho-
nemes for the purposes of plotting the data, given the very small proportion of words that exceeded 
these values. The distributions indicate a higher proportion of longer words (four or more pho-
nemes) in the picture book corpus, and a higher proportion of shorter words (three or fewer pho-
nemes) in the spoken language corpus. 
 

 
 
Figure 8. Phoneme count distributions across picture book and spoken language corpora 

 
Morphological Complexity 
 
For each text or conversation, we calculated the percentage of morphologically complex lemma to-
kens (plotted in Figure 9). Plotting the full dataset indicated a number of outlier texts and conversa-
tions containing a high proportion of morphologically complex words (these were typically very 
short language samples). These were removed by excluding any individual text or conversation that 
exceeded three standard deviations from the mean for that corpus (corresponding to 0.63% of the 
texts in the picture book corpus and 0.43% of the conversations in the spoken language corpus). 
Removing these outliers did not alter the pattern of findings. Welch’s Two Sample T-test confirmed 
that texts in the picture book corpus (M = 6.61; SD = 3.19) contained a significantly higher percent-
age of morphologically complex words than conversations in the spoken language corpus (M = 4.31; 
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SD = 1.09: t(161.68) = 9.03, p < .0001). 
 

 
 
Figure 9. Percentage of words in each text (picture book corpus) or conversation (spoken lan-
guage corpus) comprising two or more morphemes 

 
To further explore the composition of morphologically complex words across the picture book and 
spoken language corpora, we calculated the percentage of complex words accounted for by deriva-
tions and compounds. Figure 10 indicates that most morphologically complex words across the two 
corpora were derivations (e.g., teacher), followed by compounds (e.g., football), whereas derived 
compounds (e.g., footballer) were comparatively rare. The relative contribution of each word type 
to overall morphological complexity was very similar across the picture books and child-directed 
speech. 
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Figure 10. Percentage of total complex words in each corpus classed as derived, compound, and 
compounds with derivation 

 
(ii) Keyword Analysis 
 
Age of Acquisition 
 
Age of acquisition ratings were available for 462 of the 500 book+ words (M keyness score = 4.84, 
SD = 2.04), and 451 of the book− words (M keyness score = 0.65, SD = 0.21). Figure 11 shows 
distributions, box plots and data points for age of acquisition ratings for each set of words. Welch’s 
Two Sample T-test indicated that the book+ words (M = 6.17; SD = 1.57) had a significantly higher 
mean age of acquisition rating than the book− words (M = 5.38; SD = 1.77): t(892.63) = 7.11, p < 
.0001). 
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Figure 11. Age of acquisition ratings for the 500 words with the highest (book+) and lowest 
(book−) keyness scores 

 
Concreteness 
 
Concreteness ratings were available for 491 of the book+ words (M keyness score = 4.82, SD = 
2.00), and 469 of the book− words (M keyness score = 0.64, SD = 0.22). Figure 12 shows distribu-
tions, box plots and data points for concreteness ratings for each set of words. Welch’s Two Sample 
T-test indicated that the book+ words (M = 3.27; SD = 0.98) are lower in concreteness than the 
book− words (M = 3.77; SD = 1.20): t(901.59) = -6.99, p < .0001). 
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Figure 12. Concreteness ratings (max = 5) for the 500 words with the highest (book+) and lowest 
(book−) keyness scores 

 
Arousal 
 
Arousal ratings were available for 389 of the book+ words (M keyness score = 4.82, SD = 2.06), and 
365 of the book− words (M keyness score = 0.67, SD = 0.20). Figure 13 shows distributions, box 
plots and data points for arousal ratings for each set of words. Welch’s Two Sample T-test indicated 
that the book+ words (M = 4.30; SD = 0.98) had a significantly higher arousal rating than the book− 
words (M = 3.98; SD = 0.83): t(743.75) = 4.78, p < .0001). 
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Figure 13. Arousal ratings (max = 9) for the 500 words with the highest (book+) and lowest 
(book−) keyness scores 

 
Valence 
 
Valence ratings were available for the same words included in the analysis of arousal. Figure 14 
shows distributions, box plots and data points for centred valence ratings for each set of words. 
Welch’s Two Sample T-test indicated that there was no significant difference in the extremity of va-
lence ratings between book+ words (M = 1.21; SD = 0.82) and book− words (M = 1.15; SD = 0.70): 
t(745.79) = 1.04, p = 0.297). 
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Figure 14. Centred (from the point of neutrality, see Method) valence ratings for the 500 words 
with the highest (book+) and lowest (book−) keyness scores 

 
Discussion 

 
Our aim was to both replicate and build on previous work documenting differences in lexical rich-
ness across children’s books and child-directed speech (Hayes, 1988; Massaro, 2015; Montag et al., 
2015). In line with previous findings, we found that the words used in children’s books are typically 
more diverse, more sophisticated, and lexically denser than those children hear via conversation. 
We extended these analyses by documenting the structural and lexical properties of these words. 
We found differences in part of speech distributions, with adjectives and nouns occurring more fre-
quently in books, and pronouns more frequently in child-directed speech. The words in children’s 
books were typically longer and were more likely to be morphologically complex, although the pro-
portion of complex words that were formed through derivation or compounding was similar across 
the two corpora. Finally, we identified the words most representative of the books in our sample and 
found these had a higher age of acquisition, were more abstract, and rated higher in arousal than 
words more common to child-directed speech. We discuss each of these findings in turn and consider 
the implications for children’s exposure to book language and language learning. 
 
Following Montag et al. (2015), we compared lexical diversity in the picture book and spoken lan-
guage corpora using type-token ratio curves. Our calculations were based on a different sample of 
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child-directed speech, and a new and larger corpus of children’s books, yet our analyses clearly rep-
licated their finding that picture books contain a greater number of unique word types than the spo-
ken language corpus at any given sample size. Further, the curves representing type-token ratios 
showed a steeper trajectory for book language relative to spoken language. This suggests that in-
creasing the amount of book language that children hear has a bigger impact on the number of 
unique words they are exposed to than an equivalent increase in child-directed speech. Diversity in 
the linguistic input is considered key to language learning (e.g., Johns et al., 2016). More specifically, 
some research suggests that lexical diversity in child-directed speech predicts children’s vocabulary 
development over and above the quantity of language they hear (Hsu et al., 2017; Rowe, 2012), a 
finding backed by computational modelling separating the effects of quantity and diversity (Jones & 
Rowland, 2017). While caregiver talk may involve frequent repetitions of words and phrases in the 
context of regular routines, the words in books draw on a broader range of vocabulary sampled from 
a diverse set of topics. Not only do books provide children with access to these words, but they also 
provide a more contextually diverse environment for learning of individual words. Greater lexical 
diversity in the input means that a given word is more likely to co-occur with a broader range of 
other words, such that children have opportunities to develop semantic associations between them. 
Words that occur in more diverse contexts are acquired earlier in development, and show a pro-
cessing advantage in older children and adults (Hills, 2013; Hills et al., 2010; Hsiao & Nation, 2018; 
Johns et al., 2016).  
 
Our analysis of lexical diversity corroborates previous research showing that children encounter a 
broader range of vocabulary in books compared to an equivalent-sized input of child-directed 
speech. Turning to the types of words that children experience via books compared to conversation, 
our analyses of lexical density and lexical sophistication indicate that a higher proportion of the 
words in books are meaning-bearing words, and that they tend to occur less frequently in the lan-
guage overall. This is important given that word frequencies are highly skewed, with only a small 
number of words occurring very frequently (predominantly function words) and the majority of 
words forming the long tail of the distribution (Piantadosi, 2014). Child-directed speech samples 
disproportionately from the higher end of this frequency spectrum. This is unsurprising because, 
unlike written language, speech is generated in the moment, and therefore word choice is biased 
towards those words in a speaker’s lexicon that are most readily accessible (Navarrete et al., 2006). 
Similarly, because spoken communication incorporates extra-linguistic information, the variety, 
choice, and density of content words play a less crucial role in communicating meaning than they do 
in texts. This suggests that children’s books are a particularly rich source of exposure to the types of 
words that children encounter rarely, if ever, in everyday conversation. While we focused on lan-
guage directed primarily at pre-schoolers, children may have limited opportunity to access more 
advanced word types through speech alone, even once they reach school age: although caregivers 
draw on a more diverse vocabulary when speaking to older children, the types of words they choose 
come from the same part of the frequency distribution as the words used with younger children 
(Hayes & Ahrens, 1988). This evidence from older children reinforces book language as a critical 
source of lexical input.   
 
Differences also emerged in part of speech distributions across the picture book and spoken lan-
guage corpora. Our analysis revealed that among the major part of speech categories, nouns, adjec-
tives, determiners, prepositions and conjunctions occur with greater relative frequency in books 
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compared to child-directed speech, whereas pronouns are almost twice as common in speech com-
pared to books. The balance of nouns and pronouns in a language sample is typically a trade-off, 
given that they perform a similar grammatical function (Hudson, 1994). In most comparisons of 
written and spoken language, nouns are found to occur more frequently in texts than in speech, 
whereas the reverse is true for pronouns (Rayson et al., 2001). This pattern is particularly charac-
teristic of informational or academic texts, where nominalisations are a common feature and occur 
more frequently than in fiction (Biber et al., 1998), but our findings indicate that the same is true 
even for fiction targeted at pre-school children. In books, explicit reference is important for compre-
hension: characters and objects do not exist in the immediate context and cannot be experienced 
directly. In child-directed speech, the focus of communication is more interpersonal and takes place 
within a shared context such that pronouns are often an adequate substitute for nouns. The break-
down of pronoun types indicates that differences in frequency were particularly stark in relation to 
demonstrative (e.g., that’s the wrong one), interrogative (what did I say?) and personal (you’ll get 
stuck) pronouns, all of which reflect a more involved and interactive style and reference entities 
within the immediate physical environment. 
 
Adjectives were also more characteristic of books than of child-directed speech. Again, this finding 
aligns with comparisons of written and spoken language more broadly: given that adjectives modify 
nouns, a greater proportion of nouns in a text is likely to be accompanied by a similar rise in adjec-
tives (Biber, 1988; Mair et al., 2002; Rayson et al., 2001). Nevertheless, in relation to children’s learn-
ing, acquisition of adjectives plays a key role in the development of a sophisticated lexicon. Adjec-
tives form the basis of descriptions (e.g., the fluffy cat) and contrastive relations (e.g., big truck vs. 
little truck), and provide linguistic labels for sensory perceptions, values, and emotions (e.g., she is 
cold; he is good; I feel happy). The meanings of adjectives also tend to vary according to context. For 
example, a big rat differs in size to a big building – such terms are relative rather than absolute (Da-
vies et al., 2020). Therefore, experiencing an adjective in combination with a more diverse set of 
nouns may facilitate a more robust and flexible representation of that word (Blackwell, 2005). This 
contextual dependency also suggests that children need some basic knowledge of the nouns being 
modified by a given adjective before they can develop mastery of the adjective itself. Unsurprisingly, 
children learn adjectives at a slower rate than they do other open word classes, particularly nouns 
(Caselli et al., 1995; Gasser & Smith, 1998; Sandhofer & Smith, 2007). Storybooks may be a particu-
larly rich source of input for acquisition of adjectives, given that they occur more frequently than in 
speech, and they also provide more varied contexts through which semantic representations of ad-
jectives can be accumulated and refined.  
 
Our keyword analysis revealed the words that were most unique to the books in our corpus, and a 
second set of words that occurred in the books, but were relatively more frequent in child-directed 
speech. We found that the words most representative of children’s books are typically acquired later 
in development according to age of acquisition norms, and are more abstract and more emotionally 
arousing than the words more common in child-directed speech. However, we found no difference 
between the two sets of words in relation to whether the emotions they evoked were strongly posi-
tive or negative. These findings corroborate our analysis of lexical sophistication, showing that the 
words in books are more advanced not only in terms of their frequency of occurrence in English 
overall, but also in relation to the stage of development that children usually acquire them. This has 
implications for children’s language learning. Words that are acquired earlier in development tend 
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to be well-connected to other words in the lexicon, whereas later words have fewer connections 
(Hills et al., 2009; Steyvers & Tenenbaum, 2005). According to one theory of how children expand 
their semantic network, the order in which children acquire new words reflects the connectivity of 
those words to other words in the learning environment (Hills et al., 2009). The words children hear 
in child-directed speech have a lower age of acquisition on average, and are more likely to be well-
integrated in children’s semantic networks. Access to books, on the other hand, provides an envi-
ronment in which children can build semantic associations and develop connections between words 
that they may not otherwise encounter until later in development.  
 
These words will also typically be more abstract. Concreteness is an important predictor of lexical 
processing in adults, with words higher in concreteness showing an advantage over abstract words 
(e.g., Binder et al., 2005), and abstract words tend to be acquired later in development (Ponari et al., 
2018). One explanation is that concrete words (e.g., apple) refer to concepts that encode direct sen-
sory experiences, and these imaginal representations are activated alongside verbal information 
during processing and retrieval. By contrast, abstract words (e.g., validity) rely more heavily on se-
mantic information encoded linguistically, and the absence of support from perceptual memory 
means that these words are processed less efficiently (Paivio, 1971, 2013). The concreteness effect 
has also been accounted for by differences in contextual availability: abstract words are more chal-
lenging because they have weaker connections to associated contextual information, which makes 
it more difficult for an individual to activate that information when the word is encountered in iso-
lation (Schwanenflugel, 1991). Underpinning both accounts is the idea that linguistic experience is 
key to the acquisition and processing of abstract words. Our analyses suggest that books provide 
more concentrated access to the types of words that are not supported by direct sensory experience, 
along with the linguistic and contextual information needed to support learning and consolidation. 
Acquisition of these words may be supported too by their affective properties. We found that the 
words in picture books were more emotionally arousing than the words in child-directed speech, 
although they did not differ on strength of valence ratings. Some theories of embodied semantics 
propose that emotion may play an important role in the acquisition and processing of abstract words 
in particular, functioning as an alternate source of experiential information in the absence of sen-
sorimotor input (Kousta et al., 2011; Ponari et al., 2018; Vigliocco et al., 2014, 2018). However, a 
recent cross-linguistic study based on data from the MacArthur-Bates Communicative Development 
Inventory (Fenson et al., 2007) found limited evidence that arousal and valence predicted children’s 
comprehension and production of early-acquired words (Braginsky et al., 2019).  
 
Our comparisons of children’s picture books and child-directed speech provide clear evidence that 
books are lexically richer overall, and have a different composition in relation to grammatical class 
and structural complexity compared to speech. Furthermore, the words children are least likely to 
encounter via conversation alone are more advanced, more abstract, and more emotionally arous-
ing. Many of the features of ‘book language’ we have identified are true of written vs. spoken lan-
guage comparisons more broadly (e.g., Biber, 1988), but it is nevertheless important to document 
the ways in which these sources of language input differ in  relation to children’s experiences. Doing 
so not only highlights the specific lexical structures and properties that may vary across language 
learning environments, but also reveals that even books designed to be accessible to the youngest 
children still provide a rich lexical input that is quite different to everyday speech.  
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In many ways, narrative fiction, particularly for young children, is more akin to oral language than 
other written genres (e.g., academic texts, newspapers), meaning that our findings are likely to be 
conservative estimates of the differences between book language and speech. However, it is also 
important to recognise that the corpus of child-directed speech we used here was predominantly 
sampled from interactions taking place within home settings, and that this may have limited the 
range and richness of vocabulary that caregivers used with their children. For example, experiences 
outside the home (a visit to the zoo, a trip to the beach) may provide greater opportunity for novelty 
and variety in lexical use, and for talk beyond the ‘here and now’. More broadly, while corpus data 
provides valuable insights into the language structures children have opportunities to experience 
via books, it cannot speak to the effects of exposure on learning in individuals. Frequency counts 
alone do not capture the rich, interactive contexts in which language learning takes place (Roy et al., 
2015), and nor do they accommodate the wider benefits of shared reading experiences, such as ex-
tra-text talk, scaffolding and emotional bonding. 
 
While less lexically rich than book language, child-directed speech nevertheless plays an important 
part in children’s language development. Certain properties of child-directed speech, such as exag-
gerated intonation patterns and grammatical simplification, have been hypothesised to support 
early language acquisition (Soderstrom, 2007). Given that the words in books are more advanced, 
the impact of variation in exposure to book language may relate more closely to the skills that un-
derpin children’s emerging literacy. The words that children encounter in picture books are by def-
inition more characteristic of the literary domain. Importantly, experience is key: exposure to pic-
ture books via shared reading allows children to start encoding the phonological forms and mean-
ings of more advanced words across different contexts from an early age. Over time, this experience 
will shape language development and provide a strong foundation to literacy (e.g., Gough & Tunmer, 
1986; Perfetti & Hart, 2002). While there are many potential benefits of shared reading for children’s 
development, our findings suggest that one of the key contributions may stem from the language of 
the books themselves, and specifically the rich and diverse lexical input they offer. 
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Appendices 
 
Appendix A: List of Titles in the Picture Book Corpus 
 

Title Author Target age 
range (years) 

A Dog with Nice Ears Lauren Child 3 to 7 
A Great Big Cuddle Michael Rosen 2 to 7 
A Little Bit Brave Nicola Kinnear 2 to 6 
A Squash and a Squeeze Julia Donaldson 3+ 
Aliens Love Underpants Claire Freedman 3+ 
All the Colours I See Allegra Agliardi 5+ 
Along Came A Different Tom McLaughlin 3+ 
Animal Stories for 5 year olds Helen Paiba 5 to 9 
Barking for Bagels Michael Rosen 6+ 
Bedtime Stories for 5 year olds Helen Paiba 5 to 9 
Brown Bear, Brown Bear, What Do You See? Bill Jnr Martin 2+ 
But Excuse Me That is My Book Lauren Child 4+ 
Colin and Lee: Carrot and Pea Morag Hood 3+ 
Cyril and Pat Emily Gravett 3 to 7 
Dave the Lonely Monster Anna Kemp 2+ 
Dear Zoo Rod Campbell 2+ 
Dinosaur Roar! Paul Stickland & Henrietta 

Stickland 
1 to 5 

Dogger Shirley Hughes 2+ 
Dogs Don't Do Ballet Anna Kemp & Sara Ogilvie 3+ 
Duck, Death, and the Tulip Wolf Erlbruch 4 to 8 
Each Peach Pear Plum Allan Ahlberg & Janet Ahlberg 0+ 
Elmer David McKee 3+ 
FArTHER Grahame Baker-Smith 7+ 
Fat Frog Ruth Miskin 5 to 7 
Five Minutes Peace Jill Murphy 3 to 5 
Fox & Goldfish Nils Pieters 3+ 
Fox's Socks Julia Donaldson 1+ 
Franklin's Flying Bookshop Jen Campbell 6 to 8 
Funny Stories for 5 Year Olds Helen Paiba 5 to 9 
George's Marvellous Medicine Roald Dahl 7+ 
Get up! Ruth Miskin 5 to 7 
Giraffe in the Bath and Other Tales Russell Punter & Lesley Sims 3+ 
Gracie la Roo Goes to School Marsha Qualey 6+ 
Gracie la Roo Sets Sail Marsha Qualey 5+ 
Grandad's Island Benji Davies 5+ 
Granpa John Burningham 5 to 7 
Guess How Much I Love You Sam McBratney 2+ 
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Hairy Maclary from Donaldson's Dairy Lynley Dodd 2+ 
Hampstead the Hamster Michael Rosen 5+ 
Heidi Johanna Spyri 6+ 
Hide and Seek NA 3 to 7 
Hide-and-Seek Pig Julia Donaldson & Axel 

Scheffler 
1+ 

Hippo has a Hat Julia Donaldson 0 to 3 
Horrid Henry and the Secret Club Francesca Simon 6 to 11 
Horrid Henry tricks the Tooth Fairy Francesca Simon 7 to 10 
Horrid Henry: Ghosts and Ghouls Francesca Simon 7 to 9 
Horrid Henry's Halloween Horrors Francesca Simon 6 to 11 
How to be a Lion Ed Vere 3+ 
Hubert Horatio How to Raise your Grown-ups Lauren Child 7 to 11 
I Can Hop Ruth Miskin 5 to 7 
I Want My Hat Back Jon Klassen 6+ 
If All the World Were... Joseph Coelho & Allison Col-

poys 
0 to 6 

In the Bath Ruth Miskin 5 to 7 
Into the Forest Anthony Browne 8+ 
Is it a Mermaid? Candy Gourlay 3 to 7 
John Brown, Rose and the Midnight Cat Jenny Wagner 2 to 4 
Joy Corrinne Averiss 3 to 6 
Kitchen Disco Clare Foges & Al Murphy 5+ 
Little Beauty Anthony Browne 2+ 
Looking for Atlantis Colin Thompson 8+ 
Lost and Found Oliver Jeffers 3+ 
Loved To Bits Teresa Heapy & Katie Clemin-

son 
3 to 6 

Magical Stories for 5 year olds Helen Paiba 5 to 9 
Me and my Fear Francesca Sanna 3 to 7 
Michael Rosen's Sad Book Michael Rosen 6+ 
Mog the Forgetful Cat Judith Kerr 2+ 
Monkey Puzzle Julia Donaldson 3 to 8 
Mr Men: Chinese New Year Adam Hargreaves 3+ 
Murray the Race Horse Gavin Puckett 7 to 9 
My Father's Arms are a Boat Stein Erik Lunde 4+ 
Nice Work for the Cat and the King Nick Sharratt 6 to 9 
Night-Time Cat Julia Tedd 7 
Nip and Chip Ruth Miskin 5 to 7 
No-Bot Sue Hendra & Paul Linnet 3+ 
Nog in the Fog Ruth Miskin 5 to 7 
Odd Dog Out Rob Biddulph 3+ 
of Thee I sing Barack Obama 4+ 
Oi Cat! Kes Gray 1 to 5 
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Oi Dog! Kes & Claire Gray 3+ 
Oi Frog! Kes Gray 3+ 
Oi Goat! Kes Gray 3+ 
Owl Babies Martin Waddell & Patrick Ben-

son 
3+ 

Pants Giles Andreae 2 to 3 
Peace at Last Jill Murphy 3+ 
Peck Peck Peck Lucy Cousins 3 to 5 
Peppa goes to London Lauren Holowaty 3+ 
Peppa meets Father Christmas Lauren Holowaty 2 to 6 
Peppa the Mermaid Lauren Holowaty 2 to 6 
Peppa's Magical Unicorn Lauren Holowaty 3+ 
Princess Mirror-Belle and the Flying Horse Julia Donaldson 7 to 11 
Princess Mirror-Belle and the Sea Monster's 
Cave 

Julia Donaldson 7 to 11 

Rabbit & Bear Attack of the Snack Julian Gough 5 to 7 
Rabbit & Bear The Pest in the Nest Julian Gough 5 to 7 
Rabbityness Jo Empson 5+ 
Raccoon on the Moon Russell Punter 3+ 
Rag the Rat Ruth Miskin 5 to 7 
Red Ned Ruth Miskin 5 to 7 
Room on the Broom Julia Donaldson 6+ 
Rosie's Walk Pat Hutchins 0+ 
Ruby Red Shoes Goes to London Kate Knapp 4+ 
Ruby's Worry Tom Percival 5+ 
Run, Run, Run! Ruth Miskin 5 to 7 
Sharing a Shell Julia Donaldson 2+ 
Sophie Johnson Unicorn Expert Morag Hood 3+ 
Squishy McFluff the Invisible Cat: Seaside Res-
cue! 

Pip Jones 5+ 

Stardust Jeanne Willis 5+ 
Stick Man Julia Donaldson 6+ 
Sun Hat Fun Ruth Miskin 5 to 7 
Superworm Julia Donaldson 2 to 7 
Sweep Louise Greig & Julia Sarda 3+ 
That's Not my Puppy... Fiona Watt 0+ 
That's Not my Unicorn… Fiona Watt 0+ 
The Bad-Tempered Ladybird Eric Carle 2+ 
The BFG Roald Dahl 6+ 
The Building Boy Ross Montgomery 4+ 
The Bumblebear Nadia Shireen 4+ 
The Cat in the Hat Dr Seuss 5+ 
The Day the Crayons Quit Drew Daywalt & Oliver Jeffers 3 to 7 
The Day War Came Nicola Davies 5+ 
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The Detective Dog Julia Donaldson 3 to 7 
The Flat Rabbit Bardur Oskarsson 4 to 6 
The Gift Carol Ann Duffy 7+ 
The Gruffalo Julia Donaldson 3 to 7 
The Gruffalo's Child Julia Donaldson 3+ 
The Heart and the Bottle Oliver Jeffers 6+ 
The Highway Rat Julia Donaldson 2 to 6 
The Jolly Christmas Postman Janet Ahlberg & Allan Ahlberg 3 to 5 
The Jolly Postman or Other People's Letters Janet Ahlberg & Allan Ahlberg 3 to 5 
The Last Chip: The Story of a Very Hungry Pi-
geon 

Duncan Beedie 3+ 

The Lion Inside Rachel Bright 3+ 
The Marvellous Moon Map Teresa Heapy & David Litch-

field 
3 to 7 

The Memory Tree Britta Teckentrup 3 to 5 
The Owl who was Afraid of the Dark Jill Tomlinson 5+ 
The Paper Dolls Julia Donaldson 3+ 
The Pond Nicola Davies 5 to 7 
The Scar Charlotte Moundlic 5+ 
The Smartest Giant in Town Julia Donaldson 4 to 7 
The Snail and the Whale Julia Donaldson 2 to 4 
The Storm Whale Benji Davies 3+ 
The Storm Whale in Winter Benji Davies 1+ 
The Tiger Who Came to Tea Judith Kerr 2+ 
The Twits Roald Dahl 7 to 9 
The Ugly Five Julia Donaldson 2 to 6 
The Very Hungry Caterpillar Eric Carle 0+ 
The Wonky Donkey Craig Smith 2 to 6 
Tiddler Julia Donaldson 5 to 11 
Tug, tug Ruth Miskin 5 to 7 
Very little Cinderella Teresa Heapy & Sue Heap 4 to 6 
We're Going on a Bear Hunt Michael Rosen 6+ 
What Happens Next Shinsuke Yoshitake 8+ 
What is Poo? Katie Daynes 0 to 5 
Whatever Next! Jill Murphy 3 to 5 
When Sadness Comes to Call Eva Eland 3 to 8 
Where the Wild Things Are Maurice Sendak 2+ 
Where's Spot? Eric Hill 0+ 
Willy and the Cloud Anthony Browne 3 to 7 
Willy the Wimp Anthony Browne 7+ 
Witchfairy Brigitte Minne 4+ 
Zog Julia Donaldson 2 to 7 
Zog and the Flying Doctors Julia Donaldson 2 to 6 
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Note. The full corpus is available as .csv files containing word tokens (randomised within each doc-

ument) on the Open Science Framework project page (https://osf.io/zta29/)  
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Appendix B: Summary of CHILDES Corpora in the Spoken Language Corpus 
 

Corpus Child age range n Reference 
Belfast 2;0-4;5 8 Henry, A. (1995). Belfast English and 

Standard English: Dialect variation and 
parameter setting. New York: Oxford 
University Press. 

Gathercole/Burns 3;0-6;4 12 Gathercole, V. (1986). The acquisition of 
the present perfect: explaining differ-
ences in the speech of Scottish and 
American children. Journal of Child Lan-
guage, 13, 537–560 

Howe 1;6-1;8 (session 1) 
1;11-2;1 (session 2) 

16 Howe, C. (1981). Acquiring language in 
a conversational context. New York: Ac-
ademic Press. 

Korman 6-16 weeks 6 Korman, M., & Lewis, C. (2001). Moth-
ers' and fathers' speech to their infants: 
Explorations of the complexities of con-
text. In M. Almgren, A. Barreña, M.-J. 
Ezeizabarrena, I. Idiazaabal, & B. 
MacWhinney (Eds.), Research on 
 child language acquisition (pp. 431-
453). Somerville, MA: Cascadilla Press 

Lara 1;9-3;3 1 Jones, G., & Rowland, C. F. (2017). Diver-
sity not quantity in caregiver speech: Us-
ing computational modeling to isolate 
the effects of the quantity and the diver-
sity of the input on vocabulary 
growth. Cognitive Psychology, 98, 1-21. 
doi:10.1016/j.cogpsych.2017.07.002. 

Manchester 1;8-3;0 12 Theakston, A. L., Lieven, E. V. M., Pine, J. 
M., & Rowland, C. F. (2001). The role of 
performance limitations in the acquisi-
tion of verb-argument structure: an al-
ternative account. Journal of Child Lan-
guage, 28, 127-152. 

MPI-EVA Manchester 1;8-3;2 4 Lieven, E., Salomo, D. & Tomasello, M. 
(2009). Two-year-old children’s pro-
duction of multiword utterances: A us-
age-based analysis. Cognitive Linguis-
tics, 20 (3), 481-508. 

Nuffield 0;11 76 McGillion, M., Pine, J. M., Herbert, J. S., & 
Matthews, D. (2017). A randomised con-
trolled trial to test the effect of promot-
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ing caregiver contingent talk on lan-
guage development in infants from di-
verse socioeconomic status back-
grounds. Journal of Child Psychology 
and Psychiatry, 58 (10), 1122-1131 

Tommerdahl 2;6-3;6 23 Tommerdahl, J. and Kilpatrick, C. 
(2014). The Reliability of Morphological 
Analyses in Language Samples. Journal 
of Language Testing, 31 (1), 3-18. 

Wells 1;6-5;0 32 Wells, C. G. (1981). Learning through in-
teraction: The study of language devel-
opment. Cambridge, UK: Cambridge Uni-
versity Press. 

 
Note. n = number of children in sample. The full corpus is available as .csv files on the Open Sci-

ence Framework project page (https://osf.io/zta29/) 
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Appendix C: List of the 50 Book+ Words with Highest Keyness Score and 50 Book− Words with Low-
est Keyness Score 
 

Word Picture book corpus fre-
quency per million 

Spoken language corpus 
frequency per million 

Keyness 
score 

Word set 

stare 195.31 2.74 16.12 book 
voice 293.6 9.96 15.21 book 
begin 401.56 18.76 14.31 book 
horrid 274.42 10.03 14.2 book 
suddenly 252.01 9.74 13.27 book 
father 202.7 6.08 13.22 book 
everyone 351.18 18.07 12.87 book 
yell 130.8 1.48 12.26 book 
world 275.73 13.64 12.09 book 
giant 290.58 15.5 11.79 book 
deep 201.58 8.09 11.7 book 
gasp 121.37 1.3 11.62 book 
whisper 188.5 7.48 11.36 book 
dad 328.98 21.91 10.62 book 
leap 129.11 3.17 10.57 book 
sigh 114.5 1.91 10.46 book 
perfect 168.61 7.45 10.24 book 
enormous 116.03 2.47 10.11 book 
reply 106.59 2.3 9.48 book 
thought 361.99 29.84 9.34 book 
shriek 86.13 0.33 9.3 book 
mutter 87.35 0.48 9.29 book 
large 141.09 6.94 8.92 book 
cheer 98.01 2.46 8.67 book 
shout 526.77 52.41 8.6 book 
dream 175.13 11.63 8.56 book 
each 383.27 36.42 8.47 book 
towards 141.98 8.12 8.39 book 
cave 99.49 3.12 8.35 book 
silence 74.84 0.27 8.26 book 
sight 106.82 4.52 8.05 book 
howl 75.96 0.69 8.04 book 
mother 271.95 25.67 7.9 book 
ground 231.7 20.58 7.9 book 
against 118.92 6.34 7.89 book 
breath 105.48 4.67 7.87 book 
parent 82.73 1.85 7.83 book 
human 73.42 0.7 7.8 book 
slowly 157.61 11.54 7.78 book 
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evening 108.98 5.43 7.71 book 
smile 348.68 36.89 7.65 book 
hate 99.93 4.38 7.65 book 
most 278.81 28.2 7.56 book 
street 128.92 8.39 7.56 book 
himself 300.22 31.11 7.55 book 
peer 66.64 0.31 7.44 book 
scream 167.75 14.21 7.34 book 
add 114.5 7.37 7.17 book 
notice 186.62 17.45 7.16 book 
gaze 62.4 0.27 7.05 book 
toy 73.3 257.58 0.31 spoken 
where 735.23 2459.97 0.3 spoken 
train 63.85 237.14 0.3 spoken 
because 496.21 1716.97 0.29 spoken 
tidy 22.96 102.79 0.29 spoken 
cuddle 7.45 49.88 0.29 spoken 
hey 67.96 263.26 0.29 spoken 
bye 15.41 79.69 0.28 spoken 
ooh 24.83 115.13 0.28 spoken 
here 701.04 2567.41 0.28 spoken 
toilet 8.96 58.76 0.28 spoken 
well 820.1 3061.13 0.27 spoken 
put 762.26 2919.67 0.26 spoken 
tissue 6.86 54.18 0.26 spoken 
brick 18.21 99.05 0.26 spoken 
yours 36.3 169.13 0.26 spoken 
trouser 17.96 99.15 0.26 spoken 
do 5333.39 20871.79 0.26 spoken 
right 820.27 3235.08 0.26 spoken 
giraffe 10.22 69.44 0.25 spoken 
oops 5.37 51.39 0.25 spoken 
doll 32.06 160.44 0.25 spoken 
we 1391.55 5698.67 0.25 spoken 
today 110.42 482.4 0.24 spoken 
what 2794.66 11487.89 0.24 spoken 
yum 12.12 81.21 0.24 spoken 
naughty 37.44 187.53 0.24 spoken 
yesterday 27.44 150.82 0.23 spoken 
car 90.86 425.88 0.23 spoken 
oy 3.25 50.83 0.22 spoken 
whee 6.69 67.96 0.21 spoken 
you 7427 34770.54 0.21 spoken 
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want 712.68 3370.12 0.21 spoken 
penguin 4.18 57.24 0.21 spoken 
yes 515.37 2786.8 0.19 spoken 
nursery 3.3 64.39 0.18 spoken 
poorly 3.45 66.25 0.18 spoken 
shall 204.17 1366.71 0.16 spoken 
careful 35.75 303.12 0.15 spoken 
mm 6.21 106.22 0.14 spoken 
jigsaw 5.45 104.19 0.14 spoken 
wee 16.98 246.49 0.11 spoken 
hm 46.59 547.67 0.1 spoken 
oh 828.94 8781.37 0.1 spoken 
whoops 4.35 170.3 0.08 spoken 
okay 89.43 1581.96 0.06 spoken 
pardon 18.23 469.11 0.06 spoken 
darling 20.93 629.48 0.05 spoken 
alright 4.49 519.47 0.03 spoken 
yeah 28.24 2554.14 0.01 spoken 

 
Note. Frequency columns show average reduced frequencies per million prior to the addition of the 
constant (10) 
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Introduction 
 
Children vary tremendously in their vocabulary development (Fenson et al., 1994; 
Frank, Braginsky, Yurovsky, & Marchman, 2021). Characterizing this variability is 
central to understanding the mechanisms that drive early language acquisition, yet 
capturing this variation in broad, diverse samples of children has been a significant 
challenge for cognitive scientists for decades. The MacArthur-Bates Communicative 
Development Inventories (MB-CDI, or CDI for short) are a set of commonly used par-
ent report instruments for assessing vocabulary development in early childhood 
(Fenson et al., 2007) that were introduced in part to create a cost-effective method for 
measuring variability across individuals. 
 
In this paper, we introduce a web-based tool, Web-CDI, which was developed to ad-
dress the need for collecting CDI data in an online format. Web-CDI allows research-
ers to increase the convenience of CDI administration, further decrease costs associ-
ated with data collection and entry (particularly with item-level data), and access par-
ticipant samples that have traditionally been difficult to reach in language develop-
ment research. Our purpose in this paper is twofold: first, we describe Web-CDI as a 
platform which streamlines the process of collecting CDI data and collates the data in 
a way that facilitates the creation of large-scale, multisite collaborative datasets. Sec-
ond, we profile usage of Web-CDI thus far, with a particular focus on broadening the 
reach of traditional paper-based methods of collecting vocabulary development data. 
 
The Importance of Parent Report Data 
 
Gaining empirical traction on variation in children’s early language requires reliable 
and valid methods for measuring language abilities, especially in early childhood (8 
to 30 months). Parent report is a mainstay in this domain. Parents’ reports are based 
on their daily experiences with the child, which are much more extensive than a re-
searcher or clinician can generally obtain. Moreover, they are less likely to be influ-
enced by factors that may mask a child’s true ability in the laboratory or clinic (e.g., 
shyness). One widely used set of parent-report instruments is the MacArthur-Bates 
Communicative Development Inventories, originally designed for children learning 
American English (Fenson et al., 2007). The American English CDIs come in several 
versions, two of which are Words & Gestures (WG) for children 8 to 18 months, focus-
ing on word comprehension and production, as well as gesture use, and Words & Sen-
tences (WS) for children 16 to 30 months, focusing on word production and sentence 
structure. Both the WG and WS measures come in short forms with vocabulary check-
lists of approximately 90-100 words (Fenson et al., 2000), and long forms, which con-
tain vocabulary checklists of several hundred items each. (An additional shorter form 
of the Web-CDI for children 30-37 months, CDI-III, also exists.) Together, the CDI in-
struments allow for a comprehensive picture of milestones that characterize lan-
guage development in early childhood. A substantial body of evidence suggests that 
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these instruments are both reliable and valid (e.g., Fenson et al., 1994, 2007), leading 
to their widespread use in thousands of research studies over the last few decades. 
Initial large-scale work to establish the normative datasets for the American English 
CDI not only provided key benchmarks for determining children’s progress, but also 
documented the extensive individual differences that characterize early language 
learning during this critical period of development (Bates et al., 1994; Fenson et al., 
1994). Understanding the origins and consequences of this variability remains an im-
portant empirical and theoretical endeavor (e.g., Bates & Goodman, 2001; Bornstein 
& Putnick, 2012; see also, Frank et al., 2021). 
 
The popularity of CDI instruments has remained strong over the years, leading to ex-
tensions of the methodology to alternative formats and cross-language adaptations 
(Fenson et al., 2000). Many teams around the world have adapted the CDI format to 
particular languages and communities (Dale, 2015). Importantly, these adaptations 
are not simply translations of the original form but rather incorporate the specific 
features of different languages and cultures, since linguistic variability exists even 
among cultures that share a native language. As an example of this phenomenon, the 
word “Cheerios” is more common in the United States than it is in the United King-
dom; as a result, it might be expected that caregivers would report children’s 
knowledge of this word in the U.S. and not the U.K., even though English is the most 
common language in both countries. To date there are more than 100 adaptations for 
languages around the globe. Moreover, several research groups have developed 
shorter versions of the CDI forms by randomly sampling items from the full CDI and 
comparing participants’ responses to established norms (Mayor & Mani, 2019) or by 
developing computer adaptive tests (CATs) that use item response theory or Bayesian 
approaches to guide the selection of a smaller subset of items to which participants 
respond (Chai, Lo, & Mayor, 2020; Kachergis et al., 2021; Makransky, Dale, Havmose, 
& Bleses, 2016). 
 
While the reliability and validity of the original CDI instruments are well-established 
for the American English versions of the forms and several others, most existing 
norming samples are skewed toward families with more years of formal education 
and away from non-white groups (Fenson et al., 2007). For example, representation 
in the American English norming samples is generally restricted to families living on 
the U.S. east and west coasts. Further, although paper survey administration is a time-
tested method, increasingly, researchers and participants would prefer to use an elec-
tronic method to administer and fill CDI forms, obviating the need to track (and some-
times mail) paper forms, and the need to key in hundreds of item-wise responses for 
each child. 
 
Here, we report on our recent efforts to create and distribute a web-based version of 
the CDIs in order to address some of the limitations of the standard paper versions. 
Online administration of the CDI is not a novel innovation – a variety of research 
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groups have created purpose-build platforms for administering the CDI in particular 
languages. For example, Kristoffersen et al. (2013) collected a large normative sample 
of Norwegian CDIs using a custom online platform. Similarly, the Slovak adaptation 
of the CDI uses an online administration format (Kapalková & Slanèová, 2007). And 
many groups have used general purpose survey software such as Qualtrics and Survey 
Monkey to administer CDIs and variants online (e.g., Caselli, Lieberman, & Pyers, 
2020). The innovation of Web-CDI is to provide a comprehensive researcher manage-
ment interface for the administration of a wide range of CDI forms, allowing re-
searchers to manage longitudinal administrations, download scores, and share links 
with parents easily, all while satisfying strong guarantees regarding privacy and ano-
nymity. Moreover, a key benefit of a unified data collection and storage system such 
as Web-CDI is that data from disparate sources are combined into a single repository. 
This substantially reduces the overhead efforts associated with bringing together data 
collected by researchers across the world and allows for the analysis of large compar-
ative datasets with the power to detect general trends in vocabulary development that 
may emerge across languages. Finally, due to an agreement between the CDI Advi-
sory Board and Brookes Publishing, the publisher of the print versions of the CDI 
suite, Web-CDI is free of charge for those researchers who agree to contribute their 
data for the renorming of the long form instruments. 
 

Introducing Web-CDI 
 
Web-CDI is a web-based platform for CDI administration and management. Web-CDI 
allows researchers to communicate with families by sharing URLs (web links that 
contain individual users’ own administration of the Web-CDI) via email or social me-
dia, facilitating access to families in areas distant from an academic institution and 
eliminating costly mailings and laboratory visits. Web-CDI also standardizes elec-
tronic administration and scoring of CDI forms across labs and institutions, making 
possible the aggregation of CDI data for later reuse and comparison across admin-
istrations by different labs. Indeed, researchers who use Web-CDI grant the CDI Ad-
visory Board permission to access and analyze the resulting data on an opt-out basis, 
providing a path towards continual improvement of CDI instruments. Since 2018, 
more than 3,500 CDIs have been collected by 15 research groups throughout the U.S. 
who are using Web-CDI, demonstrating the potential for large-scale data collection 
and aggregation. 
 
Below, we outline how Web-CDI is used. We begin by detailing the consent process 
and participant experience. Second, we describe the interface that researchers use to 
collect data using Web-CDI, specifying a number of common use cases for the plat-
form. 
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Figure 1. Pictorial instructions indicating how to mark whether a child “under-
stands and says” a word, from the Web-CDI WS instrument. 
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Figure 2. (A) Sample items from the American English WG form. (B) Sample items 
from the American English WS form. 

 
Participant Interface 
 
Participants can complete the Web-CDI on a variety of devices, including personal 
computers and tablets. Web-CDI can also be administered on a smartphone, although 
the experience is not ideal for the user due to the length of the survey and the small 
screen. As Web-CDI moves in the future to incorporate more short forms and com-
puter adaptive test (CAT) formats (e.g., Chai, Lo, & Mayor, 2020; Makransky, Dale, 
Havmose, & Bleses, 2016; Mayor & Mani, 2019), smartphone-responsive design will 
become a priority. 
 
When a participant clicks a URL shared by a researcher, they are directed to a website 
presenting their own personal administration of the Web-CDI. In some cases, they 
may be asked to read and accept a waiver of consent documentation, depending on 
whether the researcher has chosen to use that feature (see also Researcher Interface 
below). 
 
Instructions 
 
After completing the first demographics page, participants are provided with detailed 
instructions that are appropriate for either the WG or WS version (see Figure 1 for an 
example of the instructions for parents to determine whether their child “under-
stands and says” a word, which is pertinent to both the WG and WS forms). In 
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addition, there are more detailed instructions for completing the vocabulary check-
list. Unlike the traditional paper versions, instructions on how to properly choose re-
sponses are provided both in written and pictorial form. The pictorial instructions 
(Figure 1) aim to further increase caregivers’ understanding of how to complete the 
checklist. For example, these instructions clarify that the child’s understanding of a 
word requires them to have some understanding of the object that the word refers to 
or some aspect of the word’s meaning. In addition, caregivers are reassured that 
“child-like” forms (e.g., “raff” for “giraffe”) or family- or dialect-specific forms (e.g., 
“nana” for “grandma”) are acceptable evidence. Lastly, caregivers are reminded that 
the child should be able to produce the words “on their own” and that imitations are 
not acceptable. These general “rules of thumb” for completing the form should be 
familiar to researchers who are distributing the forms to caregivers so they can field 
any questions that may arise. While this is not possible for certain use-cases (e.g., 
social media recruitment), these instructions should ideally also be reviewed either 
in writing (e.g., via email) or verbally (e.g., over the phone), so that these pictured 
instructions serve merely as a reminder to caregivers when completing the form. Pic-
tured instructions are available for download on the MB-CDI website at http://mb-
cdi.stanford.edu/about.html. 
 
Completing the Instrument 
 
The majority of the participant’s time is spent completing the main sections of the 
instruments. As shown in Figure 2, on the American English WG form, the vocabulary 
checklist portion (396 items) asks caregivers to indicate whether their child “under-
stands” or “understands and says” each word; they can also indicate that their child 
neither understands nor says the word by leaving the boxes unchecked. Additionally, 
gesture communication and other early milestones are assessed. In the American 
English WS form, the vocabulary checklist (680 items) only asks caregivers to indicate 
which words their child “says.” Additional items assess children’s production by re-
questing three of their longest sentences, as well as morphological and syntactic de-
velopment more broadly. All of these items are broken up across multiple screens for 
easier navigation through the form. 
 
At the completion of the form, a graph is displayed illustrating how the responses of 
“understands” or “understands and says” are distributed across the semantic catego-
ries on the form. Participants can select to download their own responses. In addition, 
data from the norming studies are used to estimate the “hardest” [i.e., most advanced 
based on previous work on age of acquisition of individual words, Frank et al. (2021)] 
word that the child currently understands or produces. This feedback to caregivers is 
intended to provide caregivers with a fun “thank you” and intentionally avoids any 
information which frames their child’s progress relative to other children or any nor-
mative standard, so as to not give the impression that the Web-CDI is a clinical assess-
ment of the child’s development. To further underscore this point, the closing page 
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reminds caregivers that their participation does not constitute a clinical evaluation 
and that they should contact their pediatrician or primary care physician if they have 
any concerns about their child’s development. 
 
Researcher Interface 
 
One of the main goals of Web-CDI is to provide a unified CDI platform to the child 
language research community. To that end, researchers request an account by con-
tacting members of the CDI Advisory Board at webcdi-contact@stanford.edu. Once 
the request is granted, they can design and distribute studies. One rationale for this 
personalized registration process is that we ask that researchers allow fully anony-
mized data from their participants to be shared with the CDI Advisory Board, so that 
it can be added to Wordbank [http://wordbank.stanford.edu/; Frank et al. (2017)] and 
shared with the broader research community. However, if particular participants in-
dicate in the consent process that they do not want their data to be shared more 
broadly, then researchers can indicate this in the Web-CDI dashboard to prevent data 
from specific administrations being contributed to any analyses conducted by the CDI 
Advisory Board and/or Wordbank. Data currently in Web-CDI, which have not yet 
been added to the Wordbank repository, will be vetted before being added to ensure 
that all Web-CDI data in Wordbank are drawn from families with typically-developing 
children who meet similar inclusion criteria to the ones we describe below in the Da-
taset 1 section. Additionally, date of form completion will be preserved when adding 
Web-CDI data into Wordbank, so that researchers can choose to filter out data that 
may be affected by the particular point in time at which they were collected (e.g., the 
COVID-19 pandemic, Kartushina et al., 2021). 
 
A study in the context of the Web-CDI system is a set of individual administrations 
created by a researcher that share certain specifications. Table A1 in the Appendix 
gives an overview of the customizable features that are available at the study level in 
Web-CDI. These features are set when creating a study using the “Create Study” tool, 
and most of the features can be updated continuously during data collection using the 
“Update Study” tool. While some of these features are only relevant to specific use 
cases (e.g., longitudinal research and social media data collection, described below), 
others are relevant to all researchers using Web-CDI. 
 
There are currently several CDI forms available for distribution via Web-CDI, includ-
ing the English WG and WS forms and forms in other languages (see Cross-linguistic 
Research below). When creating a study, researchers choose one of the forms that 
they would like to distribute to participants; only one can be used in a given study. 
Researchers who wish to send multiple forms to participants simultaneously (e.g., 
those conducting multilingual research) should create multiple studies, each with a 
single instrument associated with it. 
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Researchers can download participant data in two formats. Both formatting options 
output a comma-separated values file with one row per participant; the full data op-
tion includes participant-by-item responses, and allows researchers to explore item-
level trends, while the summary data option omits item-level data and only provides 
summary scores and normative information, including total number of words under-
stood/produced and percentile scores by age in months and sex. Percentile scores are 
calculated to a single percentile resolution using norms from Fenson et al. (2007). 
 
Below, we outline several possible use cases of Web-CDI, as well the features which 
may facilitate them from a researcher’s perspective. 
 
Individual Recruitment 
 
A first possible workflow using Web-CDI is to send unique study URLs to individual 
participants. Researchers do so by entering numerical participant IDs or by auto-gen-
erating a specified quantity of participant IDs, each with its own unique study URL, 
using the “Add Participants” tool in the researcher dashboard. New participants can 
be added on a continual basis so that researchers can adjust the sample size of their 
study during data collection. Unique links generated for individual participants ex-
pire, by default, 14 days after creation, though the number of days before link expira-
tion is adjustable, which may be an important consideration for some researchers, 
depending on their participant populations and specific project timelines. Workflows 
that involve generating unique links are most suitable for studies which pair the CDI 
with other measures, or when researchers contact specific participants from an ex-
isting database. 
 
Longitudinal Studies 
 
Web-CDI also facilitates longitudinal study designs in which each participant com-
pletes multiple administrations. Researchers wishing to design longitudinal studies 
can do so by entering a list of meaningful participant IDs using the “Add Participants” 
tool in the researcher dashboard. If a specific participant ID is added multiple times, 
Web-CDI will automatically create multiple unique study URLs in the study dash-
board that have that ID. In addition, when creating studies, researchers can select 
whether they would like the demographics information, vocabulary checklist, or no 
sections at all to be pre-filled when a participant fills out a repeat administration of 
the instrument. Unless researchers are interested in cumulative vocabulary counts, it 
is strongly recommended that they do not use the option to pre-fill the vocabulary 
checklist portion of the instrument in longitudinal administrations as caregivers 
should complete the instrument at each time point independently. In the case that 
researchers do choose this option, this is recorded in the Web-CDI database so that, 
when the data are added to Wordbank, researchers can choose to filter out any pre-
filled questionnaires. 

Language Development Research 63

Volume 1, Issue 1, 31 December 2021



 
Social Media and Survey Vendors 
 
Web-CDI contains several features designed to facilitate data collection from social 
media recruitment or through third-party crowd-sourcing applications and vendors 
(e.g., Amazon Mechanical Turk, Prolific). First, rather than creating unique survey 
links for each participant, researchers can also use a single, anonymous link. When 
a participant clicks the anonymous link, a new administration with a unique subject 
ID is created in the study dashboard. Additionally, Web-CDI studies have several cus-
tomizable features that are geared towards anonymous online data collection. For ex-
ample, researchers can adjust the minimum amount of time a participant must take 
to fill out the survey before they are able to submit; with a longer minimum time to 
completion, researchers can encourage a more thorough completion of the survey. 
This feature is typically most relevant in research designs in which participants are 
not vetted by the researcher or those in which there is no direct communication be-
tween participants and researchers, as might be the case when recruiting respond-
ents on social media. Responses collected via personal communication with partici-
pants show low rates of too-fast responding, mostly removing the need for the mini-
mum time feature. Even in the case of anonymous data collection, however, it is rec-
ommended that researchers not raise the minimum completion time higher than 6 
minutes, since some caregivers of very young children may theoretically be able to 
proceed through the measure quickly if their child is not yet verbal. Aside from the 
minimum time feature, researchers can ask participants to verify that their infor-
mation is accurate by checking a box at the end of the survey, and can opt to include 
certain demographic questions at both the beginning and end of the survey, using 
response consistency on these redundant items as a check of data quality. 
 
Paid Participation 
 
If researchers choose to compensate participants directly through the Web-CDI inter-
face, Web-CDI has built-in functionality to distribute redeemable gift codes when a 
participant reaches the end of the survey. Web-CDI contains several features to facil-
itate integration with third-party crowdsourcing applications and survey vendors, 
should they choose to handle participant compensation through another platform. 
For example, when creating studies, researchers can enter a URL to which partici-
pants are redirected when they reach the end of the survey. In addition, researchers 
using the behavioral research platform Prolific can configure their study to collect 
participants’ unique Prolific IDs and pre-fill them in the survey. 
 
Cross-linguistic Research 
 
Web-CDI forms are currently available in English (U.S. American and Canadian), 
Spanish, French (Quebecois), Hebrew, Dutch and Korean. We are looking to add 
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more language forms to the tool, as the paper version of the forms has been adapted 
into more than 100 different languages and dialects, and further ongoing adaptations 
have been approved by the MB-CDI board (http://mb-cdi.stanford.edu/adaptations). 
 
System Design 
 
Web-CDI is constructed using open-source software. All of the vocabulary data col-
lected in Web-CDI are stored in a standard MySQL relational database, managed using 
Django and Python and hosted either by Amazon Web Services or by a European Un-
ion (GDPR) compliant server (see below). Individual researchers can download data 
from their studies through the researcher interface, and Web-CDI administrators 
have access to the entire aggregate set of data from all studies run with Web-CDI. 
Website code is available in a GitHub repository at https://github.com/langcog/web-
cdi, where interested users can browse, make contributions, and request technical 
fixes. 
 
Data Privacy and GDPR Compliance 
 
Web-CDI is designed to be compliant with stringent human subjects privacy protec-
tions across the world. First, for U.S. users, we have designed Web-CDI based on the 
United States Department of Health and Human Services “Safe Harbor” standard for 
collecting protected health information as defined by the Health Insurance Portabil-
ity and Accountability Act (HIPAA). In particular, participant names are never col-
lected, birth dates are used to calculate age in months (with no decimal information) 
but never stored, and geographic ZIP codes are trimmed to the first three digits. Be-
cause of the architecture of the site, even though participants enter ZIP codes and 
dates of birth, these are never transmitted in full to the Web-CDI server. Since no 
identifying information is being collected by the Web-CDI system, this feature en-
sures that Web-CDI can be used by United States labs without a separate Institutional 
Review Board agreement between users’ labs and Web-CDI (though of course re-
searchers using the site will need Institutional Review Board approval of their own 
research projects).1 
 

1 Issues of de-identification and re-identifiability are complex and ever changing. In particular, com-
pliance with DHHS “Safe Harbor” standards does not in fact fully guarantee the impossibility of statis-
tical re-identification in some cases and if potential users have questions, we encourage them to con-
sult with an Institutional Review Board. 
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In the European Union (EU), research data collection and storage is governed by the 
Generalized Data Protection Regulation (GDPR) and its local instantiation in the legal 
system of the member states. Some of the questions on the demographic form contain 
information that may be considered sensitive (e.g., information about children’s de-
velopmental disorders), and in some cases, the possibility of linking this sensitive in-
formation to participant IDs exists, particularly when researchers draw on local data-
bases that contain full names and addresses for recruitment and contacting. As a re-
sult, issues regarding GDPR compliance arise when transferring data outside the EU, 
namely to Amazon Web Services servers housed in the United States. Following GDPR 
regulations, these issues would make a data sharing agreement between data collec-
tors and Amazon Web Services necessary. In addition, all administrators who can ac-
cess the collected data would have to enter such an agreement, which needs updating 
whenever personnel changes occur.  
 
To overcome these hurdles, and in consultation with data protection officers, we 
opted to leverage the local technical expertise and infrastructure to set up a sister site 
housed on GDPR-compliant servers, currently available at http://webcdi.mpi.nl. This 
site is updated synchronously with the main Web-CDI website to ensure a consistent 
user experience and access to the latest features and improvements. This site has 
been used in 135 successful administrations so far and is the main data collection tool 
for an ongoing norming study in the Netherlands. We are further actively advertising 
the option to use the European site to other labs who are following GDPR guidelines 
and are planning adaptations to multiple European languages, where copyright al-
lows. 

 
Current Data Collection 

 
We now turn to an overview of the data collected thus far using Web-CDI. First, we 
examine the full sample of all of the Web-CDI administrations collected as of autumn 
2020 (Dataset 1); we then focus in on a specific subset of Dataset 1 which is comprised 
of data from recent efforts to oversample non-white, less highly-educated U.S. partic-
ipants (Dataset 2). Across both datasets, we show that general trends from prior re-
search on vocabulary development are replicated using Web-CDI. Based on this work 
to date, we then discuss the potential for using Web-CDI to collect vocabulary devel-
opment data from diverse communities online. 
 
Dataset 1: Full Current Web-CDI Usage 
 
In this section, we provide some preliminary analyses of Dataset 1, which consists of 
the full sample of American English Web-CDI administrations collected before au-
tumn 2020. At time of writing, researchers from 15 universities in the United States 
have collected over 5,000 administrations of the American English CDI using Web-
CDI since it was launched in late 2017, with 2,868 administrations of the WG form 
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before exclusions and 3,565 administrations of the WS form before exclusions. We 
excluded participants from the subsequent analyses based on the following set of 
stringent criteria designed for the creation of future normative datasets. We excluded 
participants if it was not their first administration of the survey; they were born prem-
aturely or had a birthweight under 5.5 lbs (< 2.5 kg); reported more than 16 hours of 
exposure to a language other than English per week on average (amounting to ap-
proximately > 10% of time during a week that a child hears another language than 
English); had serious vision impairments, hearing deficits or other developmental 
disorders or medical issues2; were outside of the correct age range for the survey; or 
spent less time on the survey than a pre-specified timing cut-off. Timing cut-offs were 
determined by selecting two studies within Dataset 1 that, upon a visual inspection, 
appeared to contain high-quality responses (i.e., did not contain a disproportionate 
number of extremely quick responders), and using these to estimate the 5th percen-
tile of completion time by the child’s age in months with a quantile regression (fol-
lowing a similar quantile regression method as Bleses, Makransky, Dale, Højen, & 
Ari, 2016). Thus, for each age on the WG and WS measures, we obtained an estimate 
of the 5th percentile of completion time and used this estimate as the shortest amount 
of time participants could spend on the Web-CDI without being excluded from our 
analyses here.  
 
The exclusion criteria we used were designed to be generally comparable with those 
used in Fenson et al. (2007), who adopted stringent criteria to establish vocabulary 
norms that reflect typically developing children’s vocabulary trajectories. A complete 
breakdown of the number of participants excluded on each criterion is in Table 1. Of 
the completed WG forms, 1,248 were excluded, leading to a final WG sample size of 1,620 
administrations, and 1,665 WS administrations were excluded, leading to a final WS 
sample size of 1,900. 
 
Demographic Distribution and Exclusions 
 
Figure 3 shows the distribution of participant ethnicities in Dataset 1 as compared 
with previously reported numbers in the published norming study of the paper-based 
CDI form by Fenson et al. (2007). Several issues pertaining to sample representative-
ness are appreciable. First, as shown in Figure 3A, white participants comprised 
nearly three quarters of Dataset 1, which is comparable to U.S. Census estimates in 

2 Exclusions on the basis of child health were decided on a case-by-case basis by author V.M. in con-
sultation with Philip Dale, Donna Thal, and Larry Fenson. 
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2019 of U.S. residents between the ages of 15 and 34 in 2019; however, Figure 3C shows 
that, compared with U.S. Census estimates, many more white participants in Dataset 
1 were non-Hispanic than is true of the U.S. population in general, indicating that 
Web-CDI is significantly oversampling white, non-Hispanic individuals (the break-
down of white participants into Hispanic and non-Hispanic is not reported in the 2007 
norms). Moreover, few participants identified as Hispanic/Latinx: 6.4% of WG partic-
ipants and 5.2% of WS participants reported Hispanic or Latinx heritage. The low per-
centage of Hispanic/Latinx participants was due in part to our exclusion of children 
with substantial exposure to languages other than English: before exclusions, 8.4% of 
WG participants were Hispanic/Latinx, and 8.2% of WS participants were His-
panic/Latinx. Finally, representation of Black participants is generally lower in Da-
taset 1 (3.5%) than in the 2007 norms (10.5%), which is in turn lower than U.S. Census 
estimates (15.2%). This indicates that both Web-CDI data and existing norming sam-
ples tend to substantially underrepresent Black participants. 
 

Table 1. Exclusions from Dataset 1: full Web-CDI sample 
 
Exclusion WG 

exclu-
sions 

% of full WG 
sample ex-
cluded 

WS 
exclu-
sions 

% of full WS 
sample ex-
cluded 

Not first administration 163 5.68% 444 12.45% 

Premature or low birthweight 37 1.29% 67 1.88% 

Multilingual exposure 449 15.66% 492 13.80% 

Illnesses/Vision/Hearing 191 6.66% 203 5.69% 

Out of age range 88 3.07% 199 5.58% 

Completed survey too quickly 319 11.12% 256 7.18% 

System error in word tabulation 1 0.03% 4 0.11% 

Total exclusions 1248 44% 1665 47% 
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Figure 3. Top row: Proportion of respondents plotted by child race (A) and educa-
tional level of primary caregiver (B) from full Web-CDI sample (Dataset 1) to date 
(N = 3,520), compared with norming sample demographics from Fenson (2007) 
and U.S. Census data (American Community Survey, 2019; National Center for Ed-
ucation Statistics, 2019). Bottom row (C): Participant breakdown by race in Da-
taset 1 as compared with U.S. Census data, splitting white participants into those 
who are Hispanic and those who are not. 

 
Participants’ educational attainment level, as measured by the primary caregiver’s 
highest educational level reached3, was similarly skewed. In Dataset 1, 81.2% of 

3 Maternal education level is a common measure of family socioeconomic status; we probe primary 
caregiver education level here to accommodate family structures in which child-rearing may not 
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responses came from families with college-educated primary caregivers compared to 
43.8% from the same group in the 2007 norms and 32.0% (Figure 3) of adults 25 and 
older according to the U.S. National Center for Education Statistics in 2017. Further-
more, fewer than 1% of participants report a primary caregiver education level less 
than a high school degree, compared to 7% from the same group in the 2007 norms. 
 
The overrepresentation of white, non-Hispanic Americans and those with high levels 
of education attainment points to a general challenge encountered in vocabulary de-
velopment research, which we return to when we detail our efforts to recruit more 
diverse participants. Figure 4 shows that, of the recruitment methods used in Dataset 
1, the studies conducted using the platform Prolific (which we detail in the Dataset 2 
section) contributed the least to the high proportion of white, non-Hispanic, college 
educated participants. Respondents not known to be recruited through an online 
channel or crowdsourcing platform (labelled “Other method” in Figure 4) showed the 
most overrepresentation of white, college educated participants, suggesting that reli-
ance on university convenience samples may be driving the demographic skewness 
of Dataset 1 most acutely. 
 
Results: Dataset 1 
 
Although the CDI instruments include survey items intended to measure constructs 
other than vocabulary size, such as gesture, sentence production, and grammar, we 
focus exclusively on the vocabulary measures here. We also visualize key analyses 
from Dataset 1 alongside the analogous analyses on the American English CDI admin-
istrations from the Wordbank repository (Frank et al., 2021) that include the relevant 
demographic information needed to provide a comparison dataset of traditional pa-
per-and-pencil forms. Across both the WG and WS measures, Dataset 1 shows greater 
reported vocabulary comprehension and production for older children. Moreover, 
data from both the WG and WS measures in Dataset 1 replicate a subtle but reliable 
pattern such that female children tend to have slightly larger vocabulary scores than 
male children across the period of childhood assessed in the CDI forms (Frank et al., 
2021), though in these data this difference does not appear until around 18 months 
(Figure 5). 
 

primarily be the responsibility of the child’s mother, but we expect that in the vast majority of cases 
this corresponds to the child’s mother. 
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On the WG form, respondents’ reports of children’s vocabulary comprehension and 
production both increased with children’s age (Figure 6). We replicate overall pat-
terns found by Feldman et al. (2000) in that, on both the "Words Understood" measure 
(in which caregivers indicate which words their child "understands") and the "Words 
Produced" measure (in which caregivers indicate which words their child "under-
stands and says"), vocabulary scores were slightly negatively correlated with primary 
caregivers’ education level, such that those caregivers without any college education 
reported higher vocabulary scores on both scales; on the word comprehension scale, 
this was particularly the case for the youngest infants in the sample. A linear regres-
sion model with robust standard errors predicting comprehension scores with chil-
dren’s age and primary caregivers’ education level (binned into categories of “High 
school diploma or less,” “Some college education” and “College diploma or more”4) as 
predictors shows main effects of both age (β = 20.05, p < 0.001) and caregiver primary 
education (βhighschool = 21.86, p = 0.05). Similarly, a linear regression model with robust 
standard errors predicting production scores by children’s age and primary caregivers’ 
education level shows main effects of age (β = 7.60, p < 0.001) and primary caregiver 
education (βhighschool = 20.46, p = 0.008). These analyses were not preregistered, but gen-
erally follow the analytic strategy in Frank et al. (2021); additionally, we fit linear mod-
els with robust standard errors to account for heteroskedasticity in the data (Astivia 
& Zumbo, 2019). Generalized linear model predictions for Web-CDI shown in Figure 
6 differ somewhat from those for Wordbank; prediction curves for caregivers of dif-
ferent education attainment levels diverge slightly more in the Web-CDI sample than 
in the Wordbank sample. 
 
The pattern of results seen in the WG subsample of Dataset 1 is consistent with prior 
findings indicating that respondents with lower levels of education attainment report 
higher vocabulary comprehension and production on the WG form (Feldman et al., 
2000; Fenson et al., 1994). However, although caregivers with lower levels of educa-
tion attainment report higher mean levels of vocabulary production and comprehen-
sion, median vocabulary scores (which are more robust to outliers) show no clear pat-
tern of difference across primary caregiver education levels (Figure 7). This discrep-
ancy between the regression effects and a group-median analysis suggests that the 
regression effects described previously are driven in part by differential interpreta-
tion of the survey items, such that a few caregivers with lower levels of education at-
tainment are more liberal in reporting their children’s production and 

4 “High school diploma or less” corresponds to 12 or fewer years of education; “Some college” corre-
sponds to 13-15 years of education; “College diploma or more” refers to 16 or more years of education. 
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comprehension vocabulary scores, especially for the youngest children, driving up 
the mean scores for this demographic group. 
 
 

 
Figure 4. Proportion of participants from Dataset 1 who were white, college edu-
cated and not Hispanic, plotted by recruitment method. 
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Figure 5. Individual children’s vocabulary production scores plotted by chil-
dren’s age and sex (both WG and WS). Left panel: Dataset 1 (full sample of Web-
CDI administrations, N = 3,510, with 1,673 girls). Right panel: American English 
CDI administrations in the Wordbank repository (Frank et al., 2021), including 
only those administrations for which the child’s sex was available (N = 6,486, 
with 3,146 girls). Lines are locally weighted regressions (LOESS) with associated 
95% confidence intervals. Children with a different or no reported sex (N = 10) 
are omitted here. 
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Figure 6. Individual children’s word production (top panels) and comprehension 
(bottom panels) scores from Dataset 1 (full Web-CDI sample) plotted by age and pri-
mary caregiver’s level of education (binned into “High school diploma or less,” 
“Some college education,” and “College diploma or more”). Left panels show results 
from the sample of WG Web-CDI administrations collected as of November 2020 (N 
= 1,620), and right panels show the subset of American English administrations 
from Wordbank (Frank et al., 2021) that contain information about caregiver edu-
cation (N = 1,068) for comparison. Curves show generalized linear model fits. 
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Figure 7. Median vocabulary comprehension (left) and production (right) scores 
from Dataset 1 (full Web-CDI sample) by age and primary caregiver’s level of edu-
cation attainment on the WG form. Lines indicate span between first and third quar-
tiles for each age. 
 

 
 
 
Vocabulary production scores on the WS form show the expected pattern of increase 
with children’s age in months; in addition, scores replicate the trend reported in Feld-
man et al. (2000) and Frank et al. (2021) such that primary caregiver education is pos-
itively associated with children’s reported vocabulary size (Figure 8). Because repre-
sentation of caregivers without a high school diploma is scarce (N = 6 out of a sample 
of 1,900), interpretation of the data from this group is constrained. Nevertheless, as 
shown in Figure 8, a small but clear positive association between primary caregiver 
education and vocabulary score exists such that college-educated caregivers report 
higher vocabulary scores than those of any other education level. Notably, this asso-
ciation is not the result of outliers and is still appreciable in median scores (Figure 9), 
unlike the data from the WG measure shown in Figure 7. The implications from these 
data converge with previous findings which indicate that parental education levels, 
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often used as a metric of a family’s socioeconomic status, are related to children’s 
vocabulary size through early childhood. 
 
 

Figure 8. Individual children’s vocabulary production scores from Dataset 1 (full 
Web-CDI sample) plotted by children’s age and primary caregiver education level 
as reported in the sample of WS Web-CDI administrations collected as of November 
2020 (N = 1,900, left panel) and in the Wordbank repository (N = 2,776, right panel). 
Curves show generalized linear model fits. 
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Figure 9. Median vocabulary production scores from Dataset 1 (full Web-CDI sam-
ple) by age and primary caregiver’s level of education attainment on the WS form. 
Lines indicate span between first and third quartiles for each age. 

 
Discussion: Dataset 1 
 
In general, the full sample of Web-CDI data after exclusions (Dataset 1) replicates pre-
vious norming datasets used with the standard paper-and-pencil form of the MB-CDI. 
We find that vocabulary scores grow with age and that females hold a slight advantage 
over males in early vocabulary development. Moreover, Dataset 1 replicates a previ-
ously documented relationship between primary caregiver education level and vo-
cabulary scores: on the WG form, primary caregiver education shows a slight negative 
association with vocabulary scores, whereas the trend is reversed in the WS form. 
Taken together, these data illustrate that Web-CDI and the standard paper-and-pencil 
form of the CDI give similar results, and thus that Web-CDI can be used as a valid 
alternative to the paper format. 
 
The data discussed above have resulted from efforts by many researchers across the 
United States whose motivations for using the Web-CDI vary. As a result, they 
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reproduce many of the biases of standard U.S. convenience samples. In the next sec-
tion, we describe in more detail our recent efforts to use the Web-CDI to collect vo-
cabulary development data from traditionally underrepresented participant popula-
tions in the United States, attempting to counteract these trends. 
 
Dataset 2: Using Web-CDI to Collect Data from Diverse U.S.-based Communities 
 
Despite the large sample sizes we achieved in the previous section, Dataset 1 is, if 
anything, even more biased towards highly-educated and white families than previ-
ous datasets collected using the paper-and-pencil form. How can we recruit more di-
verse samples to remedy this issue? Here, we discuss and analyze Dataset 2, which 
consists of those administrations from Dataset 1 which were part of recent data-col-
lection efforts (within the past year and a half) that were specifically aimed towards 
exploring the use of online recruitment as a potential way to collect more diverse par-
ticipant samples than are typical in the literature. In other words, the following data 
from Dataset 2 were included in the previous discussion and analysis of Dataset 1, but 
we examine them separately here to give special attention to the issue of collecting 
diverse samples online. 
 
Online Data Collection 
 
Online recruitment methods, such as platforms like Amazon Mechanical Turk, Face-
book and Prolific, represent one possible route towards assembling a large, diverse 
sample. These methods allow researchers to depart from their typical geographical 
recruitment area much more easily than with paper-and-pencil administration. 
Online recruitment strategies for vocabulary development data collection have been 
used in the United Kingdom (Alcock, Meints, & Rowland, 2020), but their usage in the 
U.S. context remains, to our knowledge, rare. In a series of data collection efforts, we 
used Web-CDI as a tool to explore these different channels of recruitment. 
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Figure 10. Example Facebook advertisement in Phase 1 of recent data collection. 

 
Dataset 2 consists of data that were collected in two phases. In the first phase, we ran 
advertisements on Facebook which were aimed at non-white families based on users’ 
geographic locations (e.g., targeting users living in majority-Black cities) or other pro-
file features (e.g., ethnic identification, interest in parenthood-related topics). Adver-
tisements consisted of an image of a child and a caption informing Facebook users of 
an opportunity to fill out a survey on their child’s language development and receive 
an Amazon gift card (Figure 10). Upon clicking the advertisement, participants were 
redirected to a unique administration of the Web-CDI; they received $5 upon com-
pleting the survey. This open-ended approach to recruitment offered several ad-
vantages, namely that a wide variety of potential participants from specific demo-
graphic backgrounds can be reached on Facebook. However, we also received many 
incomplete or otherwise unusable survey administrations, either from Facebook us-
ers who clicked the link and decided not to participate, or those who completed the 
survey in an extremely short period of time (over half of all completed administra-
tions, Table 2). 
 

Language Development Research 79

Volume 1, Issue 1, 31 December 2021



In the second phase, we used the crowdsourcing survey vendor Prolific 
(http://prolific.co) in the hopes that some of the challenges encountered with Face-
book recruitment would be addressed. Prolific allows researchers to create studies 
and post them to individuals who are in the platform’s participant database, each of 
whom is assigned a unique alphanumeric “Prolific ID.” Importantly, Prolific main-
tains detailed demographic information about participants, allowing researchers to 
specify who they would like to complete their studies. Prolific further has a built-in 
compensation infrastructure that handles monetary payments to participants, elimi-
nating the need to disburse gift cards through Web-CDI. 
 

Table 2. Exclusions from Dataset 2: Recent data collection using Facebook and  
Prolific 
 
Exclusion WG 

exclu-
sions 

% of full WG 
sample ex-
cluded 

WS 
exclu-
sions 

% of full WS 
sample ex-
cluded 

Not first administration 0 0.00% 0 0.00% 

Premature or low birthweight 7 2.53% 1 0.33% 

Multilingual exposure 18 6.50% 23 7.62% 

Illnesses/Vision/Hearing 4 1.44% 4 1.32% 

Out of age range 1 0.36% 26 8.61% 

Completed survey too quickly 119 42.96% 133 44.04% 

System error in word tabulation 0 0.00% 0 0.00% 

Total exclusions 149 54% 187 62% 
 
 

In the particular case of Web-CDI, the demographic information needed to determine 
whether an individual was eligible to complete our survey (e.g., has a child in the cor-
rect age range, lives in a monolingual household, etc.) was more specific than the 
information that Prolific collects about their participant base. We therefore used a 
brief pre-screening questionnaire to generate a list of participants who were eligible 
to participate, and subsequently advertised the Web-CDI survey to those participants. 
Given that we were interested only in reaching participants in the United States who 
were not white or who did not have a college diploma, our data collection efforts only 
yielded a sample that was small (N = 68) but much more thoroughly screened than 
that which we could obtain on Facebook. 
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Across both phases (Facebook and Prolific recruitment), we used the same exclusion 
criteria as in the full Web-CDI sample to screen participants. A complete tally of all 
excluded participants is shown in Table 2. In both the WG and WS surveys, exclusion 
rates in Dataset 2 were high, amounting to 58% of participants who completed the 
survey. The high exclusion rates were notably driven by an accumulation of survey 
administrations which participants completed more quickly than our time cutoffs al-
low (Tables A4 and A5). Many of the survey administrations excluded for fast comple-
tion also had missing demographic information reported: Among WG participants ex-
cluded for too-fast completions, 93% did not report ethnicity, and among WS partici-
pants excluded for the same reason, 97% did not report ethnicity. Absence of these 
data prevents us from drawing conclusions about the origin or demographic profile 
of administrations that were excluded. After exclusions, full sample size in Dataset 2 
was N = 128 WG completions and N = 115 WS completions. 
 
Results: Dataset 2 
 
The results from Dataset 2 show overall similar patterns to the full Web-CDI sample 
in several regards. Word production scores from both the WG and WS administra-
tions reflect growing productive vocabulary across the second and third years, with a 
very small sex effect such that female children’s vocabularies are higher across age 
than males’ (Figure 11). The relationship between caregivers’ reported levels of edu-
cation and child’s vocabulary score is not as clear as it is in the full Web-CDI sample 
(Figure 12); however, children of college-educated caregivers reported generally 
higher vocabulary scores across age than did children of caregivers without any col-
lege degree. These patterns suggest that our data show similar general patterns to 
other CDI datasets with other populations (Frank et al., 2021). 
 
Importantly, Dataset 2 showed a substantial improvement in reaching non-white or 
less highly-educated participants. After exclusions, Dataset 2 has a higher proportion 
of non-white participants than Dataset 1 (the overall Web-CDI sample) and the norms 
established by Fenson et al. (2007) (Figure 13). Black participants in particular showed 
a marked increase in representation, from 10.5% in the 2007 norms to 30.7% in Da-
taset 2, while the proportion of white participants decreased from 73.3% in the 2007 
norms to 50.5% in Dataset 2. Representation on the basis of families’ reported primary 
caregiver education also improved (Figure 13). Participants with only a high school 
diploma accounted for 33.3% of Dataset 2 as compared to 23.8% in the 2007 norms, 
and representation of those with a college diploma or more education decreased from 
43.8% in the 2007 norms to 36.2% in Dataset 2. Notably, the distribution of Dataset 2 
with regard to primary caregiver education level is quite similar to Kristoffersen et al. 
(2013), who collected a large, nationally-representative sample of CDI responses in 
Norway and obtained a sample with 30%, 42%, and 24% for participants reporting 12, 
14-16, and 16+ years of education, respectively. 
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Figure 11. Individual children’s vocabulary production scores from Dataset 2 (re-
cent data collection efforts) plotted by children’s age and sex (both WG and WS, N = 
240, with 114 girls). Lines are best linear fits with associated 95% confidence inter-
vals. Children with a different or no reported sex (N = 3) are omitted here. 
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Figure 12. Individual children’s vocabulary production scores from Dataset 2 (re-
cent data collection efforts) plotted by age and level of primary caregiver education, 
binned into those with a high school diploma or less education and those with some 
college education or a college diploma (N = 243). Lines show best linear fits and as-
sociated 95% confidence intervals. 
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Figure 13. Proportion of respondents plotted by child race (A) and educational level 
of primary caregiver (B) from Dataset 2, recent data collection efforts aimed to-
wards oversampling non-white, less highly-educated families (N = 243), compared 
with norming sample demographics from Fenson (2007). Latinx participants can 
be of any race and are thus not represented as a separate category here. 

 
Discussion: Dataset 2 
 
The results from Dataset 2 indicate that Web-CDI could be a promising platform to 
collect vocabulary development data in non-white populations and communities with 
lower levels of education attainment when paired with online recruitment methods 
that yield legitimate, representative participant samples. At the same time, however, 
these data convey clear limitations of our approach. Perhaps most conspicuously, 
more than half of completed administrations in this sample had to be excluded, in 
many cases because the information provided by participants appeared rushed or in-
complete: over 40% of administrations were completed in a shorter amount of time 
than that allowed by our cut-off criteria (Tables A4 and A5), and of these quick com-
pletions, well over 90% were missing demographic information that is rarely missing 
in other administrations of the form. Determining the precise reasons for the high 
exclusion rate, and how (if at all) this (self-)selection may bias data reflecting 
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demographic trends in vocabulary development, requires a more thorough assess-
ment of who is submitting hastily-completed forms. Such an assessment is beyond 
the scope of the current study. However, all respondents who got to the end of the 
form were compensated regardless of how thoroughly they completed it, creating the 
possibility that some participants who clicked the anonymous link may not have been 
members of the population of interest, but rather were other individuals motivated 
by compensation. To the extent that participants moved through the form quickly be-
cause they found the length burdensome, a transition to short forms, including com-
puter adaptive ones (e.g., Chai, Lo, & Mayor, 2020; Kachergis et al., 2021; Makransky, 
Dale, Havmose, & Bleses, 2016; Mayor & Mani, 2019), would potentially increase data 
quality and completion rates substantially. 
 
Additionally, the exclusion rates described previously provide information only on 
those participants who did, at some point, submit a completed form, but many indi-
viduals clicked the advertisement link and did not subsequently continue on to com-
plete the form. Without an in-depth exploration of who is clicking the link and why 
they might choose not to continue, we cannot draw conclusions about the represent-
ativeness of the sample in Dataset 2 with regard to the communities we would like to 
include in our research. As such, a more thorough understanding of how users from 
different communities respond to various recruitment and sampling methods is 
needed in future work in order to draw conclusions about demographic trends above 
and beyond those already established in the literature. 
 
Participants in Dataset 2 were recruited through a targeted post on social media, a 
technique that is considerably more anonymous than recruitment strategies which 
entail face-to-face or extended contact between researchers and community mem-
bers. Online recruitment methods may not be suitable for all communities, especially 
when researchers ask participants to report potentially sensitive information about 
the health, developmental progress, ethnicity and geographic location of their chil-
dren (even when such information is stored anonymously). Our goal here was to as-
sess whether general trends in past literature could be recovered using such an online 
strategy, but future research should take into account that other more personal meth-
ods of recruitment, such as direct community outreach or liaison contacts, may im-
prove participants’ experiences and their willingness to engage with the study. Fur-
thermore, despite the many invalid responses we received in this study, it may nev-
ertheless be possible to use social media to recruit interested participants using a 
more rigorously-vetted approach. For example, participants could respond to an ad 
to be entered into a database and be sent study links later, rather than receiving a 
study link immediately after seeing the ad. 
 
An additional limitation of Dataset 2 is that it only examines vocabulary development 
in monolingual children. While understanding that the performance of standard 
measurement tools like the CDI among multilinguals is of immense import to the field 
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of vocabulary development research (Gonzalez et al., in prep; Floccia et al., 2018; De 
Houwer, 2019), we focused in Dataset 2 only on vocabulary development in monolin-
gual children, because collecting data from multilingual populations introduces ad-
ditional methodological considerations (e.g., how to measure exposures in each lan-
guage) that are not the focus of our work here. However, it will be imperative in future 
to collect large-scale datasets of vocabulary data in bilingual children, both to better 
calibrate standard tools such as the CDI, as well as to reduce the bias towards mono-
lingual families in the existing literature on measuring vocabulary development. 
 
Finally, a significant limitation of the data collection process in Dataset 2 is that many 
people in the population of interest - particularly lower-income families - do not have 
reliable internet access. Having participants complete the Web-CDI on a mobile de-
vice may alleviate some of the issues caused by differential access to Wi-Fi, since the 
vast majority of American adults own a smartphone (Pew Research Center, 2019). Ac-
cordingly, improving Web-CDI’s user experience on mobile platforms will be an im-
portant step towards ensuring that caregivers across the socioeconomic spectrum can 
easily complete the survey. For smartphone users on pay-as-you-go plans, who may 
be reluctant to use phone data to complete a study, a possible solution could be com-
pensating participants for the amount of “internet time” they incurred completing the 
form. 
 

General Discussion and Conclusions 
 
In this paper, we have presented Web-CDI, a comprehensive online interface for re-
searchers to measure children’s vocabulary by administering the MacArthur-Bates 
Communicative Development Inventories family of parent-report instruments. Web-
CDI provides a convenient researcher management interface, built-in data privacy 
protections, and a variety of features designed to make both longitudinal and social-
media sampling easy. To date, over 3,500 valid administrations of the WG and WS 
forms have been collected on Web-CDI from more than a dozen researchers in the 
United States after applying strict exclusion criteria derived from previous norming 
studies (Fenson et al., 1994, 2007). Our analysis of Dataset 1 shows that demographic 
trends from previous work using the paper-and-pencil CDI form are replicated in data 
gleaned from Web-CDI, suggesting that the Web-CDI is a valid alternative to the paper 
form and captures similar results. 
 
Many research laboratories, not only in the United States but around the world, col-
lect vocabulary development data using the MacArthur-Bates CDI in its original or 
adapted form. With traditional paper-based forms, combining insights from various 
research groups can prove challenging, as each group may have slightly different 
ways of formatting and managing data from CDI forms. By contrast, if all of these 
groups’ data come to be stored in a single repository with a consistent database struc-
ture, data from disparate sources can easily be collated and analyzed in a uniform 
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fashion. As such, a centralized repository such as Web-CDI provides a streamlined 
data-aggregation pipeline that facilitates cross-lab collaborations, multisite research 
projects, and the curation of large datasets that provide more power to characterize 
the vast individual differences present in children’s vocabulary development. 
 
Beyond the goal of simply getting more data, we hope that Web-CDI can advance ef-
forts to expand the reach of language development research past convenience sam-
ples into diverse communities. A key question in the field of vocabulary development 
concerns the mechanisms through which sociodemographic variables, such as race, 
ethnicity, income, and education are linked to group differences in vocabulary out-
comes. Large, population-representative samples of vocabulary development data 
are needed to understand these mechanisms, but research to date (including the full 
sample of Web-CDI administrations) has often oversampled non-Hispanic white par-
ticipants and those with advanced levels of education. 
 
We explored the use of Web-CDI as part of a potential strategy to collect data from 
non-white and less highly-educated communities in two phases (Dataset 2). Several 
overall patterns emerged which we expected: vocabulary scores grew with age, 
providing a basic validity check of the Web-CDI measure; females held a slight ad-
vantage in word learning over males; and children of caregivers with a college educa-
tion showed slightly higher vocabulary scores. Nonetheless, the insights from these 
data, while aligned with past norming studies, are necessarily constrained by several 
features of our method. 
 
Limitations of our method notwithstanding, a transition to web-based data collection 
streamlines the process by which historically underrepresented populations can be 
reached in child language research. In particular, recruitment methods involving 
community partners, such as parenting groups, childcare centers and early education 
providers, are simplified substantially if leaders in these organizations can distribute 
a web survey to their members that is easy to fill out, as compared with paper forms, 
which typically present logistical hurdles for distribution and collection. Additionally, 
we hope that Web-CDI can serve as an accessible, free, and easy to use resource for 
researchers already doing extensive work with underrepresented groups. 
 
Web-based data collection can capture useful information about vocabulary develop-
ment from diverse communities, but future research will need to examine which sam-
pling methods can yield accurate, population-representative data that can advance 
our understanding of the link between sociodemographic variation and variation in 
language outcomes. 
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• Code: All code for this work is avaiable on the Open Science Framework at 
https://osf.io/nmdq4/. 

• Materials: All code and materials for the Web-CDI are openly available at 
https://github.com/langcog/web-cdi. If readers wish to view the Web-CDI in-
terface in full from the participants’ or researchers’ perspectives, they are en-
couraged to contact webcdi-contact@stanford.edu. 
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Appendix 
 

Table A1 Settings customizable by researchers when creating new studies to be run 
on the Web-CDI platform 
 

Setting  Default value Notes 
Study name 
  

none 
 

Instrument 
  

none 
 

Age range for study  none Defaults based on instrument se-
lected. 
  

Number of days be-
fore study expiration 
  

14 Must be between 1 and 28 days. 

Measurement units 
for birth weight 
  

Pounds and 
ounces 

Weight can also be measured in kilo-
grams (kg). 

Minimum time 
(minutes) a parent 
must take to com-
plete the study 
  

6 
 

Waiver of documen-
tation  

blank Can be filled in by researchers to in-
clude a Waiver of Documentation for 
the participant to approve before 
proceeding to the experiment. 
  

Pre-fill data for lon-
gitudinal partici-
pants? 
  

No, do not popu-
late any part of 
the form 

Researchers can choose to pre-fill 
the background information and the 
vocabulary checklist.  

Would you like to 
pay subjects in the 
form of Amazon gift 
cards? 
  

No If checked, researchers can enter gift 
codes to distribute to participants 
once they have completed the sur-
vey.  
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Table A1 (continued) Settings customizable by researchers when creating new 
studies to be run on the Web-CDI platform 
 

Setting  Default value Notes 
Do you plan on col-
lecting only anony-
mous data in this 
study? (e.g., posting 
ads on social media, 
mass emails, etc.) 
  

No If checked, researchers can set a 
limit for the maximum number of 
participants, as well as select an op-
tion that asks participants to verify 
that the information entered is ac-
curate. 

Would you like to 
show participants 
graphs of their data 
after completion? 
  

Yes 
 

Would you like par-
ticipants to be able 
to share their Web-
CDI results via Fa-
cebook? 
  

No   

Would you like par-
ticipants to answer 
the confirmation 
questions? 
  

No Asks redundant demographic ques-
tions to serve as attention checks. 

Provide redirect 
button at comple-
tion of study? 
  

No Used to redirect users to external 
site after form completion. 

Capture the Prolific 
ID for the partici-
pant? 
  

No For integration with Prolific. 

Allow participant to 
print their re-
sponses at end of 
Study? 
  

No   

End message  Standard end-of-
study message 

Can be changed to customize end-
of-study message. 
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Table A2. Regression output for WG comprehension measure 
 
term estimate standard 

error 
statistic p 

value 
conf 
low 

conf 
high 

df 

Intercept 122.275 2.427 50.381 0.000 117.515 127.035 1610 

Age 20.050 0.767 26.127 0.000 18.545 21.556 1610 
Caregiver education: Some 
college 

17.445 8.179 2.133 0.033 1.403 33.487 1610 

Caregiver education: High 
school or less 

21.862 10.935 1.999 0.046 0.413 43.311 1610 

Age * Caregiver education: 
Some college 

-1.991 2.261 -0.881 0.379 -6.425 2.443 1610 

Age * Caregiver education: 
High school or less 

-6.604 3.159 -2.091 0.037 -12.800 -0.408 1610 
 

 
 
Table A3. Regression output for WG production measure 
 
term estimate standard 

error 
statistic p 

value 
conf 
low 

conf 
high 

df 

Intercept 29.771 1.332 22.358 0.000 27.159 32.382 1610 

Age 7.599 0.498 15.264 0.000 6.622 8.575 1610 
Caregiver education: Some 
college 

5.640 4.919 1.147 0.252 -4.009 15.289 1610 

Caregiver education: High 
school or less 

20.455 7.693 2.659 0.008 5.366 35.545 1610 

Age * Caregiver education: 
Some college 

-1.357 1.327 -1.022 0.307 -3.960 1.247 1610 

Age * Caregiver education: 
High school or less 

-0.121 2.095 -0.058 0.954 -4.229 3.988 1610 
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Table A4. Minimum time to completion, WG measure 
 
Age in months Minimum time to 

 completion (minutes) 
8 3.496 

9 4.057 

10 4.619 

11 5.181 

12 5.743 

13 6.305 

14 6.867 

15 7.429 

16 7.991 

17 8.553 

18 9.115 
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Table A5. Minimum time to completion, WS measure 
 
Age in months Minimum time to 

 completion (minutes) 
16 8.129 

17 8.613 

18 9.097 

19 9.581 

20 10.065 

21 10.550 

22 11.034 

23 11.518 

24 12.002 

25 12.486 

26 12.970 

27 13.455 

28 13.939 

29 14.423 

30 14.907 
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Introduction 

Language development in autism 

Approximately 1% of English-learning children are affected by autism, defined as 
persistent deficits in social interaction and communication, and restricted and repet-
itive patterns of behaviour, interests, or activities (Baron-Cohen et al., 2009). The lan-
guage abilities of children with autism vary widely. Some children have little or no 
language, while others have advanced language skills and may appear pedantic or 
verbose. Although, as a group, children with autism tend to use shorter and grammat-
ically simpler sentences than children without autism (Eigsti, Bennetto, & Dadlani, 
2007), the acquisition of morphosyntax and word order appear relatively standard 
among affected children (Tek, Mesite, Fein, & Naigles, 2014). Semantic-pragmatic 
and narrative development are, in contrast, key areas of difficulty for children with 
autism, who often show poor understanding of metaphorical and figurative language, 
poor inferencing skills, difficulty resolving semantic ambiguities (e.g. homographs), 
and pronoun reversals in which the speaker mistakenly uses you in self-reference and 
I to refer to the listener (Naigles & Tek, 2017; see Norbury, 2015, for review).   

Target study: Ambridge, Bidgood, and Thomas (2020) 

The aim of the current work was to replicate a study that attempted to separate out 
syntactic and semantic-pragmatic factors contributing to language deficits in a group 
of children with autism. It is important to be clear at the outset exactly what we mean 
by syntactic versus semantic-pragmatic factors. Here, we adopt the definition set out 
in the study that is the target of our replication (Ambridge et al, 2020: 185). 

A widely held view in the literature is that, despite broader linguistic and communi-
cative difficulties, ‘pure syntax’ is relatively spared in children with autism, i.e., 
spared relative to the broader cognitive deficits that accompany this condition. On 
this view, which might be summarized in the phrase ‘form is easy, meaning is hard’ 
(Naigles, 2002; Naigles & Tek, 2017), syntax itself is spared, and the communicative 
difficulties that are experienced by children with autism are caused by impairments 
in other areas of language, such as vocabulary, semantics, socio-pragmatics and nar-
rative (e.g., Tager-Flusberg, Lord & Paul, 1997; Jordan, 1993). To be clear, there is ev-
idence that even children without autism find certain semantic or pragmatic aspects 
of language more difficult than purely syntactic or structural ones (Naigles, 2002); the 
claim is, then, that this is even more true for children with autism.  

Ambridge et al. (2020) investigated the ability of children aged 6-9 years, with and 
without autism, to accurately describe an animation using primed passive sentences 
such as Bob was surprised/chased/pulled by Wendy. These authors argue that the (Eng-
lish) passive is a particularly useful test case for separating out syntactic and semantic 
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or pragmatic impairments, since it exemplifies standard syntactic representations 
and relations – e.g. [SUBJECT] [BE] [VERB] ([PP]) – yet is unusual in terms of its se-
mantics and pragmatics, reversing the [AGENT][PATIENT] word order of actives, and 
treating the [PATIENT] rather than the [AGENT] as topical. 

In the target study of Ambridge et al. (2020), one experimenter described an example 
video animation using a model passive sentence before a second experimenter pro-
vided the participant with a cue verb with which to describe a novel animation. For 
example, given the verb surprise and an animation in which the character Wendy sur-
prised the character Bob, a successfully primed response of Bob was surprised by 
Wendy was coded as a correct passive. Correct actives, meanwhile, were coded when 
the child produced responses such as Wendy surprised Bob; that is, when there was 
little evidence of a priming effect and the child defaulted to the more frequent active 
form. Of central interest in the Ambridge et al. (2020) study – and in the current rep-
lication – was the rate of reversal errors children made, in which a passive response 
exhibited an error in thematic role assignment. For instance, in response to the ani-
mation in which Wendy surprised Bob – that is, Wendy is the [AGENT] and Bob is the 
[PATIENT] – the child produced the passive Wendy was surprised by Bob; mis-assigning 
Wendy as [PATIENT] and Bob as [AGENT]. Given that many children affected by au-
tism have difficulty with the referential, inferential, and narrative building aspects of 
language, it was hypothesised that this group would produce a higher rate of passive 
reversal errors than IQ-matched children without autism. 

Ambridge et al. (2020) note that prior work testing passive sentence comprehension 
among children with autism reports mixed results. For instance, Tager-Flusberg 
(1981) reported that children with autism (aged M = 8;1) were no more likely than 
younger (M = 3;10) IQ-matched controls to mis-comprehend passive structures, as ev-
idenced in an act-out task. In contrast, Paul, Fisher, and Cohen (1988), who used stim-
uli matched to those used by Tager-Flusberg (1981), reported evidence that children 
with autism do make more reversal errors than IQ-matched controls. Ambridge et al. 
(2020) was the first production study to look at reversal errors in children with autism, 
with prior production studies in this area excluding reversal errors from analyses 
(e.g. Allen, Haywood, Rajendran, & Branigan, 2011). Ambridge et al. (2020) report a 
modest though reliable pattern of higher reversal errors among children with autism 
relative to IQ-matched peers. These results were interpreted as further evidence that 
semantics, pragmatics, and narrative, rather than ‘pure syntax’, constitute key areas 
of language difficulty for children affected by autism (though other interpretations 
are possible; a point to which we return at length in the Discussion). 

Why replicate? 

The value of the Ambridge et al. (2020) study is that it investigates a specific grammat-
ical structure – the passive. Work testing the processing and comprehension of 
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specific grammatical structures among children with autism is lacking (Norbury, 
2014), and this is unfortunate because such work can provide a basis for developing 
finely targeted games or activities to be used in programmes of language support. In 
the case of the passive, for instance, if children with autism do indeed have a good 
command of the syntax of this construction, but not of its semantic-pragmatic as-
pects, interventions based around this construction should focus on the latter, not the 
former. For example, a narrative-based intervention which emphasizes how the cur-
rent discourse topic (e.g. Have you heard the news about YouTube?...) makes a natural 
passive PATIENT-SUBJECT (…It got bought by Google; Pullum, 2014: 64) is likely to be 
more useful than one focussed directly on syntax, such as a task encouraging children 
to produce passive sentences when describing pictures with no discourse context.  

Nevertheless, one limitation of Ambridge et al. (2020) – and indeed all prior studies 
into passive sentence processing and comprehension in children with autism – is that 
as a hard-to-reach population, language development studies involving children with 
autism often have small sample sizes. For instance, Ambridge et al. (2020) tested 15 
children with autism, while Tager-Flusberg (1981) tested 18 children, and Paul et al. 
(1988) tested just six children. For this reason, while the use of a paradigm sensitive 
enough to identify specific deficits in the processing of a defined linguistic structure 
among children with autism is welcomed, without further replication many readers 
may be unconvinced by this effect, especially given its small magnitude. 

The current study 

The purpose of the current study was, therefore, to test whether the findings of 
Ambridge et al. (2020) – i.e., higher rates of reversal error among children with autism 
than among IQ-matched peers – replicated in a new sample of children. In approach-
ing this project, we faced similar resourcing constraints, and tested a similar number 
of children (N = 26, n = 13 with autism). However, re-using the original stimuli and 
procedure enabled us to produce – in addition to our own replication analysis – a cu-
mulative analysis of the pooled data involving 28 participants per group (N = 56). Cu-
mulative analysis should be distinguished from questionable research practices such 
as optional stopping or p-hacking, in which researchers covertly gather data up to the 
point at which their hypothesis is superficially confirmed, or add or remove specific 
data points in order to retrieve a p-value below the standard .05 alpha level. In con-
trast, we explicitly label ‘original’, ‘replication’, and ‘pooled’ data throughout this anal-
ysis, and all of our data and code is made publicly available via an online repository: 
https://osf.io/c2pjd/.  

In both the present replication and the original study, we used syntactic (or ‘struc-
tural’) priming purely as a method for eliciting passives. The phenomenon of syntac-
tic priming itself is not under investigation, and we remain agnostic with regard to 
the question of whether priming constitutes a particularly useful window into 
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children’s learning and representation of structural knowledge. Since the passive is a 
highly infrequent and marked construction, it is likely that most children would have 
produced very few, if any, passives, had we run the study as a simple elicited-produc-
tion task with no priming element. 

Method 

Participants 

Thirteen children aged 6 to 9 years (M = 8;0) with autism were recruited from special-
ist schools in North West England. Entry to these schools was based on a prior diag-
nosis of autism and an extensive battery of screening assessments, resembling that 
shown in Appendix A of Ambridge et al. (2020). In the current study, we took the ad-
ditional precaution of screening children independently using the Lifetime version of 
the Social Communicative Questionnaire (SCQ; Rutter, Bailey, & Lord, 2003). The SCQ 
comprises 40 items to which caregivers are required to provide yes or no responses. 
Responses are then tallied to determine the child’s SCQ score. A child with an SCQ 
score of 15 or over is likely to be on the autistic spectrum. Children in the autism 
group of the current replication study had SCQ scores ranging from 19 to 29 (M = 
22.85), providing independent validation of diagnosis and experimental group iden-
tity. Thirteen children without autism aged four to six (M = 5;3) were recruited from 
mainstream English pre-schools and schools. By-participant demographics and SCQ 
and IQ scores are presented in the Appendix. 

Following Ambridge et al. (2020), children with and without autism were IQ-matched 
using the short version of the Wechsler Preschool and Primary Scale of Intelligence, 
Fourth Edition (WPPSI-IV; Wechsler, 2012). IQ scores were used to match the with-
autism and without-autism groups, and for use as a control predictor in the statistical 
analyses, but were not used to define cut-offs for either group. The results of this ad-
ministration are shown in Table 1, alongside corresponding administration results 
from Ambridge et al. (2020). Visual inspection of this data indicates reasonable simi-
larity both across studies and between experimental and control groups within stud-
ies. Where there are discrepancies between groups, these are attributable to children 
with autism outperforming children without autism, meaning that matching may be 
considered conservative. For instance, in both the original study and in the replica-
tion, children with autism scored numerically higher on the object assembly subset 
of the WPPSI-IV, while in the replication a numerical advantage for picture memory 
was also recorded among children with autism.  

It is important to note that, since the children with autism were considerably older 
than the IQ-matched children without autism (i.e., a mean age of 8;0, as opposed to 
5;3), it would not be accurate to refer to the former group as ‘children with autism but 
without intellectual disabilities’ (previously termed ‘high functioning autism’; though 
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see Alvares, Bebbington, Clearly, Evans, Glasson, et al., 2020). However, since all of 
the children with autism were able to complete a relatively complex verbal task, any 
intellectual disabilities present for children in this group were relatively minor. It 
would also not, therefore, be appropriate to generalize the findings from the present 
study (or that of Ambridge et al, 2020, which was conducted with similar participant 
groups) to children with autism with greater intellectual disabilities. 

Table 1. Mean (and standard deviation) scores for the Wechsler Preschool 
and Primary Scale of Intelligence, Fourth Edition (WPPSI-IV), across seven 
subsets. The unit-weighted composite mean is also shown. WA = Without 
Autism; ASC = autism spectrum condition. 

Ambridge, Bidgood, and 
Thomas (2020) (N = 30) 

Jones, Dooley, and Am-
bridge (2020) (N = 26) 

ASC 
(n = 15) 

WA 
(n = 15) 

ASC 
(n = 13) 

WA 
(n = 13) 

Receptive vocabu-
lary 

22.98 (3.36) 23 (2.7) 22.41 (3.04) 21.62 (1.82) 

Block design 19.7 (7.7) 20.48 (2.69) 20.99 (3.22) 19.32 (2.2) 
Picture memory 20.37 (5.33) 15.34 (4.28) 20.35 (2.73) 18.62 (2.53) 
Information 19.19 (3.66) 21.02 (2.29) 20.63 (3.23) 19.64 (2.68) 
Object assembly 28.38 (6.7) 22.45 (7.88) 25.22 (2.89) 19.74 (2.48) 
Zoo locations 10.42 (2.53) 11.13 (0.99) 12.19 (1.47) 12.03 (2.02) 
Picture naming 17.95 (2.71) 17.45 (2.5) 17.43 (2.33) 17.57 (1.5) 
Unit-weighted com-
posite mean 

19.86 (2.97) 18.7 (2.18) 19.89 (1.92) 18.36 (1.24) 

Scaled, unit-weighted composite means of WPPSI-IV scores were included as control 
variables in the hierarchical Bayesian models used throughout this study (referred to 
as ‘IQ’ in Ambridge et al., 2020). These composite means were calculated by summing 
the scaled scores for each subset for each child and then dividing by the number of 
subsets (i.e., seven). The value shown at the bottom of Table 1 was, in contrast, calcu-
lated by summing the raw (i.e., not scaled) mean scores across children and dividing 
by the number of children. Note that these mean scores in the replication align well 
with those in the original article (e.g., for the experimental group, M = 19.89 versus M 
= 19.86). While Ambridge et al. (2020) used independent t-tests to check for equiva-
lence between groups – and reported no statistically significant differences on the 
basis of the data shown in Table 1 – we avoided this analysis given concerns regarding 
the use of inferential methods to test for so-called nuisance effects (Sassenhagen & 
Alday, 2016). Readers interested in formally testing for equivalence between groups 
may use our R code to do so. 

Language Development Research 104

Volume 1, Issue 1, 31 December 2021



Procedure and scoring 

The procedure and scoring used in this study were identical to those used in Ambridge 
et al. (2020). The participant and two experimenters sat in a quiet room in front of a 
computer screen and played a bingo-style game designed to engage and sustain the 
participant’s attention. One experimenter acted as adjudicator, and first passed a 
prime verb card (Table 2) to the second experimenter. The second experimenter then 
used the specified prime verb in a passive sentence to describe a short animation 
played on the computer screen. After this, a target verb card (Table 3) was passed to 
the participant, who was required to use the specified verb to describe a novel anima-
tion. After each trial, the adjudicator, who was not able to see the computer screen, 
looked into a tub and, if one was available, retrieved a bingo point card corresponding 
to the description made. The game was engineered to ensure that the participant al-
ways finished with more bingo points than the experimenter.  

Inspection of Tables 2 and 3, which shows age-of-acquisition and (where available) 
familiarity ratings (Bird, Franklin & Howards, 2001; Kuperman, Stadthagen-Gonzalez 
& Brysbaert, 2012), suggests that the majority of prime and target verbs would be 
known by even the youngest children who participated in the present study. Note that 
in the original study target verbs (Table 3) were split into three semantic classes; 
agent-patient, experiencer-theme, and theme-experiencer. This manipulation was in-
cluded to test whether children with or without autism found verbs of a particular 
semantic class easier to use in the task described. Prior research suggests, for in-
stance, that children without autism have particular difficulty processing experi-
encer-theme verbs, such as forget, love, and remember (e.g. Ambridge, Bidgood, Pine, 
Rowland, & Freudenthal, 2016; see Ambridge et al., 2020, p. 4, for overview). 
Ambridge et al. (2020) report identifying this effect among children both with and 
without autism. However, due to focussed theoretical interest in the rate of reversal 
errors in the current replication, the verb type manipulation does not form part of the 
current analysis or write up, where we instead home in on the main effects of re-
sponse type by group (though see R code for additional analyses). 
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Table 2. Twenty-four prime verbs, with available age-of-acquisition and 
imageability ratings from Kuperman, Stadthagen-Gonzalez, and Brysba-
ert (2012) and Bird, Franklin, and Howards (2001). 

Verb AOA  
(Kuperman et al., 2012): 
Years 

AOA  
(Bird et al., 2001): 
1-7 scale*

Imageability  
(Bird et al., 2001): 
1-7 scale

Avoid 8.50 4.22 3.40 
Bite 3.58 

  

Call 4.74 2.54 4.21 
Carry 5.16 
Chase 5.53 2.82 5.29 
Cut 4.43 
Dress 4.05 2.31 
Drop 3.26 2.31 
Eat 2.78 1.67 
Follow 5.11 2.91 
Help 3.65 2.69 4.05 
Hit 4.75 2.30 
Hold 4.67 
Hug 2.58 2.45 
Kick 4.06 2.43 
Kiss 3.61 
Lead 6.76 
Pat 5.07 2.42 
Pull 4.79 
Push 4.26 2.39 
Shake 5.26 2.84 
Squash 6.94 
Teach 4.67 3.04 
Wash 4.00 1.95 5.84 
* 1 = 0-2 years; 2 = 3-4 years; 3 = 4-5years; 4 = 6-7 years; 5 = 9-10 years; 6 = 11-
12years; 7 = 13 years or older.
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Table 3. Thirty-six target verbs, with available age-of-acquisition and imagea-
bility ratings from Kuperman, Stadthagen-Gonzalez and Brysbaert (2012) and 
Bird, Franklin and Howards (2001). 

Verb AOA  
(Kuperman et al., 
2012): Years 

AOA  
(Bird et al., 2001):  
1-7 scale*

Imageability  
(Bird et al., 2001): 
1-7 scale

Amaze 7.50 3.83 4.92 
Annoy 7.22 3.11 4.57 
Bite 3.58 
Bother 6.50 3.36 3.52 
Carry 5.16 
Chase 5.53 2.82 5.29 
Dress 4.05 2.31 
Forget 4.78 3.25 3.36 
Frighten 8.83 2.86 
Hate 5.53 3.33 3.95 
Hear 3.80 2.53 
Hit 4.75 2.30 
Hug 2.58 2.45 
Ignore 6.74 4.30 
Impress 10.17 
Kick 4.06 2.43 
Know 4.50 2.75 
Like 3.69 2.49 3.32 
Love 5.17 2.51 5.03 
Pat 5.07 2.42 
Please 3.48 
Pull 4.79 
Push 4.26 2.39 
Remember 5.63 3.27 3.91 
Scare 4.22 
See 3.06 2.39 
Shock 7.53 4.13 4.13 
Smell 4.22 2.41 
Squash 6.94 
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Table 3 continued. Thirty-six target verbs, with available age-of-acquisition and 
imageability ratings from Kuperman, Stadthagen-Gonzalez and Brysbaert 
(2012) and Bird, Franklin and Howards (2001). 

Verb AOA  
(Kuperman et al., 
2012): Years 

AOA  
(Bird et al., 2001):  
1-7 scale*

Imageability  
(Bird et al., 2001): 
1-7 scale

Surprise 5.47 
Tease 5.11 
Understand 6.17 3.94 3.40 
Upset 5.26 3.29 4.16 
Wash 4.00 1.95 5.84 
Watch 4.33 
Worry 6.61 4.15 4.76 
* 1 = 0-2 years; 2 = 3-4 years; 3 = 4-5years; 4 = 6-7 years; 5 = 9-10 years; 6 = 11-12years;
7 = 13 years or older.

Children’s responses were coded using the regime described in Ambridge et al. (2020; 
pp. 6–7), and touched on in the introduction to the current study. Given an animation 
in which Wendy scared Bob, for instance, a response of Bob was scared by Wendy was 
coded as a ‘correct passive’; a response of Wendy was scared by Bob was coded as an 
‘incorrect passive’ (i.e., a reversal error – the response of primary interest); a response 
of Wendy scared Bob was coded as a ‘correct active’; and responses such as scared Bob 
were coded as ‘other use of target verb’. Responses outside of these four categories 
were excluded from the analysis. Given only two incorrect active responses among 
participants, this category was excluded from all statistical analyses, as it was ex-
cluded in the original study.  

Statistical analysis 

A series of maximal Bayesian hierarchical models were fitted using the brms package 
in R (Bürkner, 2018; R Core Team, 2016). In each model, response type (i.e., correct 
active, correct passive, incorrect passive, and other verb) was predicted by group (i.e., 
non-autism, autism) and WPPSI score, with target sentence (i.e., verb) and participant 
as grouping variables. In brms syntax: 

Model = brm(formula = Response ~ Group + WPPSI + 
(1 + Group + WPSSI | Target sentence) +  
(1 | Participant) 
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One additional model was fitted with identical fixed and random effects and total pas-
sive responses (i.e., correct plus incorrect passives) as the dependent variable. The 
purpose of this model was to determine whether groups produce similar rates of pas-
sive response overall. Following Ambridge et al. (2020), we set a conservative prior of 
2.77 on beta (β; see R code for detailed model specification, and p. 7 of the original 
study for the justification of prior). These models were fitted not only to our replica-
tion data (N = 26) but also to the original data (N = 30) and to the pooled data (N = 56; 
i.e., the original and replication data combined). Each model fitted well, as indicated
by rhat values uniformly at one and credible posterior predictive visualisation checks
(see brms package documentation for details of diagnostics; Bürkner, 2018). We be-
lieve the model specifications used here and indeed in the original target study to be
well justified. However, researchers keen to test different configurations of, for in-
stance, prior or random or fixed effects are invited to do so using our data and code.
Note that we switched coding of non-autism and autism groups relative to the original
study.

Across the analyses presented in this paper, then, children without autism form the 
baseline group, rather than children with autism. This allows readers to see more 
clearly the associations between a diagnosis of autism and the likelihood of giving a 
response of a certain type. Note also that we do not follow Ambridge et al.’s (2020)  
approach of calculating pMCMC values, or ‘Bayesian p-values’, but rather report a 
combination of proportional odds and 90% highest density intervals (HDIs), i.e., the 
most credible 90% span of the posterior distribution. This broadly follows the ap-
proach outlined in McElreath (2016; though McElreath uses narrower 89% HDIs – the 
choice is arbitrary), which we believe to provide an intuitive method of communi-
cating results and propagating uncertainty in the data. Readers who disagree are wel-
come to calculate pMCMC values or conduct alternative analyses (e.g. using 89% or 
95% HDIs) using our data and R code.  

The results that follow can be interpreted in the following way. A HDI bound above 
zero (e.g. 0.2 to 0.5) suggests a positive association between variables (e.g. a diagnosis 
of autism and higher rates of reversal error). A HDI bound below zero (e.g. -0.8 to -
0.3) suggests a negative association between variables (e.g. a diagnosis of autism and 
lower rates of accurate passive responses). And a HDI spanning zero (e.g. -0.3 to 0.4) 
suggests no linear relationship between predictors is plausible (i.e., no difference be-
tween children with and without autism with respect to a particular response).  

Results 

A by-participant summary of the results can be found in the Appendix. As this table 
shows, at least one reversed passive was produced by 6/13 children with autism and 
2/13 children without autism. Descriptive statistics of task performance are presented 
for reference in Table 4. Importantly, the correct passive and incorrect passive 
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columns of Table 4 provide evidence of a priming effect. Every animation in the task 
could have been described accurately using the cue verb in an active sentence. How-
ever, children both with and without autism appeared to be primed to some extent by 
the experimenter’s example sentence and used passive syntax to describe animations 
in 31.45% of trials overall (i.e., 256 passives out of 814 total responses), despite passive 
syntax being low frequency in everyday speech. 

Table 4. Performance (mean, with standard deviation in brackets) in the original 
study (Ambridge, Bidgood, & Thomas, 2020; ABT) and current replication study 
(Jones, Dooley, & Ambridge, 2020; JDA) by group (WA= Without Autism; ASC = 
autism spectrum condition).  

Study Group Correct 
active 

Incorrect 
active 

Correct 
passive 

Incorrect 
passive 

Other 
verb 

ABT WA 3.13 (1.67) 0.09 (0.29) 0.91 (1.2) 0.18 (0.44) 0.33 (0.56) 
ABT ASC 2.2 (1.82) 0.07 (0.25) 0.91 (1.33) 0.77 (1.29) 0.55 (0.79) 
JDA WA 3.58 (1.89) 0.0 (0.0) 2.1 (1.97) 0.02 (0.16) 0.08 (0.27) 
JDA ASC 2.62 (1.57) 0.05 (0.32) 1.13 (1.54) 0.33 (0.62) 0.38 (0.63) 

Prior to our main analysis, we tested whether groups were similarly likely to produce 
passive sentences overall, i.e., correct passives and reversal errors combined. The re-
sults of this analysis are presented in Table 5, which shows estimates and 90% HDIs 
for the original (N = 30), replication (N = 26), and pooled (N = 56) data. In the original 
study it was reported on the basis of descriptive statistics (i.e., no model was fitted) 
that children with autism were more likely to produce passive sentences than chil-
dren without autism. While the Bayesian analysis of the original data implies this ef-
fect (estimate = 0.11), we note that the 90% HDI for this estimate crosses zero (HDI = 
-0.05, 0.25), indicating that the true effect may be practically null. In the replication
data, the estimate suggests children with autism were in contrast less likely to pro-
duce passive sentences than children without autism (estimate = -0.13), however the
90% HDI for this estimate again suggests that the effect may not be substantial (HDI
= -0.29, 0.01). Analysis of the pooled data indicates the absence of any group effect on
the production of passive sentences (estimate = 0.02, HDI = -0.08, 0.13). Overall, then,
children with and without autism were equally likely to respond using passive syntax.
Children with autism produced passives in 131 out of 374 responses (i.e., 35.03%),
while children without autism produced passives in 134 out of 440 responses (i.e.,
30.45%).
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Table 5. Estimates and 90% highest density 
intervals (HDI) for the association between a 
diagnosis of autism and a passive response.  

Data Estimate 90% HDI 
Original 0.11  -0.05, 0.25
Replication -0.13 -0.29, 0.01
Pooled 0.02 -0.08, 0.13

We then looked at rates of reversal error. Analyses of the original (N = 30), replication 
(N = 26), and pooled (N = 56) data indicate that children with autism were more likely 
to make reversal errors than children without autism (Table 6; pooled HDI = 1.06, 
4.21). Overall, 47 out of 374 responses made by children with autism contained rever-
sal errors (i.e., 12.57%), while just 9 out of 440 responses made by children without 
autism contained reversal errors (i.e., 2.05%). In the pooled analysis, the beta coeffi-
cient for the association between a diagnosis of autism and the production of a rever-
sal error was � = 2.59. Exponentiating this estimate shows that, while groups pro-
duced a comparable number of passives in general (Table 5), the proportional odds 
of a child with autism mis-assigning thematic roles and producing a reversal error 
were approximately thirteen times (13.33) higher than the odds of a child without au-
tism doing likewise. 

Table 6. Estimates and 90% highest density in-
tervals (HDI) for the association between a di-
agnosis of autism and reversal errors.  

Study Estimate 90% HDI 
Original 2.11  -0.52, 4.50
Replication 2.67      -0.39, 6.03
Pooled 2.59      1.06, 4.21

Next, we looked at whether children with autism were more or less likely than chil-
dren without autism to respond using correct actives (Table 7). Analysis re-confirmed 
that in the original study children with autism were less likely than children without 
autism to produce correct actives (HDI = -1.99, -0.12). However, replication and data 
pooling indicate a density interval spanning zero (pooled HDI = -1.20, 0.01). Overall, 
then, it is not clear that children without autism produced substantially more correct 
active responses than children with autism. The number of correct active responses 
made by children in each group was high. Overall, 199 out of 374 responses made by 
children with autism were correct actives (i.e., 53.21%), while 284 out of 440 responses 
made by children without autism were correct actives (i.e., 64.55%). 
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Table 7. Estimates and 90% highest density in-
tervals (HDI) for the association between a di-
agnosis of autism and correct actives.  

Study Estimate 90% HDI 
Original -1.05 -1.99, -0.12
Replication 0.12 -0.75, 0.98
Pooled -0.58 -1.20, 0.01

Finally, we looked at whether children with autism were more or less likely than chil-
dren without autism to respond with an alternative use of the target verb. For in-
stance, responding Wendy pulling Bob where the target passive sentence was Bob was 
pulled by Wendy1. The results of these analyses are shown in Table 8. Estimates and 
HDIs indicate that children with autism were consistently more likely than children 
without autism to use the target verb in a response other than the correct active or a 
passive. 

Table 8. Estimates and 90% highest density in-
tervals (HDI) for the association between a diag-
nosis of autism and other uses of the target verb. 

Study Estimate 90% HDI 
Original 1.60 -0.11, 3.37
Replication 2.08 -1.11, 5.07
Pooled 2.47 0.88, 4.06

In the pooled data, 39 out of 374 responses made by children with autism involved an 
alternative use of the target verb (i.e., 10.43%), while 18 out of 440 responses made by 
children without autism involved an alternative use of the target verb (i.e., 4.09%). 
We note that many of these responses were reasonable. For instance, the response of 
Homer was annoying Marge instead of the expected target Marge was annoyed by Homer; 
the response of Wendy was letting Bob pat her instead of Wendy was patted by Bob; and 
the response of Marge is carrying Homer instead of Homer was carried by Marge.  

1 As these examples show, this response category includes both grammatical and un-
grammatical uses of the target verb. Of the 17 responses in this category, ten were 
fully grammatical, two (both produced by children without autism) included a past-
tense overgeneralization error (bited, in both cases), and five were unclear. These 
were all cases such as Marge remembering Homer which is ungrammatical as a 
standalone sentence, but which could be acceptable as a response to an implicit ques-
tion such as What can you see in this video?. 
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Discussion 

The language of children with autism varies dramatically, from children who have 
little or no language to children who have advanced language skills and may appear 
pedantic or verbose (Norbury, 2014). While as a group children with autism often use 
shorter and grammatically simpler sentences than children without autism (Eigsti et 
al., 2007), it has been argued that the main areas of language difficulty for children 
with autism are semantics, pragmatics, and narrative, rather than ‘pure syntax’ 
(Naigles & Tek, 2017). The current study aimed to tease apart these effects through a 
replication of work by Ambridge et al. (2020). These authors asked 30 children aged 
6-9 years, with and without autism, to describe a series of animations using a cue verb,
primed by the experimenter to use passive syntax. The response of primary interest
was the rate of reversal errors, in which passive syntax is used accurately but thematic
roles are mis-assigned (e.g. the child describes an animation in which Wendy
[AGENT] surprises Bob [PATIENT] with the phrase Wendy [PATIENT] was surprised by
Bob [AGENT]). Ambridge et al. (2020) report a higher rate of reversal errors among
children with autism than among children without autism.

We set out to test whether this effect replicated in a new sample of children with and 
without autism (N = 26) and presented a cumulative analysis in which data from the 
original study and the replication were pooled (N = 56). Analysis indicated that the 
main effect reported by Ambridge et al. (2020) replicated in this new sample of chil-
dren. Table 5 of the current study shows that children with autism were in general as 
likely as children without autism to produce passive sentences. However, the groups 
differed substantially in the rate of reversal errors they made, with children with au-
tism approximately thirteen times more likely than children without autism to make 
an error in thematic role assignment, for instance describing a scene in which Wendy 
surprised Bob using the phrase Wendy was surprised by Bob (Table 6). Results corrobo-
rate Ambridge et al.’s (2020) conclusion that despite age-appropriate knowledge of (at 
some level) constituent order in passive syntax, the ability of certain children with 
autism to map syntax to thematic roles is impaired.  

Embedding the cue verb in an accurate passive sentence was clearly challenging for 
children both with and without autism, due to their young age and the high complex-
ity and low frequency of this syntactic structure. This was reflected in the high rate of 
‘default’ active responses made by children with and without autism (i.e., 53.21% and 
64.55% respectively; see Table 7), and the relatively high rate of alternative responses 
made by children with autism (i.e., 10.43%; see Table 8). The real challenge, of course, 
is to explain why children with autism produced inaccurate passives in 12.57% of tri-
als (versus 2.05% of trials among children without autism), instead of defaulting to 
active syntax or responding with an alternative verb usage if task demands were high. 
Ambridge et al. (2020, pp 15–17) discuss two possibilities. The first is that children 
with autism struggle to understand the discourse-pragmatic conditions under which 

Language Development Research 113

Volume 1, Issue 1, 31 December 2021



typical AGENT-PATIENT order is reversed (e.g., when the PATIENT is topical; Have 
you heard the news about YouTube? It got bought by Google; Pullum, 2014: 64). The second 
and related possibility is that reversal errors are part and parcel of the same narrative 
deficit that sometimes causes children with autism to mention characters or events 
in the wrong order. Both of these possibilities are consistent with the replication and 
cumulative datasets presented here, which converge on a very similar pattern of re-
sults. Rather than re-describe these possibilities, then, we here present an alternative 
account that nevertheless remains compatible with those summarised in Ambridge 
et al. (2020).  

Under construction-based accounts of language acquisition (e.g., Tomasello, 2003; 
Dabrowksa, 2004; Goldberg, 2019), children build constructions – including the pas-
sive – by analogizing across input utterances that exemplify these constructions. This 
is true even for those accounts that explicitly retain the original exemplars (e.g., Ab-
bot-Smith & Tomasello, 2006; Ambridge, 2020). For example, suppose that a child 
without autism hears sentences such as Chloe was hit by Danny, James was kicked by 
Billy and Sarah was dressed by her Dad. The assumption is that, on the basis of such 
utterances, the child forms a construction schema of the form [PATIENT] [BE] 
[ACTION] by [AGENT] (even if only very approximately; Ambridge, 2020). This con-
struction will allow her to produce an appropriate passive sentence such as Bob was 
pushed by Wendy (a target utterance in the present study). Suppose, now, that a child 
with autism hears sentences such as Chloe was hit by Danny, James was kicked by Billy 
and Sarah was dressed by her Dad, but instead forms a construction schema of the form 
[PERSON] [BE] [ACTION] by [PERSON]. This more general construction will allow her 
to produce both appropriate passive sentences such as Bob was pushed by Wendy and 
(as a description of the same event) incorrect reversed passive sentences such as 
Wendy was pushed by Bob.  

This account, as it is presented above, would seem to predict – incorrectly – that chil-
dren with autism will produce correct and reversed passives at rates of around 50/50. 
In fact, however, the notion of a child forming either a [PATIENT] [BE] [ACTION] by 
[AGENT] or a [PERSON] [BE] [ACTION] by [PERSON] construction is a gross oversim-
plification. In reality, ‘constructions’ are probabilistic and multi-facetted: The first 
slot is neither PERSON nor PATIENT but a probabilistic cluster of all the properties of 
all of the different entities that have appeared in this position in input utterances (see 
Ambridge, 2020, for a detailed discussion of how re-representing exemplar utterances 
at an increasingly abstract level in a computational model results in abstractions that 
approximate – but never map on to entirely – linguistic constructions at various levels 
of abstraction).  

An advantage of this account is that it can potentially also explain the finding of Paul, 
Fisher, and Cohen (1988) that children with autism make more reversal errors of this 
type than do IQ-matched controls, when assessed using comprehension methods 
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(though see Tager-Flusberg for a null finding using a similar methodology). But is 
there any reason to believe that children with autism are more likely than children 
without autism to form (probabilistically) these overly general constructions? We are 
not aware of any directly-relevant research evidence, but the possibility is generally 
consistent with the empathizing-systemizing view of Baron-Cohen and colleagues 
(e.g., Baron-Cohen, 2009), under which people with autism lie at the more systemiz-
ing end of the continuum. Classifying verb arguments as AGENT, PATIENT, 
EXPERIENCER or THEME might require a degree of empathising, of understanding 
others’ perspectives and emotions. Classifying verb arguments as PERSON does not, 
and is a more systematic approach, in that it posits a higher level of generalization; 
that is, of systematicity.  

Of course, this possibility is highly speculative at present but could potentially be in-
vestigated in future research, for example by investigating whether children with au-
tism make similar errors for other constructions that require human participants to 
be classified into fine-grained psychological categories like RECIPIENT (e.g., da-
tive/ditransitive constructions). Another potentially illuminating direction for future 
research would be to replicate the priming task described in this study using anima-
tions depicting a mixture of human interactions (e.g., Wendy surprising Bob) and sys-
tematic physical processes (e.g. a cam rotating and making a lever move). People with 
autism and Asperger syndrome are reported to show better understanding of physical 
systems than people without autism, despite apparent deficits in interpreting human 
intentions among this population (Lawson, Baron-Cohen, & Wheelwright, 2004). It 
would be interesting to test, therefore, whether among children with autism the rate 
of reversal errors would be lower for passive sentences describing systems (e.g., the 
cam was moved by the lever) than for sentences describing human interactions (e.g., 
Wendy was surprised by Bob). 

In the pooled analysis presented in this study, the odds of a child with autism produc-
ing a reversal error were approximately thirteen times higher than the odds of a child 
without autism doing likewise. Nevertheless, we noted that children with autism pro-
duced reversal errors on only 12.57% of their total responses. Despite substantial pro-
portional odds, then, it may be argued that this modest magnitude on an absolute 
scale makes the passive reversal effect trivial, particularly considering how rarely 
passive syntax occurs in natural speech. That is, passive sentences may occur so 
rarely in natural speech that apparently mild deficits in mapping thematic roles 
among some children with autism may not cause significant problems in language 
use. It is important to note, however, that the current study looked at a sample of 
children with relatively low scores on the SCQ measure of autism (some only a few 
points above the cut-off of 15). It may well be, therefore, that children with higher 
scores would produce more reversal errors (or even a different pattern of responses 
entirely). Determining how patterns of performance in the current paradigm link to 
specific cognitive profiles will enable us to determine whether the results reported 
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here may guide the fine-tuning of programmes of language support for children with 
autism. It is likely that the task will need to be modified for use with participants 
showing different symptomologies.  

Conclusion 

The current study presented a replication of Ambridge et al. (2020). While children 
with and without autism produced a similar number of passive responses in general, 
the responses of children with autism were significantly more likely to include errors 
in thematic role assignment. Despite age-appropriate knowledge of (at some level) 
constituent order in passive syntax, the ability of certain children with autism to use 
word order to appropriately mark thematic roles is impaired. 
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Appendix 

By-participant SCQ, seven-subset WPPSI-IV, and task scores. WA = without autism; ASC = autism spectrum condition. 

Partici-
pant Group SCQ 

Vo-
cab Blocks 

Pic-
tures 

Infor-
mation 

Assem-
bly Zoo 

Nam-
ing Age 

Cor-
rect 
Pas-
sive 

Incor-
rect 
Passive 

Cor-
rect 
Active 

Other 
Verb Irrelevant 

1 WA NA 20 16 22 13 20 6 21 6.3 0.22 0 0.67 0.06 0 
2 WA NA 20 18 20 18 17 11 17 4.44 0.39 0 0.61 0 0 
3 WA NA 22 18 20 20 22 12 17 5.2 0.67 0.06 0.28 0 0 
4 WA NA 19 18 16 18 17 11 16 4.96 0.06 0.06 0.89 0.06 0 
5 WA NA 24 22 22 20 17 14 17 5.45 0.33 0 0.67 0 0 
6 WA NA 24 20 18 20 20 13 18 5.47 0 0 1 0 0 
7 WA NA 22 18 16 20 22 11 19 4.5 0.22 0 0.78 0 0 
8 WA NA 20 18 15 21 16 13 16 5.47 0.56 0 0.44 0 0 
9 WA NA 22 24 21 20 19 14 17 4.03 0.39 0 0.61 0 0 
10 WA NA 20 18 22 19 22 14 17 4.33 0.56 0 0.44 0 0 
11 WA NA 24 22 17 23 25 12 18 5.47 0.5 0 0.44 0 0.06 
12 WA NA 24 21 17 25 20 13 20 5.34 0.61 0 0.39 0 0 
13 WA NA 20 18 16 18 20 12 16 6.51 0.17 0 0.72 0.06 0.06 
14 ASC 23 21 20 16 19 24 11 14 9.43 0 0.06 0.39 0 0.61 
15 ASC 24 23 18 20 22 28 12 18 8.45 0.11 0.17 0.28 0.17 0.28 
16 ASC 21 23 24 20 18 28 13 18 8.96 0.06 0 0.56 0.11 0.28 
17 ASC 23 22 20 18 23 30 12 14 7.79 0.11 0 0.39 0 0.5 
18 ASC 21 21 16 18 14 24 13 17 9.07 0.11 0 0.28 0.11 0.5 
19 ASC 26 15 20 18 16 24 11 18 8.35 0.33 0.11 0.28 0.11 0.17 
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Appendix continued 

By-participant SCQ, seven-subset WPPSI-IV, and task scores. WA = without autism; ASC = autism spectrum condition. 

Partici-
pant Group SCQ 

Vo-
cab Blocks 

Pic-
tures 

Infor-
mation 

Assem-
bly Zoo 

Nam-
ing Age 

Cor-
rect 
Pas-
sive 

Incor-
rect 
Passive 

Cor-
rect 
Active 

Other 
Verb Irrelevant 

20 ASC 29 28 24 26 25 28 14 22 6.63 0.56 0.06 0.33 0 0.06 
21 ASC 25 23 18 22 23 19 9 17 7.63 0.11 0.28 0.39 0.06 0.17 
22 ASC 22 21 20 23 19 24 14 19 6.65 0.17 0.06 0.5 0 0.28 
23 ASC 20 24 26 23 25 28 12 17 8.27 0.06 0 0.61 0.11 0.22 
24 ASC 23 21 16 21 18 22 11 13 6.58 0.17 0 0.67 0 0.17 
25 ASC 19 25 22 18 23 25 14 19 9.01 0.39 0 0.5 0.06 0.06 
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Abstract: Decades of research has studied how language learning infants learn to discriminate speech 
sounds, segment words, and associate words with their meanings. While gradual development of such 
capabilities is unquestionable, the exact nature of these skills and the underlying mental representa-
tions yet remains unclear. In parallel, computational studies have shown that basic comprehension of 
speech can be achieved by statistical learning between speech and concurrent referentially ambiguous 
visual input. These models can operate without prior linguistic knowledge such as representations of 
linguistic units, and without learning mechanisms specifically targeted at such units. This has raised 
the question of to what extent knowledge of linguistic units, such as phone(me)s, syllables, and words, 
could actually emerge as latent representations supporting the translation between speech and repre-
sentations in other modalities, and without the units being proximal learning targets for the learner. 
In this study, we formulate this idea as the so-called latent language hypothesis (LLH), connecting lin-
guistic representation learning to general predictive processing within and across sensory modalities. 
We review the extent that the audiovisual aspect of LLH is supported by the existing computational 
studies. We then explore LLH further in extensive learning simulations with different neural network 
models for audiovisual cross-situational learning, and comparing learning from both synthetic and 
real speech data. We investigate whether the latent representations learned by the networks reflect 
phonetic, syllabic, or lexical structure of input speech by utilizing an array of complementary evalua-
tion metrics related to linguistic selectivity and temporal characteristics of the representations. As a 
result, we find that representations associated with phonetic, syllabic, and lexical units of speech in-
deed emerge from the audiovisual learning process. The finding is also robust against variations in 
model architecture or characteristics of model training and testing data. The results suggest that cross-
modal and cross-situational learning may, in principle, assist in early language development much 
beyond just enabling association of acoustic word forms to their referential meanings. 
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Introduction 

When learning to communicate in their native language, infants face a number of 
challenges that they need to overcome in order to become proficient users of the lan-
guage. In order to understand speech, they need to figure out how to extract words 
from the running acoustic signal and how the words relate to objects and events in 
the external world (cf. Quine, 1960). In order to develop syntactic skills and become 
creative and efficient users of the language, they must understand that speech is made 
of units smaller than individual words, allowing combination of these units to form 
new meanings. In essence, this means that the child learner has to acquire under-
standing of spoken language as a hierarchical compositional system. In this system, 
smaller units such as phonemes or syllables make up larger units such as words and 
phrases, and where these units are robust against different sources of non-phonolog-
ical variability in the acoustic speech.  

The journey from a newborn infant without prior linguistic knowledge to a proficient 
language user consists of several learning challenges. While one body of developmen-
tal research has investigated how infants can utilize distributional cues related to pho-
netic categories of their native language (e.g., Werker and Tees, 1984; Maye et al., 
2002; see also Kuhl et al., 2007 for an overview), another set of studies has focused on 
the question of how infants could segment acoustic word forms from running speech 
where there are no universal cues to word boundaries (e.g., Cutler and Norris, 1988; 
Mattys et al.,1999; Saffran et al., 1996; Thiessen et al., 2005; Choi et al., 2020). Yet an-
other line of research has investigated word meaning acquisition, assuming that 
words as perceptual units are already accessible to the learner. In that research, the 
focus has been on the details of the mechanisms that link auditory words to their vis-
ual referents when they co-occur at above-chance probability across multiple infant-
caregiver interaction scenarios (e.g., Smith and Yu, 2008; Trueswell et al., 2013; 
Yurovsky et al., 2013), also known as cross-situational learning. 

All these different stages have received a great deal of attention in the existing re-
search, both experimental and computational. However, we still have limited under-
standing on how the different stages and sub-processes in language learning interact 
with each other, what drives learning in all these different tasks, and what type of 
acoustic or linguistic representations infants actually develop at different stages of 
the developmental timeline. For instance, does adaptation to phonetic categories 
pave the way for lexical development (cf. NLM-e framework by Kuhl et al., 2017), or 
is early lexical learning a gateway to refined phonemic information (cf. PRIMIR the-
ory by Werker & Curtin, 2005)? How accurately do words have to be segmented before 
their referential meanings can be acquired?  

In contrast to viewing language learning as a composition of different learning tasks, 
an alternative picture of the process can also be painted: what if processes such as 
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word segmentation or phonetic category acquisition are not necessary stepping 
stones for speech comprehension, but that language learning could be bootstrapped 
by meaning-driven predictive learning, where the learner attempts to connect the (in-
itially unsegmented) auditory stream to the objects and events in the observable sur-
roundings (Johnson et al., 2010; Räsänen and Rasilo, 2015; also referred to as discrim-
inative learning in Baayen et al., 2015; see also Ramscar and Port, 2016). While tack-
ling this idea has been challenging in empirical terms, a number of computational 
studies have explored this idea along the years (e.g., but not limited to, Yu et al., 2005; 
Roy and Pentland, 2002; Räsänen and Rasilo, 2015; Chrupała et al., 2017; Alishahi et 
al., 2017; Räsänen and Khorrami, 2019; ten Bosch et al., 2008; Ballard and Yu, 2004). 
These models have demonstrated successful learning of speech comprehension skills 
in terms of connecting words in continuous speech to their visual referents with min-
imal or fully absent prior linguistic knowledge.  

Since rudimentary semantics of spoken language seem to be accessible to (computa-
tional) learners without having to first learn units such as phone(me)s, syllables or 
words, it is of interest whether some type of representations for such units could ac-
tually emerge as a side-product of the cross-modal and cross-situational learning pro-
cess. The idea is that, instead of learners separately and sequentially tackling a num-
ber of sub-problems on the road towards language proficiency, linguistic knowledge 
could emerge as a latent representational system that effectively mediates the "trans-
lation" between auditory speech and other internal representations related to the ex-
ternal world or the learner itself. While not precluding the fact that certain aspects of 
language skills are likely to emerge earlier than others, the key value of this idea—
here referred to as latent language hypothesis (LLH)—is that it replaces a number of 
proximal language learning goals (phoneme category learning, word segmentation, 
meaning acquisition) with a unified learning goal of minimizing the predictive uncer-
tainty in the multisensory environment of the learner. This goal aligns well with the 
popular view of the mammalian brain as a powerful multimodal prediction machine 
(Friston, 2010; Clark, 2013; see also Meyer and Damasio, 2009, or Bar, 2011), and also 
fits to the picture of predictive processing at various levels of language comprehen-
sion (e.g., Warren, 1970; Jurafsky, 1996; Jurafsky et al., 2001; Watson et al., 2008; 
Kakouros et al., 2018; Cole et al., 2010). Even if cross-modal learning would not be the 
primary mechanism for acquisition of linguistic knowledge, it is important to under-
stand the extent the cross-modal dependencies can facilitate (or otherwise affect) the 
process.  

The goal of this paper is to review and explore the feasibility of LLH as a potential 
mechanism for bootstrapping the learning of language representations at various lev-
els of granularity without ever explicitly attempting to learn such representations. We 
specifically focus on the case of audiovisual associative learning between visual 
scenes and auditory speech. We build on the existing computational studies on the 
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topic, and attempt to provide a systematic investigation of LLH by comparing a num-
ber of artificial neural network (ANN) architectures for audiovisual learning. We first 
define LLH in terms of high-level computational principles and review the existing 
research on the topic in order to characterize the central findings so far. We then pre-
sent our computational modeling experiments of visually-grounded language learn-
ing, where we investigate a large battery of phenomena using a unified set of evalua-
tion protocols: the potential emergence of phone(me)s, syllables, words, and word 
semantics inside the audiovisual networks. We study whether individual artificial 
neurons and layers of neurons become correlated with different linguistic units, and 
whether this leads to qualitatively discrete or continuous nature of acquired repre-
sentations in terms of time and representational space. Finally, we summarize and 
discuss our findings and the extent that the LLH could explain early language learn-
ing.  

While our experiments largely rely on existing body of work in this area (see section 
Earlier Related Work), our current contributions include i) a coherent theoretical 
framing of the present and earlier studies under the concept of LLH, ii) an integrative 
summary of the existing research, iii) systematic experiments investigating several 
different aspects of language representation learning in terms of linguistic units of 
different granularity and in terms of unit selectivity and temporal dynamics, iv) com-
parison of alternative neural model architectures within the same experimental con-
text, and v) comparing learning and representation extraction from both synthetic 
and real speech. In addition, we propose a new objective technique to evaluate the 
semantics learned by the audiovisual networks.   

Theoretical Background 

One of the key challenges in early language acquisition research is to identify the fun-
damental computational principles responsible for the learning process. Young 
learners have to solve an apparently large number of difficult problems ranging from 
unit segmentation and identification to syntactic, semantic, and pragmatic learning 
on their way to become proficient language users. Is thereby unclear what type of 
collection of innate biases, constraints, and learning mechanisms are needed for lan-
guage learning to succeed. In terms of parsimony, a theory should aim to explain the 
different aspects of LA with a minimal number of distinct learning mechanisms. 

The key idea behind LLH is to replace several separate language learning processes 
and their proximal learning targets with a single general overarching principle for 
learning, namely predictive optimization. In short, LLH relies on the idea that the 
mammalian brain has evolved to become an efficient uncertainty reduction (=predic-
tion) device, where input in one or more sensory modalities is used to construct a set 
of predictions regarding the overall state of the present and future sensorimotor en-
vironment (cf., e.g., Friston, 2010; Clark, 2013). This strategy has several ecological 
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advantages. For instance, complete sensory sampling of the environment would take 
excessive time and effort, and actions often need to be taken with incomplete infor-
mation of a constantly changing environment. In addition, predictive processing al-
lows focusing of attentional resources on those aspects of the environment that have 
high information gain to the agent (see, e.g., Kakouros et al., 2018, for a review and 
discussion). As a result, the ability to act based on partial cues of the "external world 
state" (also across time) results in a substantial ecological advantage. Importantly, 
predictive processing necessitates some type of probabilistic processing of the sto-
chastic sensory environment. This is because evaluation of the information value of 
different percepts requires a model of their relative likelihoods in different contexts 
(or degrees of "surprisal"; see also the Goldilocks effect; Kidd et al., 2012). This con-
nects the overarching idea of predictive processing to the concept of statistical learn-
ing in developmental literature, as infants appear to be adept learners of temporal 
(Saffran et al., 1996) and cross-modal probabilistic regularities (Smith & Yu, 2008).    

In the context of LLH, we postulate that statistical learning is a manifestation of gen-
eral sensorimotor predictive processing, and where language learning could also be 
driven by optimization of predictions within and across sensory modalities1 during 
speech perception. In order to efficiently translate heard acoustic patterns to their 
most likely visual referents or to predict future speech input, intermediate latent rep-
resentations that best support this goal are needed. More specifically, the question is 
whether representation of the linguistic structure underlying the variable and noisy 
acoustic speech could emerge as a side product of such a predictive optimization 
problem (see also van den Oord et al., 2018).  

In case of audiovisual associative learning, this idea can be illustrated by a simple 
high-level mathematical model such as  

arg$ max 𝑝 𝑣) 	𝑥), 𝜃)	|	∀𝑡	 ∈ [0, 𝑇]  (1) 

where 𝑣) is visual input at time t, 𝑥)= {x0, x1, x2, ..., xt} is the speech input up to time t, 
𝜃 is a statistical model (or biological neural system) enabling evaluation of the proba-
bility, and T is the total cumulative experience ("age") of the learner so far. Now, as-
suming that 1) 𝜃 consists of several plastic processing stages/modules  𝜃 =
{𝜃9, 𝜃:, … , 𝜃<} (e.g., layers or cortical areas in in artificial or biological neural net-
works), 2) Eq. (1) can be solved or approximated using some kind of learning process, 
and that 3) observed speech and visual input are statistically coupled, 𝜃 must result in 
intermediate representations that together lead to effective predictions of the corre-
sponding visual world, given some input speech. If a solution for 𝜃 is discovered, i.e., 
the model has learned to relate speech to visual percepts, we can ask whether the interme-
diate stages of 𝜃 have become to carry emergent representations that correlate with 

1 In the most generic form also including motor aspects with articulation and manual gestures. 
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how linguistics would characterize the structure of speech. Alternatively, if the model 
becomes able to understand even basic level semantics between speech and the visual 
word without reflecting any known characteristics of spoken language, that would be 
a curious finding in itself.  

The basic formulation in Eq. (1) can be extended to model the full joint distribution 
𝑝(𝑥), 𝑣)|𝜃) of audiovisual experiences. Alternatively, assuming stochasticity of the en-
vironment, it can be reformulated as minimization of Kullback-Leibler divergence 
between 𝑝 𝑣	 	𝜓) and 𝑝(𝑣	|	𝑥, 𝜃), where 𝜓 is a some kind of stochastic generator of 
visual experiences (due to interaction with the world) and the latter term is the learn-
er's model of visually grounded speech. However, the main implication of each of 
these models stays the same: discovering a model 𝜃 that provides an efficient solution 
to the cross-modal translation problem between spoken language and other repre-
sentations of the external world. The same idea can be applied to within-speech pre-
dictions across time by replacing 𝑣 with 𝑥)@A (k > 0) in Eq. (1). In this case, if k is set 
sufficiently high, the learned latent representations must generalize across phonemi-
cally irrelevant acoustic variation in order to generate accurate predictions for future 
evolution of the speech signal given speech up to time t; evolution which is primarily 
governed by phonotactics and word sequence probabilities in the given language (see 
van den Oord et al., 2018, for phonetic feature learning with this type of approach; cf. 
also models of distributional semantics, such as  Mikolov et al., 2013, that operate in 
an analogous manner with written language). 

Given the existence of modern deep neural networks, LLH can be investigated using 
flexible hierarchical models that can tackle complicated learning problems with real-
world audiovisual data, and without pre-specifying the representations inside the net-
works. This is also what we do in the present study. While such computational mod-
eling cannot tell us what exactly is happening in the infant brain, it allows us to inves-
tigate the fundamental feasibility of LLH under controlled conditions in terms of 
learnability proofs.  

Note that we wish to avoid taking any stance on the debate whether discrete linguistic 
units are something that exist in the human minds or computational models. In con-
trast, we adopt a viewpoint similar to Ramscar and Port (2016) and use linguistic struc-
ture as an idealized description of speech data, investigating how the representations 
learned by computational models correlate with the manner that linguistics would 
characterize the same input. In addition, we do not claim that audiovisual learning is 
necessarily the only mechanism for early acquisition of primitive linguistic 
knowledge. We simply want to study the extent that this type process can enable or 
facilitate language learning, and generally acknowledge that purely auditory learning 
is also central to language learning. 
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Earlier Related Work 

A number of existing computational studies and machine learning algorithms have 
studied the use of concurrent speech and visual input to bootstrap language learning 
from sensory experience. In the early works (e.g., Roy and Pentland, 2002; Ballard 
and Yu, 2004; Räsänen et al., 2008; ten Bosch et al., 2008; Driesen and Van hamme, 
2011; Yu et al., 2005; Mangin et al., 2015; Räsänen and Rasilo, 2015), visual information 
has been primarily used to support concurrent word segmentation, identification, 
and meaning acquisition. The basic idea in these models has been to combine cross-
situational word learning (Smith & Yu, 2008)—the idea that infants learn word mean-
ings by tracking co-occurrence probabilities of word forms and their visual referents 
across multiple learning situations—with simultaneous "statistical learning" of pat-
terns from the acoustic speech signal. In parallel, a number of robot studies have in-
vestigated the grounding of speech patterns into concurrent percepts or actions (e.g., 
Salvi et al., 2012; Iwahashi, 2003). However, the acoustic input of some studies has 
been pre-processed to phoneme-like features (Roy and Pentland, 2002; Ballard and 
Yu, 2004; Salvi et al., 2012) or word segments (Salvi et al., 2012) using supervised learn-
ing. Alternatively, visual input to the models have been rather simplified, such as sim-
ulated categorical symbols for visual referents e.g., ten Bosch et al., 2008; Räsänen 
and Rasilo, 2015; Driesen and Van hamme, 2011).  

In terms of LLH, the older models have had relatively rigid and flat representational 
structure, limiting their capability to produce emergent hierarchical representations. 
In contrast, the older models contain a series of  signal processing and machine learn-
ing operations to solve the audiovisual task, including initial frame-level signal repre-
sentation steps such as phoneme recognition or speech feature clustering, followed 
by pattern discovery from the resulting representations using transition probability 
analysis (Räsänen et al., 2008; Räsänen & Rasilo, 2015), non-negative matrix factori-
zation (ten Bosch et al.,2008; Mangin et al., 2015), or probabilistic latent semantic 
analysis (Driesen & Van hamme, 2011), to name a few. Despite these limitations, these 
studies already demonstrate that access to units such as phonemes or syllables is not 
required for early word learning, as long as the concurrent visual information is re-
lated to the speech contents systematically enough. In addition, they show that word 
segmentation is not required before meaning acquisition, but that the two processes 
can take place simultaneously with referential meanings actually defining word iden-
tities in the speech stream. Such models can also account for a range of behavioral 
data from infant word learning experiments using auditory and audiovisual stimuli 
(Räsänen & Rasilo, 2015).  

More recent developments in deep learning have enabled more advanced and flexible 
hierarchical models that can tackle richer visual and auditory inputs with unified el-
ementary processing mechanisms. These models have their origins in methods for 

Language Development Research 129

Volume 1, Issue 1, 31 December 2021



learning relationships between images and natural language descriptions of them, 
such as photographs and their written labels or captions (e.g., Frome et al., 2013; So-
cher et al., 2014; Karpathy & Li, 2015). These text-based models have been expanded 
to deal with acoustic speech input, such as spoken image captions (Synnaeve et al., 
2014; Harwath and Glass, 2015; Harwath et al., 2016; Chrupała et al., 2017). Early 
works applied separate techniques for segmenting words-like units prior to alignment 
between audio caption data and images e.g. Synnaeve et al., 2014; Harwath and Glass, 
2015). The more recent audiovisual algorithms operate without prior segmentation by 
mapping spoken utterances and full images to a shared high-dimensional vector 
space (Harwath et al., 2016; Chrupała et al., 2017). However, compared to text, dealing 
with acoustic speech data is a more difficult task: time-frequency structure of speech 
is not invariant similarly to orthography, but varies as a function of many different 
factors ranging from speaker identity to speaking style, ambient noise, or recording 
setup/listener situation. Moreover, acoustic forms of the elementary units such as 
phonemes or syllables are affected by the linguistic context in which they occur, caus-
ing substantial variation also within otherwise controlled speaking conditions. These 
are also challenges that language learning infants face, and which cannot be studied 
with transcription- or text-based models. 

In a typical visually grounded speech (VGS) model (Harwath et al., 2016; Chrupała et 
al., 2017; see Fig. 1 for an example), the model consists of a deep neural network with 
two separate branches for processing image and speech data: an image encoder re-
sponsible for converting pixel-level input into high-level feature representations of 
the image contents, and a speech encoder doing the same for acoustic input. Both 
branches consist of several layers of convolutional or recurrent units, and outputs 
from the both branches are ultimately mapped to a shared high-dimensional seman-
tic space, aka. embedding space, via a ranking function. The idea is to learn neural rep-
resentations for images and spoken utterances so that the embeddings produced by 
both branches are similar when the input images and speech share semantic content. 
Once trained, distances between the embeddings derived from inputs can then be 
used for audiovisual, audio-to-audio, or visual-to-visual search, such as finding the 
semantically best matching images for a spoken utterance, or finding utterances with 
similar semantic content than a query utterance (Harwath et al., 2016; Chrupała et al., 
2017; see also Azuh et al., 2019, and Ohishi et al., 2020, for cross-lingual approaches). 

Training of these models is carried out by presenting the network with images paired 
with their spoken descriptions (whose mutual embedding distances the model tries 
to minimize) and pairs of unrelated images and image descriptions (whose embed-
ding distances the model tries to increase). The visual encoder is often pre-trained on 
some other dataset using supervised learning (but see also Harwath et al., 2018), 
whereas the speech encoder and mappings from both encoders to the embedding 
space are optimized simultaneously during the training. Model training is typically 
conducted on datasets specifically designed for the image-to-speech alignment tasks, 
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Figure 1. The basic architecture of the VGS models explored in the present study. Vis-
ual and auditory input data are processed in two parallel branches, both consisting 
of several neural network layers. Outputs from both branches are mapped into a 
shared "amodal" embedding space that encodes similarities shared by the two input 
modalities. 

either by adding synthesized speech to captioned image databases, such as SPEECH-
COCO by Havard et al. (2017) or Synthetic Speech COCO (SS-COCO; Chrupała et al., 
2017) derived from images and text captions of MS-COCO (Chen et al., 2015), or ac-
quiring spoken descriptions for images using crowd-sourcing, such as Places Audio 
Caption Corpus (Harwath et al., 2016) derived from Places image database (Zhou et 
al., 2014) or SpokenCOCO (Hsu et al., 2020) derived from MSCOCO. 

Evidence for Language Representations in VGS Models 

From the perspective of LLH, the question of interest is whether the audiovisual mod-
els learn latent representations akin to linguistic structure of speech, as the models 
learn to map auditory speech to semantically relevant visual input and vice versa. In 
this context, a number of studies have investigated phonemic learning in VGS models. 

Alishahi et al. (2017) used a recurrent highway network (RHN)—a variant of recurrent 
neural network (RNN)—VGS model with 5 recurrent layers to investigate how phono-
logical information is represented in intermediate layers of the model (same model 
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as used by Chrupała et al., 2017). Using synthetic speech from SS-COCO, they trained 
supervised phone classifiers with input-level Mel-frequency cepstral coefficients 
(MFCCs) and hidden layer activations as features to test how informative the features 
are with respect to phonetic categories. Alishahi et al. found that, even though the 
MFCCs already led to approximately 50% phone classification accuracy, the accura-
cies improved substantially when using activations from the first two recurrent layers 
of their model (up to approx. 77.5%) and then decreased slightly for the last recurrent 
layers. To further probe phonetic and phonemic nature of their network representa-
tions, Alishahi et al. (2017) also applied a so-called minimal-pair ABX-task (Schatz et 
al., 2013) to the networks to test whether the hidden representations can distinguish 
English minimal pairs in speech. Again, the best phonemic discriminability was ob-
tained for the representations of the first two recurrent layers. Alishahi et al. (2017) 
also applied agglomerative clustering to activations within each layer, and found that 
the pattern of feature organization in MFCCs and in the first recurrent layer were bet-
ter correlated with the ground-truth phoneme categories than the activations com-
puted from other layers. 

Drexler and Glass (2017) also used the ABX-task to investigate phonemic discrimina-
bility of the hidden layer activations of a CNN-based VGS model from Harwath and 
Glass (2017). Similar to Alishahi et al. (2017), they found that the hidden layer activa-
tions were better than the original spectral input features in the ABX-task (among 
other tasks), that the early layers were phonemically more informative than the 
deeper ones, and that the network also learned to discard speaker-dependent infor-
mation from the signal due to the visual grounding. However, they also found that 
somewhat higher phonemic discriminability was still obtained using purely audio-
based unsupervised learning algorithms compared to their VGS model. Another study 
by Harwath et al. (2020) augmented the CNN-based VGS model from Harwath et al. 
(2018) with automatic discretization (vector quantization) of the internal representa-
tions during the training and inference process. Then they investigated how this af-
fects the phonemic and lexical discriminability of the hidden layer representations. 
They found that phoneme discrimination ABX scores of the early layer representa-
tions were much higher than those typically observed for spectral features in the 
same task or with a number of baseline speech representation learning algorithms. 
They also found that discretized representations from early layers primarily carried 
phonemic information, while representations quantized in deeper layers corre-
sponded better to lexical units. However, discretization did not improve phonemic 
discriminability beyond the original distributed multivariate representations of the 
hidden layers. 

Recently, Räsänen and Khorrami (2019) trained a weakly supervised convolutional 
neural network (CNN) VGS model to map acoustic speech to the labels of concurrently 
visible objects attended by the baby hearing the speech, as extracted from head-
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mounted video data from real infant-caregiver interactions of English-learning in-
fants (Bergelson & Aslin, 2007). They then measured the so-called phoneme selectiv-
ity index (PSI) (Mesgarani et al., 2014) of the network nodes and layers. Their results 
indicated that, in addition to learning a number of words and their referents from 
such data, hidden layer activations of the model also became increasingly representa-
tive of phonetic categories towards deeper layers of the network. The model was also 
able to handle referential ambiguity in the visual input when the infant was not at-
tending the correct object. However, Räsänen and Khorrami did not use actual visual 
inputs but categorical labels of the perceived objects, simplifying the visual recogni-
tion process substantially.  

In terms of phone segmentation, Harwath and Glass (2019) investigated whether ac-
tivation dynamics of a CNN-based VGS model reflect underlying phonetic structure 
of speech. They compared temporal activation patterns of VGS-model hidden layers 
to phone boundaries underlying the input speech data from TIMIT corpus (Garofolo 
et al., 1993). As a result, they found that peaks in the change-rate of activation magni-
tudes of the early CNN layers were highly correlated with transitions between phone 
segments. In contrast to studying whether the models learn to segment, Havard et al. 
(2020) studied how the performance of VGS models improves if linguistic unit seg-
mentation is provided as side information to the model during the training. They 
found that explicit introduction of segmentation cues led to substantial performance 
gains in the audiovisual retrieval task compared to regular VGS training. The effect 
was the most pronounced when the system was supplemented with a hierarchy of 
phone, syllable, and word boundaries across different layers of the model.  

Several studies have also investigated lexical representations in VGS-based models. 
Chrupała et al. (2017) used the same RHN-RNN networks as Alishahi et al. (2017) and 
showed that the RHN model outperformed the earlier CNN model of Harwath et al. 
(2016) on audio-to-image retrieval task. Then they investigated how linguistic form- 
and semantics-related aspects of the input are encoded in the hidden layers of the 
network. Through a number of experiments, Chrupała et al. (2017) showed that form 
related features become represented within the first layers of their model, whereas 
deeper layers tended to encode semantics better than the early layers. They also stud-
ied how the network responds to homonyms (i.e., words with similar pronunciation 
but different meaning, such as “sail” and “sale”) and concluded that the representa-
tions of deeper network layers became increasingly better at distinguishing homo-
nyms. In other words, the deep representations also contained cues for contextual 
semantic disambiguation.  

Harwath and Glass (2017) investigated whether word segments in speech can be con-
nected to the bounding boxes of corresponding objects in images using a convolu-
tional neural model of VGS, and showed that this was indeed the case. As an extension 
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to their work, Harwath et al. (2018) created a method to map segments of spoken ut-
terances to their associated objects in the pictures (referred to as “match-map” net-
work) in order to investigate how object and word localization emerges as a side-prod-
uct of training a network using caption-image pairs. In another study, Havard et al. 
(2019b) studied if lexical units can be segmented from the representations of recur-
rent layers of a RNN-based VGS model. By using a variety of metrics, they showed that 
the network learns an implicit segmentation of word-like units and manages to map 
individual words to their visual referents in the input images.  

Kamper et al. (2017) have also studied if visual data can be employed as an auxiliary 
intermediate tool for detecting words within speech signals. They designed a speech 
tagging algorithm which is trained using a dataset of aligned speech-image pairs. 
They first trained a supervised vision tagging system which, given an image, gener-
ates probabilities for the presence of different objects within that picture. Next, they 
integrated their trained vision model with an audio processing network and trained a 
joint system which maps spoken utterances to the visual object probabilities. As a re-
sult, their network learned to output a list of keywords (object category names) given 
continuous speech input, again without ever receiving direct information on what 
constitutes a word in an acoustic sense. 

Merkx et al. (2019) further improved the audiovisual search performance of the RNN-
based VGS model of Chrupała et al. (2017) and used it to study how different layer 
activations of the model encode words in speech. They used acoustic input features 
and hidden layer activations as inputs to a supervised word classifier to test if the rep-
resentations are informative with respect to underlying word identities. They con-
cluded that the presence of individual words in the input can be best predicted using 
activations of an intermediate (recurrent) layer of their model. 

Havard et al. (2019a) studied neural attention mechanism (Bahdanau et al., 2015) in 
an RNN-based VGS model using English and Japanese speech data. They found that 
similar to human attention (Gentner, 1982), neural attention mostly focuses on nouns 
and word endings. This is in line with the knowledge that infant early vocabulary 
tends to predominantly consist of concrete nouns. In another study, Havard et al. 
(2019b) examined the influence of different input data characteristics in a word recog-
nition task by feeding the VGS model with synthesized isolated words with varying 
characteristics. They observed a moderate correlation between word recognition ac-
curacy and frequency of the words in training data, and a weak correlation for image-
related factors such as visual object size and saliency. Havard et al. (2019b) also inves-
tigated word activations in the same RNN model using the so-called gating paradigm 
from speech perception studies (Grosjean, 1980). For this purpose, they fed the net-
work with individual spoken words and truncated the words from different positions 
at the beginning or end of the words. They found that the precision of word recogni-
tion dropped steeply if the first phoneme of a word was removed. In contrast, removal 
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of the word-final phonemes had little impact on precision, and the precision de-
creased steadily when truncating additional phonemes from the end. This was gener-
ally in line with data from human lexical decision tasks. 

Inspired by the work of Havard et al. (2019b), Scholten et al. (2020) recently studied 
word recognition in an RNN-VGS model. Instead of using synthesized speech, they 
conducted their experiments using real speech data from Flickr8k (Harwath & Glass, 
2015). Scholten et al. evaluated their model on word recognition by examining how 
well word embedding vectors can retrieve images with the correct visual object cor-
responding to the query word, measuring the impact of different factors on word 
recognition performance. They found that longer word lengths and faster speaking 
rates were negatively correlated with performance, while word frequency in the 
training set had a substantial positive impact on the task performance.  

Overall, the general finding from the earlier work has been that the representations 
learned by VGS models exhibit many characteristics related to the underlying linguis-
tic structure of the input speech, and they learn this structure without ever receiving 
specifications of how speech or language are organized into some kind of elementary 
units. This suggests that phonetic and lexical representations and segmentation capa-
bilities could emerge as a side-product from meaning-driven learning.   However, it 
is not yet clear in which conditions these phenomena can occur, and how different 
levels of language representation are related to each other inside the same models. 
This is since the studied model architectures (RNNs vs. CNNs), model analysis meth-
ods (discriminability, clusteredness, node vs. layer selectivity etc.), and data (syn-
thetic vs. real speech) utilized by the previous studies have varied from one study to 
another. No individual study has attempted to look at the emergence of linguistic 
units at phonetic, syllabic, and lexical levels in a single model or study, nor compared 
multiple model architectures within the same experimental context. In addition, the 
existing studies have rarely reported baseline measures from untrained models, mak-
ing it unclear how much of the findings are actually driven by the visually-guided pa-
rameter optimization compared to the effects of non-linear network dynamics also 
present with randomly initialized model parameters (see also Chrupała et al., 2020). 
This leaves unclear questions such as: 1) Can a single neural model reflect emergence 
of several levels of linguistic structure at the same time, including phone(me)s, sylla-
bles, and words, both in time and selectivity? 2) If so, does the network encode such 
units preferentially in terms of individual selective nodes or distributed representa-
tions? 3) How robust these findings are to variations in the neural architecture of VGS 
models? 4) Do the analysis findings (primarily carried out on synthetic speech) also 
generalize to real speech with higher acoustical variability? 

In our experiments, we seek to address the above questions by systematically investi-
gating the audiovisual aspect of LLH in three alternative VGS network architectures 
and at phoneme, syllable, and word level, both in terms of selectivity and in terms of 
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temporal characteristics, and using both synthetic and real speech datasets. The se-
cond section describes the alternative speech processing networks used in our exper-
iments, followed by methodology to analyze the internal representations of the mod-
els with respect to linguistic structure underlying the speech input to the model. In 
the third section, we describe the data and experimental setup of our study, followed 
by results, discussion, and conclusions. 

Methods 

The goal of our experiments was to investigate the extent that linguistic units of dif-
ferent granularity may emerge as a side product of audiovisual cross-situational 
learning in neural models of visually grounded speech. We also study the extent that 
the architecture of the model or type of data (real vs. synthetic) affects the nature of 
the learned representations.  

We first explain the adopted VGS model structure in more detail, including three al-
ternative speech encoder architectures explored in our experiments. We then de-
scribe our toolkit used to analyze the hidden layer representations of the networks 
with respect to linguistic characteristics of the input speech. In addition, we propose 
a new automatic method for evaluating the semantic relevance of the audiovisual as-
sociations learned by the models. 

Model Architecture and Speech Encoder Variants 

VGS systems are generally trained to align between speech and image modalities so 
that they learn semantic similarities between the two modalities without any explicit 
supervision in the form of labels. Here our aim is to use VGS models to simulate in-
fants' audiovisual learning, where they hear speech that is related to the observable 
visual contexts, but does not contain unambiguous and isolated speech-referent 
pairs. The setup thereby simulated cross-situational word learning under a high de-
gree of referential uncertainty, and without access to prior segmentation of acoustic 
word forms.   

We follow the methodology by Harwath and Glass (2017) and Chrupała et al. (2017), 
where input to the model consists of images (photographs) and their spoken descrip-
tions. Speech and image data are initially processed in different encoders consisting 
of several ANN layers, followed by encoder-specific mappings to a shared "amodal" 
embedding space. In this space, a chosen similarity metric can be used to measure 
the pairwise similarity of any representations resulting from auditory or visual chan-
nels. During training, the model is optimized to assign a higher similarity score for 
embeddings resulting from images and image descriptions that match with each 
other (so-called positive samples). At the same time, the model tries to assign higher 
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distances for embedding pairs from unmatched images and utterances (negative sam-
ples). As a result, the model learns to generate embeddings that encode concepts avail-
able in both input modalities. The basic architecture of the image-to-speech mapping 
network is shown in Fig. 1. 

In our current visual encoder network, pixel-level RGB image data are first resampled 
to 224x224 pixels and then transformed into high-level features using VGG16 image 
classification network (Simonyan and Zisserman, 2015), which is a deep CNN consist-
ing of 16 layers pretrained on ImageNet data (Russakovsky et al., 2015). Output fea-
tures of the first fully connected layer (14th layer) of VGG16 are then projected line-
arly to a D-dimensional space to form the final visual embeddings, and where the lin-
ear layer weights are optimized during the VGS model training. 

Compared Speech Encoder Architectures 

We compare three alternative speech encoder networks, all consisting of a stack of 
convolutional and/or recurrent neural layers applied on speech input. In all models, 
the input speech is represented by 40-dimensional log-Mel filterbank energies ex-
tracted with 25-ms windows with 10-ms window hop-size, which is a representation 
that simulates the frequency-selectivity of the human ear. The following three speech 
encoder architectures were investigated in our experiments (Fig. 2): 

CNN0 (Fig. 2, left) is a multi-layer convolutional network with an architecture adopted 
from Harwath and Glass (2017). It includes five convolutional layers with increasing 
temporal receptive fields, each followed by a max pooling layer. The output of the last 
convolutional layer is pooled over the entire utterance in order to discard the effects 
of absolute temporal positioning of the detected patterns.  

As an alternative convolutional model, we designed a CNN1 network (Fig. 2, middle) 
with 6 convolutional layers and hand-crafted receptive field time-scales in different 
layers. We specified the convolutional and pooling layers such that the filter receptive 
field sizes at different layers would approximately correspond to the known typical 
time-scales of phones, syllables, and words while gradually expanding towards the 
larger units (see Fig. 2 for details). As in CNN0, the output of the last convolutional 
layer is maxpooled across all the time steps.  

Our third model variant, RNN (Fig. 2, right), was adapted from the model introduced 
originally by Chrupała et al. (2017) and also used by Alishahi et al. (2017). It includes 
a convolution layer as the first layer, followed by three residualized recurrent layers 
with Long Short-Term Memory (LSTM) units. Unlike Chrupała et al. (2017), we use 
three layers instead of the original five layers, as we observed in our initial tests that 
the three layer model was already capable of achieving comparable performance to 
the CNN models in the audiovisual mapping task while training much faster than the 
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original model. Also, in order to maintain comparability of the three networks, we do 
not utilize a separate attention mechanism in the RNN model. The first two recurrent 
layers of the RNN feed their frame-by-frame activations to the next layer, allowing 
measurement of their temporal activations. In contrast, the last layer outputs an acti-
vation vector for the entire test sentence after processing it fully, discarding the 
frame-based temporal information.  

In all three variants, the utterance-level activations of the final layer are L2 normal-
ized and linearly projected to D-dimensional latent space to form the final speech em-
beddings. These can then be compared to other embeddings within and across the 
modalities. We use cosine similarity to measure a similarity score S between any two 
embeddings. 

Figure 2. Three speech encoders studied in our experiment together with the maxi-
mum temporal receptive field lengths of the network nodes. Left: CNN0. Middle: 
CNN1. Right: RNN. Unit descriptions next to the layers denote the approximate lin-
guistic unit time-scale that the receptive fields of the convolutional layers corre-
spond to. Numbers in red denote layer identifiers used in the analyses of section Re-
sults. 

Note that both the CNN and RNN -based models are capable of modeling temporal 
structure of the data. On one hand, recurrent layers are specifically designed for pro-
cessing sequential data because they can potentially memorize the history of all past 
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events and therefore recognize patterns across time. On the other hand, convolu-
tional layers are also capable of capturing temporal structure through the hierarchy 
of increasingly large temporal receptive fields (Gehring et al., 2017), where the largest 
receptive field size also sets the limit on the temporal distance up to which they can 
capture statistical dependencies in the data. However, the manner that CNNs and 
RNNs models capture the temporal structure is very different. Therefore it was of in-
terest whether we can see commonalities or differences in their strategy of encoding 
linguistic structure of the speech data in order to solve the audiovisual mapping prob-
lem. 

Model Training 

The method we applied for training our networks followed the same strategy as in 
Harwath et al. (2016) and Chrupała et al. (2017) by using the so-called triplet loss: first, 
a triplet set is made by taking one matching image-speech pair (i.e., an image and an 
utterance describing it), and adding two negative samples by pairing the original im-
age with a random speech utterance and the original utterance with a random image. 
The data are then organized into a collection of B such triplets. At training time, error 
backpropagation is used to minimize the following loss function: 

𝐿 𝜃 = max 0, 𝑆DE − 𝑆D
G + 𝑀 +max 0, 𝑆DJ − 𝑆D

G + 𝑀K
DL9 (2) 

where 𝑆D
G is the similarity score of jth ground-truth pair	𝑆DE	the score between original

image and the impostor caption, and 𝑆DJ	is the score between original caption and the 
impostor image. In practice, the loss function decreases when ground-truth pair em-
beddings become more similar to each other. Similarly, the loss decreases when mis-
matched pairs get further away from each other until they reach distance of M, which 
is referred to as the margin of the loss. Intuitively, this means that when the embed-
dings of a false pair are more than M units apart, they are considered as semantically 
unrelated and the pair no longer affects further parameter updates of the model. As 
a result, the model learns to tell apart semantically matching and mismatching audi-
ovisual inputs. 

Model Evaluation 

Our model evaluation consisted of two stages. We first verified that the trained net-
works have successfully learned to associate auditory and visual patterns to each 
other, as measured in terms of semantic retrieval tasks. We then proceeded to ana-
lyzing whether and how the hidden layer representations of the models correlate with 
linguistic characteristics of the input speech. Methods and metrics for these analyses 
are described next. 
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Audiovisual Search Performance 

After training, audio and visual embedding layers can represent semantic similarities 
between images and spoken captions using the similarity score. Therefore, within a 
pool of test images and utterances, semantically related examples can be distin-
guished by sorting instances based on the mutual similarities between their embed-
ding vectors. As a quantitative evaluation of model performance, we studied recall@k 
introduced by Hodosh et al. (2013) and frequently applied in VGS model literature. In 
the present case, recall@k measures performance of the trained models on image 
search, given an input utterance as a query ("speech-to-image search"), and on auto-
matic image caption search, given an image as a query ("image-to-speech search", 
sometimes also referred to as automatic image annotation; see also Harwath et al., 
2016 and Chrupała et al., 2017). 

For measuring recall@k, spoken captions and images from a test dataset are pre-
sented to speech encoder and image encoder branches of the model, respectively, 
resulting in speech and image embedding vectors. In speech-to-image search task, 
the similarity of each speech sample with all test images is then calculated by apply-
ing a similarity metric (here: cosine similarity) to their embedding vectors, and k 
nearest matches are maintained. Recall@k is then obtained as the percentage of ut-
terances for which the image corresponding to the utterance is within the k closest 
matches. Similarly, for image-to-speech search task, recall@k measures the percent-
age of query images for which the correct caption is within the k closest retrieved ut-
terances. 

In our experiments, we report recall@10 as it is also commonly used in earlier studies 
(Harwath et al., 2016; Chrupała et al., 2017). 

Quantitative Evaluation of Audiovisual Search Semantics 

While previous studies have primarily used recall@k to measure performance in au-
dio-visual alignment tasks, the problem of recall@k is that it is unable to account for 
semantically relevant matches beyond the pre-defined image-caption pairs of the da-
tabase (see Kamper et al., 2019). For instance, the data might contain a large number 
of food pictures, and hence a spoken query such as "There's leftover food on the table" 
could result in many relevant search results with food in them, but only the one for 
which the caption was originally created for would be counted as a correct search 
result. For this reason, Kamper et al. (2019) used human judgments for evaluating 
semantic retrieval in his VGS model. However, despite crowdsourcing, this can be 
time consuming and expensive. 
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In order to objectively evaluate and compare the quality of the learned semantic rep-
resentations of the alternative speech encoder architectures, we developed a new 
method to objectively and automatically evaluate semantic similarity between input 
speech and the corresponding retrieved audio captions. For this purpose, we utilized 
Word2Vec (Mikolov et al., 2013) and SBERT (Reimers et al., 2019), distributional word 
semantics models trained on large-scale text data, that allow measurement of seman-
tic similarity between different words (Word2Vec) or sentences (SBERT) in textual 
form. Since semantic similarity judgements of distributional semantic models corre-
late highly with human ratings of similarity and synonymity (Landauer and Dumais, 
1997, or Günther et al., 2019, and references therein; but see also Nematzadeh et al., 
2017 or Deyne et al., 2021, for recent analysis), we use these two models as proxies for 
human judgement for semantic relatedness between different spoken captions. 

With SBERT2, the semantic similarity of two captions can be obtained simply by taking 
the cosine similarity of the sentence-level embeddings extracted from the utterance 
transcripts. However, the maximum similarity score is strongly affected by presence 
of repeated words in the two compared sentences. An alternative measurement can 
be obtained by excluding repeating words between the sentences, but we hypothe-
sized that removing of content words might cause unwanted problems with context-
dependent embeddings of SBERT. In order to measure semantic similarity of two spo-
ken captions at the word level, we first extracted content words of the utterance tran-
scripts using the Natural Language Toolkit (NLTK) in Python by including nouns, 
verbs, and adjectives while ignoring other parts of speech. We then calculated seman-
tic relatedness score (SRS ∈ [0, 1]) between the two utterances as: 

𝑆𝑅𝑆 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 =
1
𝑁X

max 𝑆Y:Z 𝑟J, 𝑐D 	 ∀𝑗}																							(3)
<]

JL9

 

where 𝑆Y:Z is Word2Vec similarity score between individual words (cosine similarity 
of the pre-trained word embedding vectors) and r and c are content words in refer-
ence and candidate sentences, respectively. In other words, for each content word in 
the reference utterance, the most semantically similar word is chosen from the can-
didate utterance, and the total similarity score is the average across all such pairings. 
By excluding the repeating words between the sentences before SRS calculation, this 
measurement is then an indicator of semantic relatedness of the utterances while en-
suring that the similarity is not simply driven by identical lexical content. In our ex-
periments, we used both SBERT and SRS semantic similarity measurements to test 

2 We used pre-trained SBERT model "paraphrase-distilroberta-base-v1" trained on paraphrase data 
(Reimers and Gurevych, 2020) 
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whether audio-to-audio search results produce semantically meaningful outputs even 
if the utterances do not correspond to the same original image, thereby enabling more 
representative evaluation of semantic retrieval beyond recall@k. 

Selectivity Analysis of Hidden Layer Activations 

The literature on interpreting linguistic structure learned by deep neural networks 
has shown that multiple alternative metrics are needed to understand hidden repre-
sentations. This is since there is no unanimous view of what "linguistic representa-
tions" should look like in such a distributed multi-layer representational systems, and 
hence it is difficult to operationalize broad concepts such as as "phonemic or lexical 
knowledge" in terms of specific and sensitive measures to probe the hidden layer ac-
tivations (see, e.g., Belinkov & Glass, 2020; Chrupała et al., 2020). Given this starting 
point, our metrics for analyzing the relationship between model activation patterns 
and linguistic units in the speech input focus on four complementary measures: se-
lectivity of individual nodes in network layers towards specific linguistic units, clus-
teredness of entire activation patters of a layer, and linear and non-linear separability 
of layer activations w.r.t. different linguistic unit types. We deliberately focus on sta-
tistical and classifier-based measures of analysis that are suitable for basic level cate-
gorical data (phone, syllable, or word types), whereas measures such as representa-
tional similarity analysis (RSA; Kriegeskorte et al., 2008) used in some other works 
(e.g., Chrupała et al., 2020) are better suited for non-categorical reference data3. 

This section uses phones as the example units of analysis, but the same analysis pro-
cess was also carried out for syllables and words in each layer of each of the compared 
models, as described in section Model Evaluation. As is customary, we use types to 
refer to unique phones in the corpus and tokens for individual occurrences of phones 
in the data. 

The first measure, node separability, describes how well activations corresponding 
to the different phones in the speech input can be separated by individual nodes of a 
layer. The metric is based on d-prime measure (aka. sensitivity index) from the signal 

3 The main advantage of RSA is its sensitivity to different grades of similarity between the analyzed 
entities. However, derivation of reference metrics for linguistic representations could be conducted in 
various ways, including factors such as phonotactics or articulatory attributes for phones, focusing on 
semantics, syntactic role, or lexical neighborhood density for words, or using human similarity judge-
ments or brain imaging data for any of the units. Different choices on the relative importance of such 
factors could also lead to different analysis findings. 
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detection theory. While standard d-prime describes the separation of two normal dis-
tributions in terms of how many standard deviations (SDs) their means are apart, D-
dimensional generalization of the metric can be written as: 

𝑑J,D^ =
𝜇J − 𝜇D
1
2 (𝜎J

: + 𝜎D:)
																(4) 

where 𝜇J	and 𝜇D indicate the means and 𝜎J: and 𝜎D:	SDs of the D-dimensional activa-
tions (of a layer with D nodes) during specific phones i, j ∈ {1, 2, …, M}, respectively. 
By taking the root-mean-square of across the D nodes and then averaging the result 
across all possible unique pairs of phones, we obtain the multidimensional node sep-
arability measure 𝑑^ ∈ [0, ∞]  for the given layer: 

𝑑^ =
2

𝑀: −𝑀
1
𝐷

(𝑑J,D^ ):
d

DLJ@9

de9

JL9

																(5) 

The metric is independent of representation space dimensionality. It is zero if all 
nodes have identical activation distributions for all phone types, and grows with in-
creasing separation of the distributions for different phone types. Intuitively, if indi-
vidual nodes of a layer specialize in encoding different phone categories, we should 
observe a high value of d’ for the given layer. 

Our second measure investigates the degree that the distributed activation pattern of 
an entire layer encodes phonetic identity. We measure this clusteredness of the rep-
resentations by applying k-means clustering to the extracted activations of each layer, 
where the number of clusters k is specified to be the same as the number of phone 
types in the corpus (i.e., k = M; see also Alishahi et al., 2017, for an agglomerative 
approach). Clustering is initialized randomly, and then all activation vectors get as-
signed to one of the clusters by the k-means algorithm. The proportions of samples 
from each phone type in each cluster are then calculated, and each cluster is assigned 
to represent a unique phone type. The assignment is based on greedy optimization, 
where the cluster with the highest proportion of samples from a single phone cate-
gory (i.e., having the highest phone purity) is chosen as a representative of that type, 
and then that cluster and phone type are excluded from the further assignments. The 
process is repeated until all clusters have been mapped to their best-matching types 
(with the aforementioned constraints). The overall phonetic purity of the clustering 
is then measured as the average of the cluster-specific purities w.r.t. to the assigned 
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phone categories. The result is averaged across 5 independent runs of k-means to ac-
count for the variance due to the random initialization. Mean and SD of the overall 
purity across the runs are then reported in the experiments. Purity ranges from 1/M 
(different phones are uniformly distributed across all clusters) to 1 (phones group into 
perfectly pure clusters in an unsupervised manner). 

Besides analyzing the activations of individual nodes and full layers, we use two addi-
tional measures to investigate whether the full layers or their node subsets separate 
between different phone types: linear separability and non-linear separability, as 
measured by machine learning classifiers that are trained to classify phones using the 
activation patterns as features (also known as diagnostic classifiers; see also Belinkov 
& Glass, 2020; Chrupała et al., 2020). For linear separability, we use support vector 
machines (SVMs) with a linear kernel. For non-linear separability, we use a k-nearest 
neighbors (KNN) classifier. Both classifiers are trained with a large number of phone 
tokens from each phone type, and then tested on held-out tokens from the same types 
(see section Model Evaluation for details). Separability is measured in terms of un-
weighted average recall (UAR %), corresponding to the average of phone-specific 
classification accuracies. 

On top of the four reported metrics, we also calculated a number of other metrics. For 
the node selectivity, we measured the so-called Phoneme Selectivity Index (PSI) by 
Mesgarani et al. (2014). Since PSI was very highly correlated with the d-prime separa-
bility across the different layers and test conditions, we do not report it separately. In 
addition, we measured the difference and ratio between cross- vs. within-type cosine 
distances of layer activation vectors as a measure of separability. However, we found 
the k-means-based metric more representative and straightforward to interpret for 
the phenomenon of interest. Finally, we also calculated overall classification accura-
cies (aka. weighted average recall / WAR) for the SVM and KNN classifiers. Since WAR 
is simply the proportion of tokens correctly classified, it is biased towards classifica-
tion accuracy of more frequent phones. However, UAR and WAR were also highly 
correlated, and therefore we report UAR only. 

In addition, we initially performed word-level analyses separately for content words 
only, as the we hypothesized that the audiovisual learning paradigm may support 
learning of nouns and verbs better than, e.g., function words. However, the results 
were highly correlated to those using all word types in the analyses. For the sake of 
clarity, we only report the results for words from all parts of speech. 

Temporal Analysis of Hidden Layer Activations 

We also compared temporal dynamics of the network activations with ground truth 
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phone, syllable, and word boundaries. Our question was whether the temporal acti-
vation patterns would somehow reflect the underlying linguistic unit boundaries, i.e., 
whether the models reflect emergent speech segmentation capabilities even though 
they were not trained for such a purpose. In earlier work, Harwath and Glass (2019) 
reported that activation magnitudes of a VGS model (similar to our present CNN0) 
were related to phone boundaries on TIMIT corpus (Garofolo et al., 1993) after the 
model had been trained on Places Audio Caption Dataset (Harwath et al., 2016). Our 
present aim was to replicate the finding on other corpora, and to investigate segmen-
tation of syllables and words in addition to phones. 

In order to do so, we first measured activations of each layer for each input utterance 
as a function of time, and then characterized the overall temporal dynamics using a 
1-D time-series representation for the given input. We then compared the peaks of
this representation with known linguistic unit boundaries. We investigated three
types of 1-D representations for the network temporal dynamics: activation magni-
tudes ml[t] ∈ [0, ∞] (from Harwath & Glass, 2019),  instantaneous normalized entropy
hl[t] ∈ [0, 1], and linear regression from instantaneous node activations to pseudo-
likelihoods of unit boundaries, rl[t] ∈ [−∞, ∞]. The first one is simply the L2-norm of
activations of all nodes n in layer l at time t. Entropy was defined as

ℎh 𝑡 = −
𝑎i 𝑡 log:l

iL9 𝑎i 𝑡
log:(𝑁)

																		(6)	

where 𝑎i 𝑡  denotes the node- and layer-specific activations after the sum of activa-
tions has been normalized to 1 for each t and l, and where D is the total number of 
nodes in the given layer. In essence, ml[t] quantifies how well the input matches to 
the receptive fields of the filters in each layer, whereas hl[t] quantifies how the activity 
of the layer is distributed: small values close to zero indicate that only few neurons 
are active at the given time, whereas hl[t] close to 1 (high entropy) means that all nodes 
have very similar activation levels and hence little information is transmitted by the 
instantaneous activations. 

Linear regression was performed by first creating a target temporal signal for each 
utterance, where the signal had a Gaussian kernel with a maximum amplitude of one 
centered at each unit boundary (see Landsiedel et al., 2011, for a similar approach for 
syllable nuclei detection). Duration of the kernels was set so that approximately 95% 
of the kernel mass was within ±20 ms from the annotated target boundary for each 
phone and within ±40 ms for syllables and words. This was done to account for the 
uncertainty in defining the exact unit boundary positions in time (see, e.g., Kvale, 
1993). Then an ordinary least-squares linear mapping was estimated from the instan-
taneous node activations to the target signal. After estimating the mapping, the re-
gression representation rl[t] was obtained by applying the mapping to all activations 
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in the corpus, representing the estimated "score" that a boundary is located at each 
temporal position. A separate mapping model was trained for phones, syllables, and 
words to be used in respective evaluations. Due to computational constraints, a sub-
sample of 2,500 target corpus utterances was always used to train the regression 
model.  

The first two representations, ml[t] and hl[t], were normalized to have zero mean and 
unit variance at the utterance-level before further analysis. Due to the nature of the 
regression targets, rl[t] was already targeted between 0 and 1 (except for regression 
inaccuracies) and did not require further normalization. 

Following Harwath and Glass (2019), a difference of a Gaussian filter of σ = 5 ms was  
applied to the normalized 1-D curves from L2-norm and entropy to measure their rate 
of change, followed by filter delay correction (see Fig. 3 for visualization). After pre-
processing each of the 1-D representations, peak-picking was applied to detect local 
maxima in the rate of change in magnitude or entropy or maximum boundary score 
in the regression output. The outputs of the peak-picking were then considered as 
boundary hypotheses and compared to annotated linguistic unit boundaries. Sensi-
tivity of the peak picking algorithm was controlled by a detection threshold θd—the 
minimum required difference between the last local minimum and current local max-
imum in order for the maximum to be considered as a peak.  

Phone segmentation was evaluated using standard metrics, where a reference phone 
boundary was considered as correctly detected if the algorithm had produced a hy-
pothesized boundary within ±20 ms from the reference (Räsänen et al., 2009). Similar 
procedure was used for syllable and word segmentation but using a ±50-ms criterion 
for the detection, as used in the earlier literature on syllable segmentation (Räsänen 
et al., 2018, and references therein). Recall (proportion of boundaries detected), pre-
cision (proportion of hypothesized boundaries correct), and F-score (harmonic mean 
of the previous two) were then calculated as the primary metrics for segmentation.  

For conciseness, we only report results for the optimal θd determined separately for 
phones, syllables, and words across the full test set. This is since we are primarily 
interested in whether the model activation patterns reflect boundaries of linguistic 
units, not whether the settings of our algorithm generalize to novel test conditions as 
required for proper speech segmentation algorithms. For the same reason, the linear 
regression model was trained on the same data as to which it was then applied to. 
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Figure 3. An example of the temporal analysis process for a spoken utterance. Top: 
original speech input as a log-Mel spectrogram. Second panel: corresponding neu-
ron activations from layer 3 of the CNN1 model. Third panel: instantaneous magni-
tude of the node activations. Fourth panel: instantaneous entropy of the activations. 
Bottom panel: linear regression from the node activations to phone boundary scores. 
Segment boundaries are obtained from the curves with peak-picking. The first two 
activation curves are z-score normalized. 

0 0.5 1 1.5 2 2.5

10
20
30
40

M
el

-b
an

d

0 0.5 1 1.5 2 2.5

100
200
300
400
500

ne
ur

on
 ID

0 0.5 1 1.5 2 2.5
-2

0

2

4

m
3[t]

0 0.5 1 1.5 2 2.5
time (s)

-4

-2

0

2

h 3[t]

0 0.5 1 1.5 2 2.5
time (s)

0

0.5

1

r 3[t]

Language Development Research 147

Volume 1, Issue 1, 31 December 2021



Experimental Setup 

Data 

We investigated model training and representation analysis with both synthetic 
speech and real speech. The use of synthetic speech allows highly controlled experi-
ments with clean signals, limited number of speakers, and accurate ground truths for 
the linguistic units in the speech data. In contrast, real speech is, by definition, more 
natural, and comes with higher within- and across-speaker acoustic variability. This 
is especially due to crowd-sourced nature of the speech audio in the existing audio-
visual datasets. Therefore it was also of interest whether analysis findings from syn-
thetic data would generalize to real speech, but also whether the VGS models trained 
on synthetic data would generalize to real speech and vice versa, as this also affects 
the general applicability of synthetic data for computational research on language 
learning in general. 

For synthetic training and evaluation data, we used SPEECH-COCO dataset (Havard et 
al., 2017) based on MSCOCO (Lin et al., 2014). MSCOCO was originally collected to 
train computer vision systems, and consists of images paired with their verbal de-
scriptions provided by human subjects. The dataset focuses on object recognition in 
context, and thus provides a variety of images of scenes and objects commonly ob-
served in everyday life. The dataset includes a total of 123,287 images and covers 11 
super-categories (e.g. animal, food, furniture etc.) and 91 common object categories 
(e.g. dog, pizza, chair) of which 82 categories contain more than 5,000 labeled samples 
(cases). Each image is paired by at least five written captions describing the scene 
using the object categories. SPEECH-COCO (Havard et al., 2017) was derived from 
MSCOCO by using a speech synthesizer to create spoken captions for more than 600k 
of the image descriptions in the original MSCOCO dataset (Chen et al., 2015). The 
speech was generated using a commercial Voxygen text-to-speech (TTS) system, 
which is a concatenative TTS system with four UK and four US English voices. 
SPEECH-COCO has the same datasplit as in MSCOCO 2014; the training set includes 
82,783 images with corresponding 414,113 image descriptions and the validation set 
consists of 40,504 images paired with 202,654 captions. Each audio sample comes with 
synthesizer metadata on the audio caption, such as timestamps and identities of 
phones, syllables, and words synthesized, and we treated these as the gold standard 
phonetic reference of our speech data. 

In our experiments, we randomly sampled two sets of 5k images from the original 
SPEECH-COCO validation set to be used for model validation and test data. The rest 
of the validation set (~30k images) were included in the training data. As a result, there 
were a total number of 113,287 images and 566,432 spoken captions for training, and 
two sets of 5,000 images with 25,000 utterances for validation and testing. In the lin-
guistic representation analyses, one randomly chosen caption was used for each test 
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image. 

For real speech -based model training, we used Places400K corpus. It is based on 
Places205 image database (Zhou et al., 2014) that contains over 2.5 million images il-
lustrating 205 different everyday scene types. Places Audio Caption (English) 400K 
data (Harwath et al., 2016) contains approximately 400,000 speech captions created 
for an equal number of images from Places205. Audio captions were collected from 
hundreds of speakers through Amazon's Mechanical Turk.  During the data collection 
process, the user was asked to provide a free-form speech for each image describing 
the salient objects in it. There is only one verbal description per image, but compared 
to SPEECH-COCO, the average duration of the utterances is longer. The authors of 
Places400K automatically transcribed the spoken captions using automatic speech 
recognition (ASR) and reported approximately 23% word error rate for the results. 
Since we only use the text captions for the semantic retrieval analysis, and since there 
is no obvious reason why the ASR errors would bias the relative comparison of alter-
native models in the task, we find quality of the captions acceptable for the purpose. 
We split 10,000 validation and 10,000 testing images-caption pairs from the full da-
taset, and used the rest (392,385 image-speech pairs) for model training. In contrast 
to SPEECH-COCO that only consists of 8 different synthetic voices, Places400K repre-
sents notable variety in speakers and speaking styles due to its crowdsourced nature. 
Hence, their use in our experiments allows us to probe the impact of acoustical vari-
ety on learned model representations. 

Since Places400K does not have existing phonetic annotations, we used a third corpus 
to investigate model representations with real speech. For this purpose, the so-called 
“Large Brent" subset (see Rytting et al., 2010) of Brent-Siskind corpus (Brend & Siskind, 
2001) was used. The corpus consists of recordings of infant-caregiver interactions 
from four preverbal babies. The transcripts of the adult speech were transformed into 
phone- and word-level annotations using ASR-based forced-alignment by Rytting et 
al. (2010). In Räsänen et al. (2018), the transcripts were further syllabified based on 
the phone strings, and we use the 6,253 utterances with phone-, syllable- and word-
level annotations as described in that paper. In contrast to SPEECH-COCO and 
Places400K, audio quality of Brent is significantly worse due to its at-home recordings. 
It also represents very different speaking style from the two other corpora. Therefore 
it was of interest to compare analysis results from SPEECH-COCO synthetic speech to 
those of Brent. Note that since Brent consists of audio only, it was not possible to eval-
uate audiovisual retrieval on that corpus. 

The three datasets and their roles in model training, validation, audiovisual search 
evaluation, and model representation analysis are summarized in Tables 1 and 2. 
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Table 1. Datasets used for audiovisual model training (train), early stopping and 
model selection (dev), and analysis of audiovisual semantic retrieval (test). N refers 
to the number of utterances and corresponding spoken captions. 

Table 2. Datasets used for analyzing model representations with respect to linguistic 
annotations. SPEECH-COCO test set is the same as the one used to test audiovisual se-
mantic retrieval (listed in Table 1). 

Model Training 

Since all inputs to the models had to be of equal length, we first zero-padded/trun-
cated input log-Mel spectra to the length of 1024 frames (10.24 s) and 512 frames (5.12 
s) for the Places and COCO datasets, respectively. Following the literature, the em-
bedding space dimensionality D was set to 1024 for Places (Harwatha & Glass, 2017)
and 512 for COCO (Chrupała et al., 2017). The resulting model parameter counts were
approximately 21.2M (CNN0), 9.8M (CNN1), and 10.1M (RNN) parameters on Places,
and 13.9M (CNN0), 7.4M (CNN1), and 8.8M (RNN) on COCO.

For model training, we used mini-batch size of 120 triplets and shuffled mini-batch 
sample assignments after each epoch. A new set of negative samples was also drawn 
for each epoch. Adam optimizer with a fixed learning rate of to 1e-4 was used. Early 
stopping based on development set recall@10 score with patience of 5 was used to 
control the training, and the best model according to the validation recall was then 
used for testing purposes. In all models, rectifier linear units were used as activation 
functions for all convolutional layers and hyperbolic tangents were applied for recur-
rent layers. Based on pilot experiments with several triplet loss margins, a margin M 
= 0.2 was ultimately chosen based on its superior audiovisual retrieval performance.  

Evaluation Protocol 

For speech-to-image and image-to-speech retrieval tasks, we measured recall@10 for 
randomly sampled subsets of 1,000 image-caption pairs from our test data sets. For 

N  train N  dev N  test speakers speaking style
Places400K 382,385 (images & utt.) 10,000 10,000 2,683 crowsourced real

SPEECH-COCO 113,287 (images) x 5 (utt.) 5,000 5,000 8 (4 x US, 4 x UK) synthetic

N  test duration speakers style types tokens types tokens types tokens
5,000 214 min 8 (4 x US, 4 x UK) synthetic 47 190,629 232 51,855 168 37,558
6,253 93 min 4 real IDS 44 71,569 113 13,849 86 13,218

SPEECH-COCO
Brent

phones syllables words
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Places, we used all 10,000 test set image-caption pairs and sampled 1,000 pairs, meas-
ured the recall, and repeated the processes until distribution of recall scores for all 
testing samples converged to a normal distribution. We report recall scores then 
based on the mean and standard deviation of the obtained distribution. For COCO, we 
used all the possible 25,000 image-caption pairs (5,000 unique images, each paired 
with 5 captions), first divided them to five subsets of 5,000 image-caption pairs, and 
then sub-sampled a random set of 1,000 image-caption pairs for each subset until the 
mean recall@10 scores across all subsets converged.  

For objective evaluation of audio-to-audio search results, semantic relatedness score 
(SRS) was calculated on the orthographic test set captions of both corpora. On Places, 
all the 10,000 test utterances were used, whereas one randomly chosen caption was 
used for each of the 5,000 images on COCO. COCO captions were textual to begin with, 
and we used the Places captions generated by Harwath et al. (2016) using ASR. For 
each of the test set query utterances, the corresponding textual caption was compared 
to the captions of the top 5 retrieved utterances using the SRS score in Eq. (3). As a 
reference, the process was repeated for 5-top dissimilar and 5-random captions. The 
analyses were conducted for all test set captions whose content words passed spell 
checking based on the Word2Vec model. This left us with 9,242 and 4,877 utterances 
for Places and COCO test sets for semantic similarity measurement, respectively. 

For linguistic analyses, audio encoder activations were first recorded for all utter-
ances in the test corpora. Similarly to Alishahi et al. (2017), activations were averaged 
across the duration of each annotated phone, syllable, or word token, so that each 
resulting activation sample corresponded to one linguistic token at the given level of 
analysis. All unit types with less than 50 tokens in a test set were then discarded from 
the analyses, and the resulting type and token counts are summarized in Table 2. Clas-
sifier-based separability analyses were conducted for all the tokens of a test corpus, 
where 80% of the tokens were used for training and 20% for testing of the classifiers 
(ensuring that the tokens in training and testing were from different utterances). For 
the KNN, k = 15 nearest neighbors were used based on initial optimization on a subset 
of data. Node selectivity and clustering analyses were conducted for a random sample 
of 50 tokens from each type, sampling uniformly and randomly from the full pool of 
test set tokens. This was done to ensure that the reported metrics reflect equally all 
the phonetic/syllabic/lexical types instead of being strongly biased towards the most 
frequent ones. The same random samples were used for all models and layers. Note 
that the classifier-based UAR metric is inherently unaffected by test class frequencies, 
and no such sampling procedure was needed for the classifier analyses. For the tem-
poral segmentation analyses, original activations for all utterances in the test corpora 
were used. In addition, utterance onsets and offsets were automatically scored as cor-
rectly detected (and not counting any additional algorithm boundaries at those loca-
tions as insertions), as their detection can be considered as trivial due to the definition 
of an utterance as a stretch of speech separated by pauses or a change in speaker turn. 
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As a reference point, we also report measures obtained from the same models before 
their training (i.e., using the initial random parameters). This allows us to disentangle 
any effects of audiovisual learning from the potential benefits of simply performing 
a series of random non-linear transformations on the input speech data (see Chrupała 
et al., 2020, for a discussion). 

Results 

Results of the experiments are divided into two parts: first, we ensure that all three 
model variants have learned the audiovisual mapping problem, and investigate their 
relative performance in capturing the semantics between the two modalities. In the 
second part, we focus on the internal representations used by the models in the mul-
timodal learning task. 

Validation of Model Performance 

We first ensured that training of all models converged to a meaningful solution of the 
audiovisual learning task by examining their validation losses and recall@10 scores 
(Fig. 4). This was also the case, and all three models obtained quite comparable train-
ing and validation losses and recall scores on both corpora despite their architectural 
differences. The only exception to the rule was CNN1, which exhibited superior recall 
and slightly lower loss on Places validation set compared to the CNN0 and RNN mod-
els. Monotonic convergence of all the measures suggests that there was no overfitting 
in any of the models.  

The corresponding test set recall@10 measures on both speech-to-image and image-
to-speech search tasks are shown in Table 3. The results for all models are very close 
to each other, with exact ranking depending on the dataset and task type. In general, 
the performance between the present models and those reported by Harwath et al. 
(2016) and Harwath and Glass (2017) are also within similar range. However, exact 
comparison is not possible, as the details of the test set were not identical due to dif-
ferent sampling strategies. For an unknown reason, our implementation of CNN0 rep-
licated from Harwath and Glass (2017) falls behind the original study on both speech-
to-image and image-to-speech search on Places. On the other hand, our CNN1 is sim-
ilar to results from Harwath and Glass (2017) in performance. RHN-RNN results by 
Chrupała et al. (2017) are also shown in Table 3 as a reference, although they used 
different synthesized captions for the COCO data and a larger image search space. In 
general, the within-corpus results show that the three compared models all succeed 
in the audiovisual learning task, and they do so with a comparable performance.  
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Figure 4. Training and validation losses and validation recall@10 scores for the 
three compared models as a function of training epoch. Top: Places corpus. Bottom: 
COCO corpus. Left: triplet loss scores. Right: recall@10 scores.  
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Table 3: Recall@10 values obtained for "speech-to-image" (left) and "image-to-
speech" (right). Means and SDs across different samplings of 1,000-sample search 
spaces are shown. Results from earlier two models tested on Places400K are shown 
as reference (*) (updated numbers from Harwath et al., 2018instead of the original 
papers). Note that the experimental setups are not identical, and therefore detailed 
comparison of numbers is not possible.  Results from Chrupała et al. (2017) on an-
other synthesized corpus, SS-COCO, are also shown (**), although they used a larger 
search space of 5,000 images in their experiments. 

In terms of models trained on Places and tested on COCO (bottom part of Table 3, 
the performance of the models degrades substantially from the within-corpus exper-
iments, even though the performance is still far above chance-level (0.01). Whether 
this is due to differences in acoustic signals (synthetic vs. real speech) or semantics 
of the images (common objects vs. scenes of "places") is unclear, although linguistic 
analyses discussed in section Results suggest that the acoustic mismatch may not be 
the issue. Among the models, CNN1 generalizes across corpora somewhat better 
than the CNN0 and RNN models. 
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Qualitative Analysis of Semantic Retrieval 

To further investigate how speech embeddings capture semantic similarities between 
image and speech modalities, we manually verified a number of retrieval results us-
ing the embeddings derived from the speech or image data. Table 4 shows an example 
of speech-to-speech search obtained using the speech embeddings. As can be ob-
served, the first five most similar captions are semantically connected to the query 
caption. In the extracted examples, the query utterances and resulted utterances ei-
ther include same objects or activities or share the same super-category (food, ani-
mal, etc.). Note that this matching is not possible by trivial matching of acoustic pat-
terns alone due to lack of temporal alignment between the utterances. This indicates 
that the model has learned to link semantically similar utterances to each other with-
out any supervised learning. 

Table 4. Example output for speech-to-speech search using the CNN1 model on 
Places corpus. Query utterance and utterance transcripts corresponding to the five 
closest utterance embeddings are shown (spelling as they appear in the ASR-
generated transcriptions). 

Table 5. Example output for speech-to-image search using the CNN1 model on Places 
corpus. Caption of the query utterance (as it appears in annotation files) and images 
corresponding to the five closest image embeddings are shown. 
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Table 6. Example output for image-to-speech search using CNN1 model on Places 
corpus. Left: query image. Right: transcripts of the utterances corresponding to the 
five closest utterance embeddings (spellings as they appear in annotation files). 

Table 5 illustrates an example when spoken captions are used to find five best match-
ing images. In the majority of observed samples of speech-to-image search, the re-
sulting pictures contain objects corresponding to one or more of the content words 
spoken in the query caption. Finally, Table 6 shows five top similar captions resulting 
from a search based on a query image. In this example, as in the most cases of image-
to-speech search results, the extracted captions are semantically related to the query 
utterance. While these examples are shown for the CNN1 model only, we manually 
verified that all the three models were able to extract semantic relations between au-
dio captions and images in a qualitatively similar manner. 

Evaluation of Semantic Relatedness 

By using our Word2Vec and SBERT-based measures of semantic relatedness, we cal-
culated semantic similarity scores between captions corresponding to the five closest, 
five furthest, and five random embeddings with respect to every possible query utter-
ance and corresponding caption drawn from the test set. For SRS, the measurement 
was done separately for all content words, and for content words after removing or-
thographically matching words from the compared captions. Table 7 shows the mean 
and SD SRS and SBERT similarity scores from the analysis. Fig. 5 also illustrates the 
obtained distributions of semantic similarities, including SRS with and without the 
repeating content words, when using the CNN1 model (results for the CNN0 and RNN 
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are essentially similar and hence not shown separately).  To further measure the de-
gree that each model managed to capture the semantics of the data, we also quantified 
the difference in SRS and SBERT similarity score distributions between the top 5 sim-
ilar captions and the 5 most distant/random captions using the Wilcoxon ranksum 
statistic. The corresponding test statistics are reported in Appendix C. 

Figure 5. Semantic relatedness scores (SRS) and SBERT similarity scores for speech-
to-speech embedding search results for the CNN1 model. The graphs show the distri-
butions of similarities between query utterances and the five nearest, the five most 
distant, and five random captions collected for all test utterances. 

In all the models, semantic similarity of the nearest utterances is significantly higher 
than in a random sample of utterance pairs (p < 0.001 for all comparisons; see Appen-
dix C for details). This is also the case after ignoring repeated words in the semantic 
similarity calculation. On the other hand, semantic similarity between the query cap-
tion and captions of the most distant embeddings are largely overlapping with dis-
tances to random embeddings. This likely reflects the use of margin in the VGS model 
loss function in Eq. (2), which basically constrains the model to focus on the structure 
of the multimodal embedding space only in the neighborhood of each data point. In 
contrast, different "degrees of semantic unrelatedness" are not captured by the 
model, as long as the embeddings of unrelated input pairs are already sufficiently 
distinct. Although this feature is already implicitly built in to the loss function, the 
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SRS and SBERT metrics quantitatively demonstrate that the effect also seems to take 
place in practice. 

As for the difference between SRS and SBERT, the SBERT model produces higher av-
erage similarity score for the closest utterances and lower average score for the fur-
thest and random utterances compared to SRS model, reflecting its higher capacity in 
capturing semantics of full sentences with sentence-level embeddings. However, 
overall there is clear qualitative resemblance between SBERT and the SRS scores with 
repeating words (see Table 7). 

Table 7. Medians (Mdn) and standard deviations (SD) of SRS and SBERT scores in 
case nearest, furthest, and random embeddings w.r.t. query utterances. Left:  SRS us-
ing all content words in the utterances. Middle: SRS for content words excluding re-
peating words between query and search result utterances. Right: SBERT scores for 
full captions. 

Discussion on Semantic Retrieval Experiments 

Overall, the retrieval performance in terms of recall@10, the SRS scores, and the qual-
itative analyses together confirm that all three models had acquired basic understand-
ing of the semantic relationships between continuous speech and the related visual 
images. In addition, the three models did so in a comparable manner in terms of our 
analysis metrics despite the architectural differences between the models. Moreover, 
the analyses with SRS while excluding repeating words indicates that the semantic 
similarities among spoken utterances were not merely driven by shared words be-
tween the utterances. Instead, the models had learned something about semantic re-
lationships of different words through their occurrences in similar visual contexts. 
This provides a solid starting point for investigating how the models actually learned 
to represent the spoken language input as a part of their solution to the audiovisual 
learning task. 

Table �: Medians (Mdn) and standard deviations (SD) of SRS and SBERT scores in case nearest, furthest,

and random embeddings w.r.t. query utterances. Le�: SRS using all content words in the utterances.

Middle: SRS for content words excluding repeating words between query and search result utterances.

Right: SBERT scores for full captions.

SRSwith repeating words SRSwithout repeating words SBERT

� nearest � furthest random � nearest � furthest random � nearest � furthest random

Mdn SD Mdn SD Mdn SD Mdn SD Mdn SD Mdn SD Mdn SD Mdn SD Mdn SD

COCO

CNN� �.�� �.�� �.� �.�� �.�� �.�� �.�� �.�� �.� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.��

CNN� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.� �.�� �.�� �.�� �.�� �.��

RNN �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.� �.�� �.�� �.�� �.�� �.�� �.�� �.� �.�� �.��

Places

CNN� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.� �.�� �.�� �.�� �.�� �.��

CNN� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.��

RNN �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.�� �.� �.�� �.�� �.�� �.�� �.��

�.�.� Discussion on semantic retrieval experiments

Overall, the retrieval performance in terms of recall@��, the SRS scores, and the qualitative analyses

together con�rm that all three models had acquired basic understanding of the semantic relationships

between continuous speech and the related visual images. In addition, the three models did so in a

comparable manner in terms of our analysis metrics despite the architectural di�erences between the

models. Moreover, the analyses with SRS while excluding repeating words indicates that the semantic

similarities among spoken utterances were not merely driven by shared words between the utterances.

Instead, the models had learned something about semantic relationships of di�erent words through

their occurrences in similar visual contexts. This provides a solid starting point for investigating how

the models actually learned to represent the spoken language input as a part of their solution to the

audiovisual learning task.

�.� Results from linguistic selectivity analyses

Our primary research question was whether the VGS models exhibit signs of emergent linguistic orga-

nization. For this, we studied patterns of selectivity across di�erent linguistic units in the hidden layers

of our trained speech encoder models.

Fig. � shows the analysis results for models trained and tested on the synthetic COCO data, whereas

Fig. � shows the same analyses formodels trained and tested on real speech (Places and Brent corpora).

In addition, Fig. � shows the results for the Places-trainedmodel tested on COCO, as the result allows us

to disentangle the e�ects of training data from test data characteristics. Layer numbers of each model

correspond to the numbers denoted in Fig. �. L� stands for the input log-Mel features.

��
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Results from Linguistic Selectivity Analyses 

Our primary research question was whether the VGS models exhibit signs of emer-
gent linguistic organization. For this, we studied patterns of selectivity across differ-
ent linguistic units in the hidden layers of our trained speech encoder models.  

Fig. 6 shows the analysis results for models trained and tested on the synthetic COCO 
data, whereas Fig. 7 shows the same analyses for models trained and tested on real 
speech (Places and Brent corpora). In addition, Fig. 8 shows the results for the Places-
trained model tested on COCO, as the result allows us to disentangle the effects of 
training data from test data characteristics. Layer numbers of each model correspond 
to the numbers denoted in Fig. 2. L0 stands for the input log-Mel features. 
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Figure 6. Analysis results for models trained and tested on COCO corpus. Each panel 
row corresponds to one of the models, CNN0, CNN1 or RNN, whereas columns corre-
spond to the four studied selectivity metrics. Blue lines stand for phones, red for syl-
lables, and yellow for words. Solid lines correspond to trained models and dashed 
lines for the corresponding baseline models before the training. Error bars for clus-
teredness represent SDs across different runs of the k-means analysis. 
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Figure 7. Analysis results for models trained on Places corpus and tested on Brent 
corpus. 

The first observation from the results is that the overall pattern of the analyses is very 
similar across the different combinations of training and testing corpora. Although 
the separabilities and classification accuracies are generally lower for Brent than for 
the synthetic speech from COCO, the relative measures from different layers of each 
model and in comparison to the untrained baselines are generally similar. Due to this, 
we will focus on discussing the general findings that hold across the different corpora, 
and separately mention whenever a finding only applies to a subset of training and 
testing conditions.  

There are several patterns in the results that seem to be robust across the models and 
datasets. First of all, activation patterns of individual network nodes are poor at sep-
arating phone, syllable, or word types from each other, and this is true for all the three 
model variants (left columns in the figures). In CNN1 and RNN, there is a slight ten-
dency of the node separability to improve in the early or middle layers due to model 
training. However, even in these cases, node separability is at its maximum or close 
to the maximum in the input layer. This means that the individual frequency channels  
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Figure 8. Analysis results for models trained on Places corpus and tested on COCO 
corpus. 

of the Mel-frequency features are more informative of the underlying phonetic/syl-
labic/lexical identities than the individual nodes in hidden layers of the given models.  

The picture changes when all the nodes of a layer are analyzed together (three last 
columns in each figure). Clusteredness and classification-based measures show clear 
effects of phonemic, syllabic, and lexical learning taking place in all the models. For 
instance, unsupervised clustering of CNN1 L4 activations achieves purity of nearly 0.3 
in terms of phonetic categories on COCO data (Figs. 6 and 8), whereas clustering of 
the original log-Mel features leads to purity of 0.16 only. The effect is even larger at 
the syllabic and lexical levels. CNN1 L5 reaches lexical purity of approx. 0.45 with the 
vocabulary of 168 unique word types. Purities of RNN and CNN0 have similar patterns 
to those of CNN1, even though the exact layer in which the purity peaks differs from 
encoder architecture to others. Purities with the even more numerous syllables follow 
the same general trend, but with slightly lower purities. Notably, the improvements 
in syllabic and lexical clusteredness are not simply driven by the increasing receptive 
field sizes in deeper layers, as the there are no similar improvements in clustering 
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purity for the representations extracted from the untrained but otherwise identical 
models. Purities measured on the Brent data are lower than those measured from the 
synthetic data, but there are still clear effects of training with a substantial improve-
ment from the input features. We also conducted post-hoc analyses by measuring pu-
rities when the k-means clustering was initialized using the means of phone/sylla-
ble/word type activations, and the resulting purity scores were generally 0.1–0.3 
higher than those observed for random initialization, but without changing the gen-
eral pattern across different models, layers and datasets.  

The linear and non-linear separability measures also indicate that there are large 
amounts of phonetic, syllabic, and lexical information encoded in the hidden layer 
activations of all three models. Representations derived from the middle layers 
(CNN0), middle to penultimate layers (CNN1), or penultimate layer (RNN) allow rela-
tively accurate classification of syllables and words. On COCO training and testing, 
the non-linear classification reaches up to approx. 80% accuracy at all three levels of 
units with the CNN1 model activations, and the result is around 70% for an equivalent 
model trained on real speech. The corresponding accuracies for log-Mel features are 
below 40% for phones and below 20% for syllables and words. The qualitative pattern 
is similar to Brent test data, although the performance numbers are again lower due 
the more complex and noisy data.  

The classification experiments also reveal that phonetic information seems to be em-
bedded within the layers that also encode syllabic or lexical units (cf. the idea of over-
lapping representational planes in PRIMIR; Werker & Curtin, 2005). The maximum 
phone classification accuracy is often achieved for the same layers with the best per-
formance on syllables and words, and not for the layers where the receptive field size 
best fits the typical phone durations (e.g., L2 and L3 in CNN1; see Fig. 2). In addition, 
phone classification is always clearly more accurate with the non-linear than linear 
classifier, whereas only minor differences between linear and non-linear classifica-
tion are observed for syllables or words. This shows that phonetic information be-
comes the most refined in the same layers that encode syllabic and lexical infor-
mation (i.e., is concurrently represented with higher levels of linguistic organization), 
suggesting that phonetic units become encoded in a context-sensitive manner. How-
ever, accurate decoding of the phone identities requires non-linear decoding of the 
activation patterns. Classification analyses also reveal that simply performing a num-
ber of random high-dimensional non-linear projections on the data seems to improve 
classification performance, as observed for the untrained models. However, the im-
provements are far from the benefits of audiovisual learning. 

As for model comparisons, there are certain details that differ between the three ar-
chitectures, even though all three architectures had very similar performance in the 
semantic retrieval tasks that they were trained for (see the previous sub-sections). In 
terms of CNN0 and CNN1, one difference is that phonetic clustering purity is higher 
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for CNN1 than CNN0. In both models, the purity peaks at layers with comparable re-
ceptive field lengths (L2 in CNN0: 135 ms, L4 in CNN1: 165 ms) that are somewhat 
beyond typical phone durations. However, this may be explained by the higher num-
ber of nodes and thereby higher representational capability in CNN1 at the given layer 
(same 512 in all layers for CNN1), whereas CNN0 architecture uses increasing number 
of nodes as the receptive field increases (as specified in Harwath & Glass, 2017). In 
addition, non-linear separability of phonetic units is somewhat higher with CNN1 rep-
resentations than those in CNN0. Patterns for words and syllables are more similar 
for the two models. In terms of comparison between the CNNs and the RNN, the re-
sults are remarkably similar despite their architectural differences. The first recur-
rent layer (L2) of the RNN is similar to the middle layers of the CNN models, and a 
similar drop in linguistic selectivity is observed for the last layer of RNN as in those of 
both CNNs. 

Results from Temporal Segmentation Analyses 

For the temporal segmentation analyses, we first compared L2-norm, entropy, and 
linear regression-based representations in the task and found that the regression ap-
proach led to somewhat higher segmentation performance than the other two. Due 
to this, we focus on the regression results here and the full set of L2-norm and en-
tropy-based measures can be found from Appendix B.  

Fig. 9 shows the temporal segmentation analysis results for models trained and tested 
on COCO. Figs. 10 and 11 show the corresponding results for models trained on Places 
and tested on Brent, and for models trained on Places and tested on COCO, respec-
tively. Baseline performance levels with untrained models are also shown for refer-
ence. 

Looking at the COCO-COCO results in Fig. 9, there are two key findings: 1) Segmenta-
tion performance of all types of units is far above zero, and CNN hidden layers have 
higher segmentation accuracy for phones and syllables than when using the log-Mel 
features. 2) Untrained model performance is also relatively high throughout the con-
ditions. This shows that much of the temporal dynamics exhibited by the models (as 
captured with the present methodology) are already captured by the interaction of 
input features and non-linear processing steps. In other words, there is only a small 
effect of training on how the activation patterns reflect linguistic unit boundaries in 
time. On Places-Brent, the general pattern of results is again very similar to COCO-
COCO, but in this case the metrics of the trained models are even closer to the same 
models with random initial parameters. This is not due to training with real speech, 
as the performance in the Places-COCO condition again reflects the pattern observed 
in COCO-COCO. In addition, overall scores for syllables and words are somewhat 
higher on Brent than on COCO test data. However, this is primarily explained by the 
substantially shorter average utterance length on Brent, which means that the relative 
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proportion of trivial utterance onset and offset boundaries is much higher on Brent 
than on COCO. 

Figure 9. Segmentation results from models trained and tested on COCO corpus 
when using linear regression from activation magnitudes to unit boundary scores as 
the signal representation. Bars in each subplot represent layer-specific performance 
metrics for segmenting phones, syllables, and words, respectively. Different layers 
from input (L0) to last network layer are shown with different shade bars from left 
to right. Results are shown for F-score (left panels), precision (middle panels), and 
recall (right panels), and for the three tested models: CNN0 (top), CNN1 (middle), 
and RNN (bottom). Thin red lines denote baseline performance with untrained mod-
els. 

In terms of different layers, there is a small trend of earlier CNN layers to better re-
flect phonetic unit boundaries while syllable and word boundaries are better accessi-
ble from deeper layers. In addition, on COCO test data, the CNN models lead to higher 
phone and syllable segmentation performance compared to words, whereas on Brent 
syllables and words are actually more accurately segmented than phones. The best 
phone segmentation F-score of 0.66 is obtained by CNN1, followed by 0.65 for CNN0, 
both on COCO training and testing. The corresponding numbers for syllables are 0.64 
and 0.63, respectively. The RNN has lower phone segmentation performance than the 
CNNs, whereas its syllable and word segmentation scores are generally comparable 
to those of other models (e.g., F-score of 0.64 for syllables on COCO-COCO).  

Comparing the current regression-based segmentation results to the L2-norm and en-
tropy-based representations reported in Appendix B, the results are largely qualita-
tively similar across the approaches. The clearest difference is a modest performance  
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Figure 10. Segmentation results for models trained on Places and tested on Brent 
data. 

Figure 11. Segmentation results for models trained on Places and tested on COCO 
data. 

gain in syllable and word segmentation for the regression approach, as compared to 
the other two methods. 
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Compared to earlier studies, the observed segmentation scores are far from the F-
scores of 0.72–0.80 reported for modern unsupervised phone segmentation algo-
rithms (see, e.g., Hoang & Wang, 2015, for an overview), typically tested on TIMIT 
corpus (Garofolo et al., 1993). In addition, relatively low precision of the segmentation 
scores means that there is a substantial amount of oversegmentation involved in the 
process. In other words, the network dynamics have some correspondence to linguis-
tic unit boundaries in time, but the segmentation behavior is far from being perfect. 
The observed performance is also somewhat worse than that reported by Harwath 
and Glass (2019) despite using the same model architecture and training protocol 
(CNN0). The reason for this difference is unclear, but may have to do with the differ-
ent selection of the test data, as Harwath and Glass used read speech from TIMIT to 
test their model trained on Places. In general, it appears that temporal dynamics of 
the models are informative of phonetic, and to a smaller degree, syllabic and word 
boundaries. However, the effects of training are much less pronounced than with the 
selectivity analyses. Again, the main pattern of results does not seem to depend on 
whether the data are real or synthetic speech in nature. 

Discussion 

This work set out to investigate whether cross-modal and cross-situational learning 
can give rise to emergent latent linguistic structure, as predicted by LLH. After for-
mulating the LLH and reviewing the findings from the existing literature, we investi-
gated the idea systematically using machine learning models relying on statistical de-
pendencies between images and their spoken descriptions. This can be viewed as sim-
ulation of cross-situational learning (e.g. Smith & Yu, 2008) with a high degree of ref-
erential ambiguity, as the models had to automatically discover which aspects of the 
utterances (in time and frequency) were related to what kind of visual referents (in 
terms of visual features and spatial positions). We compared three distinct speech 
encoder networks in the task to understand how speech encoder architecture impacts 
the audiovisual mapping performance and the manner that the networks encode lin-
guistic information. In addition, we compared learning from both synthetic and real 
speech. As we analyzed the models, we observed that all networks exhibited similar 
capabilities in learning the semantic structure between spoken language and image 
data. In addition, all networks showed clear signs of linguistic organization in terms 
of all three unit types of analysis, namely phones, syllables, and words.  

In terms of our more detailed linguistic analyses, the present findings largely align 
with the earlier literature on investigating linguistic units in VGS models (e.g., Chru-
pała et al., 2017; Alishahi et al., 2017; Havard et al., 2019a, 2019b; Merkx et al., 2019). 
However, the present study is the first one to show that broadly similar learning takes 
place in different model architectures (convolutional and recurrent) and on both syn-
thetic and real speech. In addition, for the first time, we analyzed the emergence of 
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phonetic, syllabic and lexical representations with a shared set of metrics, and prob-
ing for both linear and non-linear separability of the representations in terms of un-
derlying linguistic units in the input. The analysis revealed that all three levels of rep-
resentation exist in the trained models in parallel. Also, while phone-level infor-
mation is generally accessible already from the earlier layers, phonetic information 
also co-exists in the layers that also encode syllabic or lexical information, but the 
information requires non-linear decoding. In addition, the results clearly demon-
strate that the linguistic information in these type of models becomes encoded as dis-
tributed representations, whereas informativeness of individual network nodes with 
respect to linguistic unit types is very limited. Temporal dynamics of the models also 
seem to carry information related to linguistic units in the input speech, especially 
phones and syllables, although it appears that only a limited proportion of this is ac-
tually driven by audiovisual learning in the models. However, this is not surprising, 
as many of the existing unsupervised phone and syllable segmentation algorithms 
can already perform relatively well by only analyzing the original signal-level acoustic 
changes (e.g., Hoang & Wang, 2005, and Räsänen et al., 2018, and references therein). 

Comparing our selectivity results to the earlier work, Chrupała et al. (2017) and Merkx 
et al. (2019) found that some model layers specialized for lexical processing whereas 
some others encoded such information to a lesser degree. According to Chrupała et 
al. (2017), the accuracy for predicting presence of individual words in speech in-
creases towards the deeper layers of the network but decreases slightly for the last 
layers of the model. Our results for layer selectivity in the RNN model generally rep-
licate those findings, and similar behavior can be observed for the CNN models as 
well. Regarding phonemic representations, Alishahi et al. (2017) and Drexler and 
Glass (2017) found that phone-like information was most evident in the early-to-inter-
mediate layers of their networks, and where deeper layers showed slightly decreasing 
phonemic specificity. In our results with RNN model (e.g., Figs. 6 and 7), phones are 
also the most prominent in the first recurrent layer or in the convolutional layer pre-
ceding the recurrent layers of our RNN model, when compared to the penultimate 
recurrent layer (L3 in our RNN model; cf. Fig 2). Moreover, as our results illustrate, a 
similar general pattern of initially increasing and then suddenly decreasing linguistic 
unit selectivity is observed for all the model architectures and for all linguistic units. 
While much of the earlier work has been carried out using RNN-based VGS models, 
our results also indicate that the findings also apply to CNN-based architectures with 
different temporal characteristics, demonstrating the robustness of the phenome-
non. 

In terms of data characteristics, the present study also shows that the selectivity anal-
yses conducted on synthetic speech are qualitatively similar to those on real speech. 
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This also strengthens the findings from the earlier visual grounding studies that have 
used synthetic speech (e.g., Alishahi et al., 2017). While not all synthetic speech is 
equal in terms of naturalness and acoustic variability, the finding also suggests that 
modern high-quality speech synthesis could be used for speech data creation in other 
computational modeling studies when lacking suitable real-speech corpora. This is 
especially relevant for studies where input to the learner needs to be dynamically ad-
justed depending on the learner behavior, such as simulating learning in infant-care-
giver interaction using computational agents (e.g., Asada, 2016) and references 
therein). However, the potential limitations of synthetic speech should still be care-
fully and separately considered for each study. 

In summary, together with the earlier computational findings reviewed, the present 
study demonstrates that speech comprehension, as defined in terms of capacity to 
associate spoken language with its referential meaning, does not necessitate a priori 
parsing of the speech input into distinct units such as phones or words. Instead, a 
flexible statistical learning machine focusing on modeling the dependencies between 
different perceptual channels is sufficient for capturing rudimentary semantics of 
speech, at least in the present type of simplified audiovisual learning scenarios. In 
addition, when implemented as a neural network with several hidden layers, these 
hidden layers start to reflect selectivity towards different types of linguistic units that 
the input speech consist of. This is in line with earlier findings using neural network 
models using supervised training (Nagamine et al., 2015; see also Magnuson et al., 
2020) or simplified visual input (Räsänen and Khorrami, 2019). Here we show that 
similar emergence of units can be observed in learning conditions analogous to cross-
situational learning. This lends initial support for the LLH: the idea that infant lan-
guage representation learning may be driven (or at least supported) by learning pro-
cesses that do not directly aim at learning such representations, but where the lin-
guistic representations become acquired as a byproduct of multimodal sensing and 
interaction with the environment.  

Note that the idea of initially general (non-linguistic) perceptual processing and grad-
ual phonological development enabled by concurrently developing lexicon is in line 
with PRIMIR theory (Werker & Curtin, 2005). However, PRIMIR also assumes that 
acoustic word-forms are segmented before being associated with their meanings. The 
present work together with the earlier reviewed studies (e.g., Alishahi et al., 2017; 
Chrupała et al., 2017; Havard et al., 2019a; Harwath and Glass, 2019; Merkx et al., 2019; 
Scholten et al., 2020) demonstrates that explicit segmentation into acoustic word-
forms before linking them to their meanings is simply not needed. In contrast, both 
sub-lexical and lexical representations can gradually emerge from the interaction of 
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rich multimodal experiences available to the learner, when the learner is simply op-
timizing the multimodal predictive value of the auditory input. This is also in line with 
computational models demonstrating that there are synergies in learning multiple 
levels of linguistic structure simultaneously (e.g., Feldman et al., 2013) or in word seg-
mentation and meaning acquisition (Johnson et al., 2010).   

We would like to emphasize that the present type of VGS models do not aim at mod-
eling neurophysiology of speech perception, and exploring such a connection is 
greatly beyond the scope of the present study. In contrast, our present aim has been 
to investigate LLH at the level of computational principles. However, despite the con-
ceptual gap between artificial and real neurons, ANNs have been successfully applied 
to modeling of cortical organization in case of visual (Yamins & DiCarlo, 2016) and 
auditory (Kell et al., 2018) processing. Therefore linking model data from VGS models 
to neurophysiological data could be attempted in the future, given access to suitable 
human data. On the other hand, it would be an interesting avenue to explore VGS 
model architectures further by taking into account known characteristics of the audi-
tory and associative areas in the brain. 

Limitations of the Present Study 

From the point of view of human language learning, one of the main limitations of 
the present study is the data used in our experiments. While language learning chil-
dren observe the world from their own visual perspective and predominantly hear 
spontaneous speech in interaction with their caregivers (e.g., Yurovsky et al., 2013), 
our model training datasets consisted of photographs and their verbal descriptions. 
This means that both the visual and auditory experiences differ from those of a child, 
and also the relationship between the two modalities is much more systematic than 
what would be expected from situated caregiver speech. While caregiver speech is 
not random with respect to otherwise observable environment, caregivers do not tend 
to narrate everything that the child is observing. On the other hand, factors such as 
joint attention, prosodic cues of child-directed speech (CDS), skewed statistics of the 
visual experiences (e.g., Clerkin et al., 2017), and gradual increase in the complexity 
of the speech input may help infants to resolve audiovisual referential ambiguity, 
whereas the present VGS models do not receive any "highlighting" of relevant targets 
in the visual or auditory domains. As for audio quality, the synthesized speech in 
COCO dataset necessarily has less acoustic variability than authentic caregiver 
speech, making the speech parsing problem easier. However, the experiments with 
Places corpus inevitably show that our primary findings also apply to learning from 
real speech, and similar patterns of linguistic unit emergence (albeit with smaller ef-
fects) can be seen when the models are tested on naturalistic IDS speech.  

In terms of mere input quantity, our training set totaled to approximately 400 h 
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(COCO) or 895 h (Places) of descriptive speech paired with visual scenes. In compari-
son, an average infant hears approx. 3 hours of CDS per day (Bunce et al., in prepara-
tion). The total amount of speech heard by the first birthday would then correspond 
to approx. 1000 h of CDS, i.e., by time when the child starts to comprehend some tens 
of words (CDI data from Wordbank; Fenson et al., 2007; Frank et al., 2017). In this 
context, at least the approximate scale of magnitude between toddler language input 
and our model input does not seem totally implausible, assuming that some tens of 
percentages of CDS input would relate to situations with opportunities for visual 
grounding. In addition, the present models can also solve the audiovisual mapping 
problem with much less data with reasonable performance (we have also tested learn-
ing using only one caption per COCO image, corresponding to a total of 80 h of speech; 
not reported separately). However, for the reasons listed above (and many others, 
such as developmental factors), detailed comparison between infant input and our 
study is not feasible. It is also not meaningful, as the present hypothesis is not that 
language learning would only take place through audiovisual learning. In contrast, 
the main goal has been to investigate the degree that referentially-driven multimodal 
learning can, in principle, explain aspects of early language organization. 

As another central limitation, our present data consisted of English speech only. 
While this necessarily limits the extent that conclusions can be drawn cross-linguisti-
cally, the use of English also limits the capability to disentangle syllable- and word-
level representations from each other. This is since a substantial proportion of the 
English word tokens consists of monosyllabic words (Greenberg, 1999), and this was 
also the case for our present data. 

Finally, our viewpoint to the structure learned by the networks is necessarily limited, 
even though we combined a number of measures in our experiments. For instance, 
we did not systematically compare the networks in behavioral experimental para-
digms such as gating experiments (see Havard et al., 2019b), nor investigated the con-
fusions among different linguistic unit types. In contrast, we focused on understand-
ing the dynamics of the internal representations from the point of view of hierarchy 
of linguistic units of different granularity.  

In the future work, it would be important to test the audiovisual models with real in-
fant language and visual input. Some baby steps to this direction already exist 
(Räsänen & Khorrami, 2019), but systematic investigation at the scale of real infant 
language experiences would be ideal to understand the role of visual4 experience in 
early organization of language. Ideally, datasets from several different languages 

4 In the general case, this concerns parsing of speech in the context of sensory information from audi-
tory, visual, somatosensory, and olfactory channels. In addition, motor activity and internal represen-
tations of emotions and interoception of basic bodily functions should be included as potential factors 
in speech grounding. 
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would be also utilized and compared. In addition, comparison and combination of the 
VGS models with purely auditory predictive models (e.g., van den Oord et al., 2018) 
should be conducted to understand the relative roles of different perceptual modali-
ties in early language learning. 

Conclusions 

One of the puzzles in the study of child language acquisition research is the question 
how infants learn to parse the noisy and highly variable acoustic speech input into a 
meaningful and structured interpretation of the spoken message, and then to gradu-
ally use the language in a compositional and generative manner. Several potential 
mechanisms have been proposed to solve problems such as phonemic categorization, 
word segmentation, and word meaning acquisition, but the overall picture of how 
these bits and pieces fit together remains unclear. It is especially unclear what would 
be the ecological or functional pressure for the baby brain to solve a series of proxi-
mal language processing sub-problems before being able to utilize the benefits of 
speech perception to comprehend the world around them.  

The latent language hypothesis investigated in this paper is aimed to shed some light 
on this puzzle by proposing that linguistic knowledge could emerge from predictive 
optimization across sensorimotor modalities and across time. By doing so, separate 
solutions to the several intermediate speech parsing problems would not be neces-
sary. The reviewed studies and the present findings demonstrate that the audiovisual 
aspect of LLH is, in principle, a potential mechanism for assisting in language repre-
sentation learning. However, the link to behavioral data is currently limited, and 
therefore nothing conclusive can be said on human learning based on the models 
alone. Yet, the VGS models show that the role of multisensory input in the context of 
language learning should not be underestimated, and that access to rich multimodal 
experiences concurrent to speech input have the potential to assist the learners al-
ready in the first stages of language learning. In future work, it would therefore be 
important to better understand the role of multimodality but also purely auditory pre-
dictive processing in early language acquisition. 
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Appendix A  

Selectivity analyses (Fig. A.1) and temporal segmentation results (Fig. A.2) for models 
trained on COCO and tested on Brent corpus. 

Figure A.1. Analysis results for models trained on COCO corpus and tested on Brent 
corpus. Each panel row corresponds to one of the models, CNN0, CNN1 or RNN, 
whereas columns correspond to the four studied selectivity metrics. Blue lines stand 
for phones, red for syllables, and yellow for words. Solid lines correspond to trained 
models and dashed lines for the corresponding baseline models before the training. 
Error bars for clusteredness represent SDs across different runs of the k-means anal-
ysis. 
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Figure A.2. Segmentation results from models trained COCO and tested on Brent cor-
pus when using linear regression from activation magnitudes as the signal represen-
tation. Bars in each subplot represent layer-specific performance metrics for seg-
menting phones, syllables, and words, respectively. Different layers from input (L0) 
to last network layer are shown with different shade bars from left to right. Results 
are shown for F-score (left panels), precision (middle panels), and recall (right pan-
els), and for the three tested models: CNN0 (top), CNN1 (middle), and RNN (bottom). 
Thin red lines denote baseline performance with untrained models. 
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Appendix B 

Results for segmentation analyses using L2-norm or entropy of layer activations as 
the signal representation (instead of using the linear regression scores in the main 
results). 

L2-norm measures: Fig. B.1: training and testing on COCO. Fig. B.2: training on Places 
and testing on Brent. Fig. B.3: training on Places and testing on COCO. Fig. B.4: train-
ing on COCO and testing on Brent. 

Entropy-based measures: Fig. B.5: training and testing on COCO. Fig. B.6: training on 
Places and testing on Brent. Fig. B.7: training on Places and testing on COCO. Fig. B.8: 
training on COCO and testing on Brent. 

Figure B.1. Segmentation results from models trained and tested on COCO corpus 
when using L2-norm of activation magnitudes as the signal representation. Bars in 
each subplot represent layer-specific performance metrics for segmenting phones, 
syllables, and words, respectively. Different layers from input (L0) to last network 
layer are shown with different shade bars from left to right. Results are shown for F-
score (left panels), precision (middle panels), and recall (right panels), and for the 
three tested models: CNN0 (top), CNN1 (middle), and RNN (bottom). Thin red lines 
denote baseline performance with untrained models. 
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Figure B.2. Segmentation results for models trained on Places and tested on Brent 
data when using L2-norm of activation magnitudes as the signal representation. 

Figure B.3. Segmentation results for models trained on Places and tested on COCO 
data when using L2-norm of activation magnitudes as the signal representation. 
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Figure B.4. Segmentation results for models trained COCO and tested on Brent data 
when using L2-norm of activation magnitudes as the signal representation. 

Figure B.5. Segmentation results from models trained and tested on COCO when us-
ing entropy of activation magnitudes as the signal representation. Bars in each sub-
plot represent layer-specific performance metrics for segmenting phones, syllables, 
and words, respectively. Different layers from input (L0) to last network layer are 
shown with different shade bars from left to right. Results are shown for F-score (left 
panels), precision (middle panels), and recall (right panels), and for the three tested 
models: CNN0 (top), CNN1 (middle), and RNN (bottom). Thin red lines denote 
chance-level performance with randomized boundary locations. 
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Figure B.6. Segmentation results from models trained on Places and tested on Brent 
when using entropy of activation magnitudes as the signal representation. 

Figure B.7. Segmentation results from models trained on Places and tested on COCO 
when using entropy of activation magnitudes as the signal representation. 
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Figure B.8. Segmentation results from models trained on COCO and tested on Brent 
when using entropy of activation magnitudes as the signal representation. 
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Appendix C 

Wilcoxon rank-sum statistics for SRS and SBERT similarity score distributions from 
speech-to-speech search are shown in Table C.1. 
 
Table C.1. Wilcoxon rank-sum statistic for speech-to-speech search for tested mod-
els, comparing the distributions consisting of the SRS scores for 5 nearest vs. 5 fur-
thest utterances ("near vs. far") or 5 nearest vs. 5 random utterances ("near vs. ran-
dom") for each query utterance (p < 0.001 for all). Left: SRS results using all content 
words in the utterances. Middle: SRS results excluding repeating words between 
query and search result utterances. Right: SBERT results for full captions. 

License 

Language Development Research is published by TalkBank and the Carnegie Mellon 
University Library Publishing Service. Copyright © 2021 The Authors. This work is 
distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 
International license (https://creativecommons.org/licenses/by-nc/4.0/), which per-
mits any use, reproduction and distribution of the work for noncommercial purposes 
without further permission provided the original work is attributed as specified under 
the terms available via the above link to the Creative Commons website. 

C Appendix C.

Wilcoxon rank-sum statistics for SRS and SBERT similarity score distributions from speech-to-speech

search are shown in Table C.�.

Table C.�: Wilcoxon rank-sum statistic for speech-to-speech search for tested models, comparing the

distributions consisting of the SRS scores for � nearest vs. � furthest utterances ("near vs. far") or �

nearest vs. � random utterances ("near vs. random") for each query utterance (p < �.��� for all). Le�:

SRS results using all content words in the utterances. Middle: SRS results excluding repeating words

between query and search result utterances. Right: SBERT results for full captions.

SRSw. repeating words SRSwo. repeating words SBERT

COCO (df = �����) near vs. far near vs. rand near vs. far near vs. rand near vs. far near vs. rand

CNN� ���.�� ���.�� ���.�� ���.�� ���.�� ���.��

CNN� ���.�� ���.�� ���.�� ���.�� ���.�� ���.��

RNN ���.�� ���.�� ���.�� ���.�� ���.�� ���.��

Places (df = �����) near vs. far near vs. rand near vs. far near vs. rand near vs. far near vs. rand

CNN� ���.�� ���.�� ���.�� ���.�� ���.�� ���.��

CNN� ���.�� ���.�� ���.�� ���.�� ���.�� ���.��

RNN ���.�� ���.�� ���.�� ���.�� ���.�� ���.��

��

Language Development Research 191

Volume 1, Issue 1, 31 December 2021



Expectation Violation Enhances the Development of New 
Abstract Syntactic Representations: Evidence from an Artificial 

Language Learning Study 

Giulia Bovolenta 
Emma Marsden 

University of York, UK 

Abstract: Prediction error is known to enhance priming effects for familiar syntactic structures; it also 
strengthens the formation of new declarative memories. Here, we investigate whether violating 
expectations may aid the acquisition of new abstract syntactic structures, too, by enhancing memory 
for individual instances which can then form the basis for abstraction. In a cross-situational artificial 
language learning paradigm, participants were exposed to novel syntactic structures in ways that 
either violated their expectations (Surprisal group) or that conformed to them (Control group). First, 
we established a potential expectation to hear feedback that simply repeated the same structure as 
that just experienced. We then manipulated feedback so that the Surprisal group unexpectedly heard 
passive structures in feedback following active sentences, while the Control group only heard passive 
structures following passive sentences. Delayed post-tests examined participants’ structural 
knowledge both by means of structure test trials (focusing on the active / passive distinction, with both 
familiar and novel verbs), and by a grammaticality judgment task. The Surprisal group was 
significantly more accurate than the Control group on the structure test trials with novel verbs and on 
the grammaticality judgment task, suggesting participants had developed stronger abstract structural 
knowledge and were better at generalising it to novel instances. Tentative evidence suggested the 
Surprisal group was not significantly more likely to become aware of the functional distinction 
between the two structures.  
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Introduction 

Is it possible to ‘surprise’ a learner into acquiring a new structure in a foreign 
language? A growing body of literature suggests that unpredictable input favours 
language learning. On one hand, structural adaptation – an increased likelihood to 
use or expect the syntactic structures we are exposed to, persisting in the long term 
– is likely one of the mechanisms by which we tune into the patterns of our language
(Peter & Rowland, 2019). There is evidence that prediction error drives adaptation to
syntactic structure, both from computational modelling (Chang, Dell, & Bock, 2006)
and empirical studies with both first language (L1) and second language (L2) speakers
(Fazekas, Jessop, Pine, & Rowland, 2020; Montero-Melis & Jaeger, 2020). At the same
time, evidence shows that violating expectations facilitates the formation of new
individual declarative memories, too, including vocabulary learning (Greve, Cooper,
Kaula, Anderson, & Henson, 2017; Stahl & Feigenson, 2017). We are now beginning
to form a picture of the ways in which surprisal can aid learning with regards to
different aspects of language. If a learner already has the relevant abstract syntactic
representation, encountering the structure in a surprising context appears to
strengthen that representation. Surprisal can also facilitate the acquisition of new
declarative memories for lexical items, such as nouns or verbs, leading to stronger
memory formation than non-surprising contexts. But what about the acquisition of
new, syntactic representations among adult learners who have already established
their L1 system? In this study, we address an unexplored gap in the literature, asking
whether surprisal could also aid the development of new abstract structural
representations, including acquisition of their specific form-meaning mappings,
rather than just strengthening existing ones. Following a usage-based approach to
language acquisition, we assume that structural knowledge emerges through
abstraction from individual learned exemplars (N. C. Ellis, Römer, & O’Donnell,
2016). If expectation violation can aid memory for individual instances, then we
hypothesise that it may also aid the acquisition of structural knowledge through
abstraction from these individual instances.

We investigated this question in a controlled learning experiment using an artificial 
language (Yorwegian). Learners were first introduced to a default syntactic structure, 
the active construction, which they learned while they were also learning the 
vocabulary of the language. Then, once this structure had been learned and 
consolidated, participants were exposed on the second day to a (potentially) more 
complex alternative, the passive construction. This ordering (active then passive) and 
bias in the input (more active than passive) simulates, to some extent, the likely real-
life learning experience of many learners, who would tend to encounter the passive 
construction less often in their learning due to its lower frequency, relative to the 
active construction. In this context, we manipulated the utterance containing the 
passive construction (in what we called a ‘feedback’ turn), so as to make it either 
unexpected (Surprisal group) or expected (Control group) relative to the pattern that 
had been established during training. Participants responded to sentences they heard 
(by selecting the matching picture) and received feedback on their responses, which 
consisted of a replay of (the meaning of) the initial sentence they had given their 
response to. In the first blocks, both groups received feedback using the structure 
that was always congruent with the structure in the initial sentence, i.e., participants 
heard the exact same sentence. However, in later trials, the Surprisal group 
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occasionally experienced feedback containing a passive structure immediately 
following an active structure (though still describing the same picture and with the 
same meaning in terms of agents and patients), while the Control group always 
experienced feedback containing the structure that matched the one used in the 
preceding sentence. We hypothesised that participants in the Surprisal group would 
develop stronger representations for the passive sentences encountered in feedback, 
leading to improved learning of the passive syntactic structure itself1. In a secondary 
question, we also hypothesised that surprisal may aid the development of explicit 
knowledge, either by increasing attention and cognitive effort (Leow, 2015) or by 
generating stronger representations that would be more likely to emerge in 
conscious awareness (Cleeremans, 2011).  

Background Literature 

Structural Priming as a Learning Mechanism 

When language users encounter a particular syntactic construction, they are often 
more likely to expect it again, or to use it in production, than they were before 
encountering it, a phenomenon known as structural priming (Arai, van Gompel, & 
Scheepers, 2007; Bock, 1986; Ferreira & Bock, 2006; Ledoux, Traxler, & Swaab, 2007). 
When the priming effect persists over time, it is known as adaptation (Kaan & Chun, 
2018b). Adaptation to syntactic structure alternations (such as that between 
prepositional object and double object dative constructions in English) has been 
observed in L1 production (Jaeger & Snider, 2013; Kaschak, 2007; Kaschak & 
Borreggine, 2008; Kaschak, Kutta, & Jones, 2011; Kaschak, Loney, & Borreggine, 
2006), and in L1 comprehension (Farmer, Fine, Yan, Cheimariou, & Jaeger, 2014; Fine 
& Jaeger, 2016; Fine, Jaeger, Farmer, & Qian, 2013; Kaan & Chun, 2018a). Adaptation 
effects have also frequently been observed in L2 speakers (Jackson & Ruf, 2017; Kaan 
& Chun, 2018a; McDonough & Trofimovich, 2015; Montero-Melis & Jaeger, 2020; Shin 
& Christianson, 2012; see Jackson, 2018 for a review). The magnitude of these effects 
tends to be greater for less frequent structures (known as inverse probability effects). 
This has been observed empirically in both the L1 and L2: Structures that have lower 
frequency in the input elicit greater priming effects (Hartsuiker, Kolk, & Huiskamp, 

1 In this sense, our manipulation is quite different from previous research on surprisal in language 
processing, as it manipulates expectations about the context in which the ‘surprising’ language was 
experienced, rather than the input per se. A reviewer pointed out that another potential way of 
framing our manipulation could perhaps be as a type of ‘recast’, which is an interactional and/or 
feedback (error correction) phenomenon, both in natural discourse (e.g., as a confirmatory turn or as 
a clarification/comprehension checking mechanism) and in language instruction (e.g., confirmatory 
to promote continued communication, or corrective to provide feedback on errors) (Goo & Mackey, 
2013; Lyster & Saito, 2010; see, however, Foster (Foster, 1998; Foster & Ohta, 2005), who downplays the 
frequency of recasting in instructional situations). In our study, an incongruent (potentially 
conceptualised as ‘corrective’ or ‘comprehension checking’) recast could be more salient and/or lead 
to greater awareness relative to a congruent (potentially conceptualised as ‘confirmatory’ or 
‘interaction promoting’) one, a possibility we raise in the discussion. However, one caveat to keep in 
mind is that recasts in L2 acquisition studies are normally in response to an utterance produced by the 
learner, whereas in our study the initial statement is heard by the learner, rather than produced. 
Therefore, if we think of our study in terms of recast, our design could perhaps simulate the cases 
where a learner hears the interaction and is working out the meaning, rather than actively participate 
in the interaction.  
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1999; Hartsuiker & Westenberg, 2000; Jaeger & Snider, 2013; Kaan & Chun, 2018a; 
Kaschak, 2007; Kaschak et al., 2006; Montero-Melis & Jaeger, 2020; Weber, 
Christiansen, Indefrey, & Hagoort, 2019).  

In L2 acquisition, there is evidence of syntactic priming mechanisms operating from 
the earliest stages of learning. In Weber et al. (2019), participants were exposed to a 
novel artificial language in four sessions over the course of nine days. The language 
consisted of a lexis containing novel nouns and verbs arranged in four possible word 
orders: three transitive (VOS, OSV, SVO) and one intransitive (SV). In the first session, 
participants were pre-trained on the nouns. From the second session, participants 
read novel sentences aloud, which were accompanied by pictures depicting their 
meaning. Repetition of word order and verb was manipulated from one trial to the 
next to study priming effects, which were measured by read-aloud times. In the third 
and fourth session, priming was also assessed through a picture matching task after 
target trials, where participants had to pick the picture matching the sentence they 
had just read, out of two possible alternatives (the incorrect picture depicted the same 
event, but with Agent and Patient roles reversed). Priming effects in read-aloud times 
were observed from the earliest stages; however, there was no difference in 
magnitude of priming for infrequent vs. frequent structures (structure frequency was 
manipulated in the second session, where the frequent word order was twice as likely 
to occur as the other three). Priming effects were also observed in comprehension, 
with higher accuracy for repeated structures, but only if they were the frequent word 
order.  

It has been suggested that structural priming is a case of implicit error-based learning  
(Bock, Dell, Chang, & Onishi, 2007; Bock & Griffin, 2000; Chang, Janciauskas, & Fitz, 
2012). Computational modelling of priming data shows that this can be reproduced 
by a Recurrent Neural Network (RNN) model trained on next-word prediction. As the 
model encounters more sentences, it gradually improves by adjusting its predictions 
based on the discrepancy between predicted and actual input, or prediction error 
(Chang et al., 2006). This account is compatible with observed properties of priming 
and adaptation, such as inverse frequency effects: Low-frequency words would 
generate greater prediction error, causing a larger adjustment in the weights and 
therefore a larger learning effect (Chang et al., 2006). More recently, Fazekas et al. 
(2020) tested this account with an empirical study with both adults and children, and 
found that exposing participants to surprising dative sentences (using verbs rarely 
associated with the dative structure) made participants more likely to use the dative 
structure in a post-test.  

Effect of Expectation Violation on New Memory Formation  

Structural priming and adaptation phenomena affect representations that have 
already been acquired; what changes as a consequence of exposure, and is further 
increased by prediction error, is the strength of existing structural representations. 
However, evidence from a different strand of research, originating mainly in 
cognitive psychology, shows that prediction error can also enhance the formation of 
new individual memories; events or associations which violate our expectations are 
remembered better than those that conform with them (one-shot declarative learning). 
Novel associations are better remembered if they violate an established pattern 
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(Brod, Hasselhorn, & Bunge, 2018; Greve et al., 2017; Greve, Cooper, Tibon, & 
Henson, 2019), including translation word pairs (De Loof et al., 2018). Surprising 
feedback, too, is better remembered. Fazio & Marsh’s (2009) participants answered 
general knowledge questions (rating their confidence in their answers) and then 
were shown the correct answer, which was displayed in either red or green letters. 
When feedback was unexpected (either following a high-confidence incorrect 
answer, or a low-confidence correct one) memory for the font colour in which it was 
displayed was better than for expected feedback. This suggests that surprising 
feedback can lead to a greater effort to encode it (known as the surprise hypothesis), 
resulting in better ‘source memory’ (defined as memory for the conditions in which 
the feedback is encoded, including everything that gets encoded besides the content 
of the feedback itself).  

There is also direct evidence that the effect of violation expectation on novel memory 
formation can aid language acquisition: Stahl & Feigenson (2017) showed that 
violation of expectations promotes vocabulary learning in young children. In the 
study, 3- to 6-year-old children were exposed to novel events which were either 
entirely possible or which violated core properties of the objects involved (e.g., a cup 
vanishing and reappearing in a different location). They were then taught the verb 
corresponding to the action (Experiment 1) or the noun denoting one of the objects 
(Experiment 2), and were tested immediately on its meaning. Children were 
significantly more accurate in their responses for verbs and nouns that they had 
learned in surprising events than for those they had learned in expected events (on 
which they performed at chance level). The effect was limited to nouns and actions 
involved in the surprising event: If children were taught the name for an object that 
was present during the event but did not participate in it, there was no learning effect 
(Experiment 4). This suggests that violated expectation did not aid learning simply by 
increasing attention or arousal, but that it led children to revise their predictions 
about specific objects and events (Stahl & Feigenson, 2017). 

The Present Study 

From the literature surveyed, it is clear that unexpected input can lead to a 
strengthening of existing abstract structural representations, in the form of 
increased priming and adaptation. We also know that violated expectation enhance 
the formation of new declarative memories, including learning novel vocabulary 
items. What we do not know, and what is the of focus of this study, is whether 
surprisal may also favour the acquisition of new abstract structural representations. 
In usage-based accounts of language acquisition, the development of abstract, 
structural knowledge is assumed to proceed from learned exemplars in the first place  
(Bybee & Hopper, 2001; N. C. Ellis, 2002; N. C. Ellis et al., 2016). If expectation 
violation can aid memory for individual instances, then we hypothesise that it may 
also aid the acquisition of structural knowledge through abstraction from these 
individual instances. 

For our study, we adapted a cross-situational learning paradigm (Smith & Yu, 2008; 
Yu & Smith, 2007) which has been successfully used in previous studies to investigate 
the acquisition of syntax in naturalistic settings (Monaghan, Ruiz, & Rebuschat, 2020; 
Rebuschat, Monaghan, & Schoetensack, 2021; Walker, Monaghan, Schoetensack, & 
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Rebuschat, 2020). In a cross-situational learning paradigm, participants are exposed 
to a novel language without any explicit instruction, but instead derive the meaning 
of novel words by attempting to interpret them across multiple situations. 
Participants are exposed to novel words or sentences and are required to select the 
correct interpretation from a range of options. While they are initially at chance in 
their answers, participants eventually converge on the correct meaning by keeping 
track of possible interpretations across different trials. Walker et al. (2020) used an 
artificial language composed of 16 novel words (8 nouns, 4 verbs, 2 adjectives) which 
could be arranged in either a subject-object-verb (SOV) or object-subject-verb (OSV) 
word order. Participants were trained and tested on the language over the course of 
two days, without any explicit instruction. In each learning trial, they heard a 
sentence in the novel language while two animations appeared on screen; their task 
was to select the one matching the sentence.  

Accuracy in learning trials was above chance from the second block, and results from 
intermitting test blocks showed that participants succeeded in acquiring both the 
grammar and vocabulary. This makes it a highly suitable paradigm to investigate the 
acquisition of syntactic structure in a naturalistic way. To establish expectation and 
then induce surprisal, we added feedback to critical trials. This feedback always 
contained a passive structure, which was, at first, always consistent with the trial just 
heard. We then manipulated the feedback between groups to be either consistent or 
inconsistent with expectations that participants had established during their first 
blocks of feedback trials. That is, we assumed that participants would expect 
feedback turns to replay the sentence in the exact form they had just heard. To 
generate this expectation, we ensured that feedback was initially congruent for both 
groups, and only at a later stage did we introduce, for the Surprisal group only, 
incongruent trials: active sentences that were followed by a passive form, whilst the 
same picture was displayed as during the active sentence. Given that surprising 
feedback is thought to be better encoded, including its visual features (Fazio & Marsh, 
2009), we expected the passive sentences in surprising feedback trials to lead to better 
learning, not only of the picture itself, but of the specific sentence – picture pairing, 
too, relative to the learning in the group that experienced the expected feedback 
trials.  

It is also possible that surprising feedback may promote the development of explicit 
knowledge of the passive structure. While findings like those of Stahl & Feigenson  
(2017) suggest that the effect of expectation violation on learning is not driven simply 
by a general raising of attention, it seems likely that surprisal has an effect on 
attention, albeit only to the relevant features (see for instance Greve et al. (2017) on 
possible mechanisms underlying one-shot declarative learning). In the context of 
associative learning, it has been suggested that surprisal may increase the salience of 
a stimulus, which in turn drives learning (Cintrón-Valentín & Ellis, 2016; N. C. Ellis, 
2016, 2017). Increased attention may also lead to greater awareness, that is, explicit 
knowledge of the form-meaning connections being learned. On the one hand, this 
may happen directly as a consequence of deeper engagement with the stimuli; for 
example, in L2 research, greater cognitive effort has been reported to correlate 
positively with the emergence of rule awareness (Cerezo, Caras, & Leow, 2016; Leow, 
2015). On the other hand, surprisal may also have a more indirect effect on the 
emergence of explicit knowledge. According to the radical plasticity thesis 
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(Cleeremans, 2008, 2011), there is a continuum between implicit and explicit 
knowledge. On initial exposure, implicit knowledge develops, characterised by weak 
and low-quality representations in memory. As the quality and strength of 
representation increase with repeated exposure, the knowledge becomes 
increasingly available to consciousness, that is, becomes explicit. Therefore, if 
surprisal leads to stronger representations in memory, we may also expect it to lead 
to more explicit knowledge. More specifically, in our case, stronger representations 
of individual passive sentences may lead to greater awareness of the form-meaning 
connections involved (though we do not aim to tease apart these two accounts 
[greater cognitive effort versus radical plasticity] of how this may happen). 

Research Questions and Predictions 

Our primary research question (RQ1) was whether being exposed to surprising items 
in the passive would lead to overall better knowledge of the passive structure. This 
was assessed by performance accuracy on picture-matching comprehension tests, 
with both trained and novel lexicon (to assess generalisation to new instances), and 
a grammaticality judgment task. If expectation violation can aid structural learning, 
we would expect the Surprisal group (SG) to show better knowledge of the passive 
structure than the Control group (CG).  

Specifically, with regards to comprehension (in picture-matching comprehension 
tests), we predicted the Surprisal group would perform better than the Control group 
in structure comprehension test blocks which were placed both at the end of Day 2, 
after the surprisal manipulation was introduced, and on Day 3. Day 3 included 
structure test using both previously trained and novel verbs; we expected the 
Surprisal group to perform better than Control on both tests. Additionally, we 
introduced individual comprehension test trials on Day 2 immediately after 
surprising items, to test for any immediate effects of surprisal on structure 
comprehension. If surprisal led to increased priming effects, too, we would expect 
the Surprisal group to perform better than the Control group in structure 
comprehension immediately after surprising passive items. In all comprehension 
tests (blocks and individual trials) our prediction of an advantage for the Surprisal 
group concerned the passive structure only, given that this was the structure affected 
by the surprisal manipulation. We did not expect to observe any effects on the active 
structure. In the Grammaticality Judgment Task, too, we expected the Surprisal 
group to perform better than the Control group in their ability to correctly 
discriminate between grammatical and ungrammatical passive sentences. We did 
not expect to see any significant differences between groups in their ability to 
discriminate between grammatical and ungrammatical sentences in the active form. 
Our secondary research question (RQ2) concerned the possible effects of surprisal on 
the development of explicit knowledge. Explicit knowledge of the novel structures 
was assessed by retrospective verbal report, with a debriefing questionnaire 
administered at the end of study. If expectation violation can promote the 
development of explicit knowledge, we would expect the SG to show higher rates of 
awareness than the CG.  

This was the first study of a planned project involving data collection from different 
populations, both online and in the laboratory. Therefore, we also collected a set of 
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cognitive measures (procedural learning abilities and verbal declarative memory) 
which mediated performance in a previous cross-situational learning study (Walker 
et al., 2020) in order to control for potential effects of individual differences. 
However, we did not have any specific predictions regarding possible interactions 
between the individual differences we measured and the surprisal manipulation.  

Methods 

Participants 

To our knowledge, there are no previous studies that attempted to investigate the 
effect of expectation violation on structural learning. This means that we had no 
single point of reference we could use to estimate the potential size of the effect we 
were interested in, in order to determine a suitable sample size. Therefore, we based 
our group size calculations on a set of previous studies each investigating one aspect 
of our manipulations. Walker et al. (2020), from whom we adapted the cross-
situational learning paradigm, tested two groups of 32 subjects, which was estimated 
by the authors to give .99 power for the simultaneous acquisition of two syntactic 
structures, based on the effect size from their previous study using the same 
paradigm. Greve et al. (2017), who investigated the effect of prediction error when 
learning for novel picture-word associations, used a range of group sizes from 20 to 
36 subjects, the latter of which was calculated to have .75 power for one-shot 
declarative learning.  

The effect we were interested in was the interaction between these two aspects, 
namely the effect of surprisal on the acquisition of syntactic structure. However, we 
had no means of estimating the effect size of a potential interaction. Therefore, we 
designed the study to have at least enough power to detect the two effects separately, 
on the assumption that this would be a necessary (although not necessarily sufficient) 
condition to detect the interaction, if one existed. Based on these considerations, we 
estimated that a group size of at least 35 participants would be the minimum sample 
size that we should use in the study. 

76 native speakers of English (59 females, MAGE = 31, SD = 7.62) were recruited via the 
online research platform Prolific (https://www.prolific.co/) and completed the study 
over the course of three consecutive days, receiving compensation of £12. The study 
was given ethics approval by the Education Ethics Committee at the University of 
York. Participants all reported living in the United Kingdom at the time of taking part 
in the study. Only one participant reported knowledge of any Scandinavian language 
(Norwegian) (upon which our artificial language was based); this was at the beginner 
level and they stated that they had never received formal instruction in the language. 
Participants were randomly assigned to either the Surprisal (n = 39) or Control (n = 
37) group on the first day of the study. The slight numerical imbalance between
groups is a consequence of attrition (i.e., participants were evenly assigned to the two
conditions on Day 1, but not all completed all three days).
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Materials 

All stimuli and experimental scripts can be downloaded from the OSF repository for 
this study (https://doi.org/10.17605/OSF.IO/NKSU8) and from the IRIS database 
(https://www.iris-database.org/). Participants were trained in an artificial language 
called Yorwegian, consisting of four nouns (glim, blom, prag, meeb – man, woman, 
boy, girl), eight verbs (flug-, loom-, gram-, pod-, zal-, shen-, norg-, klig- – call, chase, 
greet, interview, pay, photograph, scare, and threaten), one determiner (lu - the) and 
one preposition (ka - by). Some of the lexical items used were adapted from 
Wonnacott, Newport, & Tanenhaus (2008). The specific word-meaning pairs within 
the noun and verb categories were randomly assigned for every participant. All 
sentences were SVO, but there were two possible syntactic structures, differentiated 
by verbal inflection and use of the preposition ka. These were the Active structure 
(e.g. Lu meeb flugat lu prag, ‘The girl calls the boy’) and the Passive (e.g. Lu prag fluges 
ka lu meeb, ‘The boy is called by the girl’). This type of passive construction is naturally 
found in Scandinavian languages. It was chosen so as to have a way of forming 
passive structures that would not be entirely familiar to L1 English speakers (as there 
is no equivalent of the BE auxiliary in Yorwegian), while still being ecologically valid.  

We used a set of 208 black and white photographs depicting transitive actions, which 
we adapted from materials created by Segaert and colleagues (Menenti, Gierhan, 
Segaert, & Hagoort, 2011; Segaert, Menenti, Weber, Petersson, & Hagoort, 2012). The 
main set of training and testing pictures used on all three days (192 images) depicted 
the eight verbs: call, chase, greet, interview, pay, photograph, scare, and threaten. There 
were four characters which could fill the roles of Agent and Patient: man, woman, girl 
and boy. All possible combinations of different characters were included for each 
training verb, which yielded 12 possible Agent-Patient combinations (the Agent and 
Patient were always played by different characters). In the training set, the 12 Agent-
Patient combinations were repeated for each of the eight verbs, yielding a total 
number of 96 possible scenes. Each scene was enacted twice, each with different 
actors, giving a total of 192 unique training pictures. Each picture could appear with 
one of two possible syntactic structures (Active and Passive constructions), for a total 
of 384 unique picture-sentence combinations. 

The first 96 training pictures (Actor set 1) were used for training blocks on Day 1 and 
then again on Day 2. On Day 1, all training pictures appeared in the Active 
construction; on Day 2, half were presented in the Active, the other half in the Passive 
construction (which pictures appeared in each structure was counterbalanced across 
participants). Pictures from the second half (Actor set 2) were used for testing blocks 
distributed across the three days: vocabulary testing blocks on Day 1, Day 2, and Day 
3, as well as structure test blocks on Day 2 and Day 3. No unique picture-sentence 
combination was presented more than once over the course of the experiment. An 
additional ‘generalisation set’ was also used (16 images). The pictures in this set 
depicted four additional transitive verbs (dress, hug, pull, and push) and were used in 
a generalisation structure test block on Day 3, to test participants’ ability to process 
the syntactic structures they had been previously exposed to when used with novel 
verbs. This set used a reduced number of Agent-Patient combinations (four in total: 
man-woman, woman-man, boy-girl, girl-boy). 
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Procedure 

Participants took part in the study online over the course of three consecutive days ( 
Figure 1). The average total duration of the study was ~75 min, with each of the three 
sessions taking approximately 25 min. On each day, participants had to complete the 
session between 10am and 6pm. Subjects were randomly assigned to one of two 
groups, Surprisal or Control. On Day 1, the two groups followed the exact same 
protocol. On Day 2, all participants followed the same procedure in blocks 1-4. In 
blocks 2 and 3, feedback was introduced and was the same for both groups. In blocks 
5-8, we introduced the between-group surprisal manipulation (described in the next
section, on ‘Learning trials with feedback’). On Day 3, both groups again followed the
same protocol throughout. Participants performed the main task (the cross-
situational learning paradigm) over the course of three days. On Day 3, this was
followed by a grammaticality judgment task, a serial reaction task, the LLAMA B3
test, and a debriefing questionnaire. All tasks were created using JavaScript library
PsychoJS, based on PsychoPy (Peirce et al., 2019), with the exception of the LLAMA
B3 test, which was built in jsPsych (De Leeuw, 2015). All experimental scripts were
hosted and run online through platform Pavlovia (https://pavlovia.org/). Surveys at
the end of the experiment were administered using Qualtrics (www.qualtrics.com).

Figure 1. Summary of cross-learning task schedule 

Cross-situational Learning Task 

Participants received no explicit instruction on either the grammar rules or 
vocabulary of Yorwegian. They were taught using an adapted version of the cross-
situational task used by Walker et al. (2020), which was also used for testing. 
Participants heard individual sentences in Yorwegian, while two pictures (a target 
picture and a distractor picture) appeared on screen side by side. Their task was to 
select the picture that corresponded to the sentence they just heard (the target) by 
pressing the left or right arrow on their keyboard. There were four different types of 
trials: normal learning trials, vocabulary test trials, structure test trials, and learning 
trials with feedback (which included the critical between-group manipulation). In 
normal learning and testing trials, participants received no feedback on their 
answers.  

Normal learning trials. Distractor Agent, Patient, and verb were picked by the 
experimental software at random, with the only constraint being that the distractor 
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verb could not be the same as the target verb (to avoid the possibility of participants 
seeing two pictures depicting the same scene, only enacted by different actors).  

Learning trials with feedback. On Day 2, all learning blocks (Blocks 2-3 and 5-8), 
contained a proportion of learning trials with feedback. 12 out of 16 learning trials in 
each of these blocks were followed by feedback on the answer just given: after 
making their choice (in a learning trial), participants were shown the correct picture 
which they should have picked, regardless of whether they had picked it or not (in a 
feedback screen). They saw the correct picture displayed on its own, in the centre of 
the screen, and they also heard the sentence which they had responded to once again. 
More precisely, they heard a sentence with the same Agent, Patient and verb as the 
one they had responded to, but, depending on the block and group, the syntactic 
structure used to describe the scene could either be the same (congruent feedback) 
or different (incongruent). In Blocks 2 – 3, all feedback was congruent and evenly 
spread across structures: both groups received feedback on 6 passive and 6 active 
learning trials per block, and the sentence they heard during feedback matched the 
one they had responded to, in both content (meaning) and structure. This was done 
to ensure that both groups would develop an expectation for feedback to replay 
sentences using the same structure.  

Table 1. Types of trial included in critical learning blocks (Blocks 5 - 8). Differences 
between groups are highlighted in bold. 

Group Feedback Main structure 
(heard first) 

Feedback 
structure Type n 

Control No Active - No feedback 4 
Control Yes Active Active Congruent 4 
Control Yes Passive Passive Congruent 8 
Surprisal No Passive - No feedback 4 
Surprisal Yes Active Active Congruent 4 
Surprisal Yes Passive Passive Congruent 4 
Surprisal Yes Active Passive Incongruent 4 

Figure 2. Example of a critical learning block (Blocks 5-8) 

In Blocks 5 – 8, we introduced the between-group ‘surprisal’ manipulation. Feedback 
was still given on 12 out of 16 trials, and both groups still received congruent feedback 

Critical feedback trials
Sample block sequence
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on 8 of these 12 trials (4 active and 4 passive). The remaining 4 learning trials with 
feedback were manipulated so that the feedback they were followed by was 
congruent for the Control group, but incongruent for the Surprisal group (Table 1 &  
Figure 2). The only difference between congruent and incongruent feedback was the 
structure used: in both cases, the correct picture was shown, and the sentence which 
was heard had the same meaning as that heard during training. However, in 
incongruent trials the sentence was recast in the opposite syntactic structure (which 
was the 'incongruent' aspect), while in congruent feedback the exact same sentence 
was re-played, both with regards to meaning and syntactic structure used. In the 
Control group, these 4 critical trials required participants to respond to a passive 
sentence, while in the Surprisal group participants would respond to an active one. 
This was done to ensure that the feedback itself – the sentence learners were exposed 
after giving their answer, as they saw the correct picture again – would be in the 
passive for both groups. This manipulation meant that 8 of 12 trials with feedback 
used an active structure for the Control group, while for the Surprisal only 4 out of 12 
were in the active form. To compensate for this imbalance and ensure the same 
amount of exposure to the structures in both groups, the remaining 4 trials in each 
block (which did not have feedback) were manipulated to be passive for the Surprisal 
group, and active for the Control group (Figure 2). Over the course of the whole 
experiment, participants saw 16 critical learning trials with feedback (with 
incongruent feedback for the Surprisal group, but congruent for Control), four in 
each of Blocks 5 to 8. Each of these critical trials was followed by a structure test trial, 
which is described below. 

Structure test trials. All parameters in the pictures were kept constant apart from the 
Agent and Patient roles, which were reversed from target to distractor pictures (e.g., 
if the target picture was The girl interviews the man, the distractor would be The man 
interviews the girl). Distractor pictures were always picked randomly from either 
Actor set 1 or 2, regardless of which Actor set the target picture was drawn from (this 
was done to increase engagement and avoid creating a sense that there was any 
difference between blocks, which would have been the case if individual blocks only 
ever showed pictures from one particular set). The following parameters were always 
randomly chosen: the position of target and distractor picture on screen (left / right), 
and the position of Agent and Patient characters inside the pictures (left / right).  
Structure test trials were included in structure test blocks and also immediately 
following critical feedback trials. 

Noun test trials. All parameters in the pictures were kept constant apart from the 
Patient noun (e.g., if the target picture was The girl interviews the man, the distractor 
could be The girl interviews the boy or The girl interviews the woman). Noun test trials 
were included in vocabulary test blocks only. 

Verb test trials. All parameters in the pictures were kept constant apart from the verb. 
Verb test trials were included in vocabulary test blocks only. 

Auditory Grammaticality Judgment Task 

Following the cross-situational learning task on Day 3, participants did an auditory 
grammaticality judgment task (a widely used technique – see Plonsky, Marsden, 
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Crowther, Gass, & Spinner (2020) with novel Yorwegian sentences. They were 
instructed to listen to each sentence and indicate whether it was a correct sentence 
in the language they had been learning. After each sentence was played, the words 
CORRECT and INCORRECT appeared side by side on screen, and participants had to 
press either the left or right arrow on their keyboard to give a response. Responses 
were untimed and ample time was given to respond; the next sentence was shown 
only after participants gave a response. They heard a total of 32 sentences, 16 
grammatical and 16 ungrammatical. Half of the ungrammatical sentences contained 
the active verbal inflection followed by the agent marker, while the other had a 
passive verb, but no agent marker (see Table 2 for example stimuli). 

Figure 3. Learning trials with feedback, congruent (a) and incongruent (b) 

Language Background and Debriefing Questionnaires 

At the end of Day 3, participants filled in a language background and debriefing 
questionnaire. The anonymised survey data can be downloaded from 
https://doi.org/10.17605/OSF.IO/NKSU8 and https://www.iris-database.org/ The first 
part of the questionnaire included questions on the participants’ educational and 
language background, including the amount of formal grammar instruction received 
in the L1 and in any foreign languages spoken. The second part included specific 
questions on the experiment itself, aimed at probing participants’ awareness of the 
structures and of the functional distinction between them (‘Did you notice that a new 
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type of sentence was introduced on Day 2 (yesterday's session)?’, and if Yes, ‘What 
were the two types of sentence you learned, and what do you think the difference was 
between them?’).  

Table 2. Types of sentences included in the Grammaticality Judgment Task 

Sentence type Verb inflection Example 

Grammatical  Active Lu meeb flugat lu blom 

Grammatical Passive Lu blom fluges ka lu meeb 

Ungrammatical (-at + ka) Active Lu meeb flugat ka lu blom 

Ungrammatical (-es + Ø) Passive Lu blom fluges lu meeb 

Individual Difference Measures Taken on Day 3 

Serial Reaction Task. 
A Serial Reaction Task (SRT) was administered to measure procedural learning 
abilities, following the paradigm used by Walker et al. (2020) and Lum, Gelgic, & 
Conti-Ramsden (2010). Participants saw a white square appear on one of four possible 
positions on screen (top, bottom, left and right), and had to press the corresponding 
arrow on their keyboard in response, as quickly and accurately as they could. The 
positions in which the square appeared followed a set sequence (bottom, top, right, 
left, right, top, bottom, right, top, left), which was repeated twice per block over five 
blocks (100 trials in total). The last block (Block 6) followed a different, 
pseudorandom sequence, repeated twice. Following Lum et al. (2010), the likelihood 
of the square appearing in any one particular position over the course of the 
pseudorandom sequence and the transitional probabilities between positions were 
kept consistent with those of the training sequence. To score the tasks, we followed 
Walker et al. (2020), subtracting the median RT for Block 5 from that for Block 6 
(violation block).  

LLAMA B3. 
A vocabulary learning task (LLAMA B3) was included to measure verbal declarative 
memory. We replicated the design of the LLAMA B3 task (Meara & Rogers, 2019) 
using JavaScript library jsPsych (De Leeuw, 2015). Participants saw 20 drawings of 
novel fictional entities arranged in a grid on screen. Hovering over a drawing with 
the mouse cursor revealed a label with the written name of that entity. Participants 
were given 2 minutes to learn the names. At the end of the study period, the drawings 
appeared again, arranged in a different sequence. Participants were then given the 
names and asked to click on the relevant drawing (e.g., ‘Click on the taa. If you are 
not sure, just guess’). All the drawings remained unchanged on screen throughout 
the test phase and could be selected at any time, and participants received no 
feedback on their answers.  
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Results 

A total of 70 participants were included in the analysis (Table 3). Four participants 
were excluded for failing to listen to the items before giving their responses (the 
criterion response time for this exclusion decision was under 1s on at least six trials 
per block, in any given block). One participant was excluded due to suspect unfair 
means (such as taking notes, based on response times over 10s and 100% accuracy 
from Block 1 of the cross-situational learning task on Day 1). One participant was 
excluded for failing to finish the Day 2 task in one sitting. 

Table 3. Descriptive statistics for analysed sample 

Sex Age LLAMA B3 SRT 

F Years Score RT (ms) 
Group n M (sd) M (sd) M (sd) 
Surprisal (n = 36) 29 30.9 (7.64) 6.77 (4.07) 45.82 (43.08) 
Control (n = 34) 25 31.1 (7.63) 6.28 (4.54) 38.86 (33.06) 

Cross-situational Learning Task 

We analysed accuracy data as binary outcome (correct / incorrect) at the trial level. 
We used generalized linear mixed-effect models (GLMER) for binomial data, which 
we implemented in R version 4.0.3 (R Core Team, 2020) using the lme4 package (Bates, 
Mächler, Bolker, & Walker, 2015). Following Barr, Levy, Scheepers, & Tily (2013) we 
used the maximal random structure supported by the model, in order to control for 
as much variance as possible. For each model, we first created a formula containing 
the maximal fixed effect structure and the maximal random effect structure (random 
intercepts by subject and item as well as random slopes for subjects and items by 
each of the fixed effect predictors, and their interactions). We used the package 
buildmer (Voeten, 2020) to automatically identify the maximal random structure that 
would allow the model to converge. We then used buildmer again on the resulting 
formula to do stepwise backwards model selection using likelihood-ratio tests, 
eliminating fixed effect predictors one by one (starting from higher-level 
interactions) and only retaining them if they significantly improved model fit. All 
models were checked for overdispersion and none of them showed signs of being 
overdispersed. We report the coefficients of the mixed-effect models converted to 
odds ratios (OR) to provide a measure of effect size, together with the statistical 
significance of the effects (p values). Full descriptive statistics for the cross-
situational task on all three days can be found in Appendix S2. Final statistical models 
for all tests can be found in Appendix S5. 

Learning Blocks  

Learning trials were included in the cross-situational task on Day 1 (Figure 4) and on 
Day 2 (Figure 5). We analysed data from the learning trials on Day 1 (blocks 1 – 5) and 
Day 2 (blocks 2 – 3 and 5 – 8) in two separate models, entering Group and Block 
(centred) as fixed effects for each. There were no significant differences in 
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performance between groups on learning blocks on either Day 1 or Day 2. There was 
a significant effect of Block on both Day 1 (OR = 1.28, 95% CI [1.21, 1.36], p < .001) and 
Day 2 (OR = 1.12, 95% CI [1.06, 1.18], p < .001). 

Figure 4. Accuracy on Day 1 by block. Error bars represent 95% CIs of group means 
(computed by averaging over subject means). 

Vocabulary Test Blocks 

Participants undertook five vocabulary test blocks over the course of the experiment: 
one on Day 1 (Test 1), three on Day 2 (Test 2, 3 and 4), and one on Day 3 (Test 5) (Figure 
4, Figure 5 & Figure 6). We entered data from all these tests together into glmer models 
with Group and Test (centred) as fixed factors, creating two separate models for verbs 
and for nouns. For verbs, there was no significant effect of Group, only a main effect 
of Test (OR = 1.33, 95% CI [1.24, 1.41], p < .001). For nouns, there was a significant 
interaction between Test and Group (OR = 0.80, 95% CI [0.69, 0.93], p = .004). In post-
hoc comparisons, a difference emerged in the transition from Test 3 to Test 4 (second 
and third test blocks on Day 2), which led to a significant improvement in accuracy 
for the Control group (c2(1) = 12.28, p = .009) but not for the Surprisal group (c2(1) = 
1.87, p = 1). However, the difference in accuracy between the two groups was not 
significant at any point (Test 1: c2(1) = 0.13, p = 1; Test 2: c2(1) = 0.27, p = 1; Test 3: c2(1) 
= 0.005, p = 1; Test 4: c2(1) = 1.51, p = 1; c2(1) = 5.20, p = .113). 

Structure Test Trials after Feedback 

Individual structure test trials were inserted after feedback learning trials to test for 
any immediate (priming) effects as well as any cumulative effects of the experimental 
manipulation on structural knowledge. We analysed data from the Structure test 
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trials in a glmer model with Group and Trial number (scaled and centred) as fixed 
factors. We observed a main effect of Trial (OR = 1.40, 95% CI [1.17, 1.67], p < .001), 
but no effects of Group. 

Figure 5. Accuracy on Day 2 by block. Error bars as in Figure 4. 

Figure 6. Accuracy on Day 3 by block. Error bars as in Figure 4. 

Structure Test Blocks 

We analysed data from each of the three structure test blocks in individual glmer 
models, entering Group, Structure (Active vs. Passive) and their interaction as 
predictors in the initial model for each. 
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Day 2 (old verbs). In the structure test block on Day 2 (Figure 5), there was a numerical 
trend towards higher accuracy in the Surprisal group and for Active sentences, but 
no statistically significant effect of either Structure or Group. There was a great deal 
of variability between participants (see Appendix S4 for additional figures).  
Day 3 (old verbs). In this test block, we found a significant effect of Structure, with 
higher accuracy for Active relative to Passive (OR = 2.80, 95% CI [1.50, 5.23], p = .001), 
but no effect of Group.2 

Day 3 (new verbs). In the generalisation structure test block, there were significant 
main effects of Group (OR = 2.50, 95% CI [1.25, 4.99], p = .009) and Structure (OR = 
2.82, 95% CI [1.42, 5.59], p = .003): Participants in the Surprisal group were more 
accurate than those in the Control group, and both groups had higher accuracy for 
active structures compared to passives (Figure 7).  

Figure 7. Accuracy on Day 3 structure test block (new verbs). Horizontal bars 
represent group means, shaded rectangles 95% CIs. 

Grammaticality Judgment Task 

Descriptive statistics for this task can be found in Appendix S2, and the full statistical 
models are reported in Appendix S5. We analysed both raw endorsement rates, to 
capture differences in endorsement bias between groups, and d' scores to obtain a 
measure of sensitivity to grammaticality in the two groups. Endorsement data was 
collected as a binary response (Yes / No) so we analysed it using a generalized linear 
mixed-effect model (GLMER) for binomial data, following the same procedure we use 

2 We can only draw limited conclusions from the results of the Day 3 (trained verbs) test block, 
however, as this block was affected by a counterbalancing error which meant that half of the 
participants (equally spread among groups) saw the exact same items as in the Day 2 structure test 
(while the other half saw the same pictures but described using the opposite structure, which was the 
intended design). This does not affect the following test block (Day 3, new verbs), which used entirely 
novel Agent – Verb – Patient combinations. See Appendix S4 for a detailed figure of the Day 3 (trained 
verbs) block, including accuracy by group and counterbalancing status. 
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to analyse accuracy data from the cross-situational learning task. Group, Verb type 
(active vs. passive) and Grammaticality were entered as fixed predictors in the model. 

Figure 8. Endorsement rates in the Grammaticality Judgment Task (Day 3), by 
Group, sentence Grammaticality and Verb type. Horizontal bars represent group 
means, shaded rectangles 95% CIs. 

We found a three-way interaction between Group, Verb type and Grammaticality (OR 
= 4.44, 95% CI [1.85, 10.64], p = .001) (Figure 8). Post-hoc comparisons showed that 
this was driven by the effect of Grammaticality varying across groups, specifically for 
Active sentences. Participants in the Surprisal group were significantly more likely 
to endorse grammatical relative to ungrammatical sentences, whether they 
contained Active (c2(1) = 29.22, p < .001) or Passive verb forms (c2(1) = 21.86, p < .001). 
The Control group, on the other hand, showed the same effect of grammaticality with 
Passive sentences (c2(1) = 19.54, p < .001) but not with Active ones (c2(1) = 1.57, p = 
.84). The effect of grammaticality was of similar magnitude for Passive sentences in 
both groups (SG: OR = 0.18, 95%CI [0.06, 0.59], p < .00; CG: OR = 0.19, 95%CI [0.05, 
0.66], p < .001) and in Active sentences for the Surprisal group (OR = 0.12, 95%CI [0.02, 
0.62], p = .001). The Control group were more likely than the Surprisal group to 
endorse sentences with a Passive verb in general, regardless of their grammaticality 
(c2(1) = 5.74, p = .033).  In general, endorsement across groups was higher for Active 
then for Passive sentences, both grammatical ((c2(1) = 10.30, p = .003) and 
ungrammatical (c2(1) = 29.66, p < .001).  

To estimate participants' ability to discriminate grammatical from ungrammatical 
sentences, regardless of endorsement bias, we calculated d' scores for different item 
types and entered them in a mixed ANOVA using package ez (Lawrence, 2016), with 
Group and Verb type as predictors. The ANOVA returned a significant interaction 
between Group and Verb type (F(1,68) = 4.590, p = .036) but no significant main effects 
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of either Group (F(1,68) = 1.809, p = .183) or Verb type (F(1,68) = 0.230, p = .633). We 
carried out post-hoc comparisons with the Bonferroni correction using package 
emmeans (Lenth et al., 2021), which showed a significant difference in d' scores 
between groups for Active sentences (F(1,68) = 5.505, p = .04) but not for Passive ones 
(F(1.68) = 0.028, p = 1).  

Cognitive Measures 

Basic descriptive statistics for LLAMA B3 and SRT scores can be found in Table 3; see 
Appendix S1 for detailed statistics. The groups did not significantly differ in their 
scores, and the effects of Group we reported for the cross-situational learning task 
and grammaticality judgment task were not affected by the inclusion of these 
cognitive measures in the analysis. See Appendix S1 for a detailed report of the 
analyses that included these measures as variables.  

Debriefing Questionnaire (RQ2) 

21 out of 36 subjects in the Surprisal group and 14 out of 34 subjects in the Control 
group developed sufficient explicit knowledge of the structures to be able to verbalise 
their respective functions. To assess whether the experimental manipulation had 
made participants in the Surprisal group more likely to develop explicit knowledge 
of the Active / Passive distinction, we constructed a simple logistic regression with 
explicit knowledge as a binary outcome and Group as predictor. While the Surprisal 
group had a numerically higher rate of explicit knowledge, the effect was not 
significant (OR = 0.50, 95% CI [0.19, 1.28], p = .15).  

Discussion 

Our first research question concerned the effect of surprisal on structural knowledge. 
We hypothesised that surprisal at the item level would lead to stronger abstract 
structural knowledge of the passive structure in the Surprisal group: Our results 
partially supported this hypothesis. We found that participants in the Surprisal group 
performed significantly better than those in the Control group in both a structure 
comprehension test and a grammaticality judgment task. Crucially, the structure test 
used novel verbs, which shows that the Surprisal group had developed stronger 
abstract knowledge than the Control group, and were able to use that knowledge to 
generalise structure to a new lexicon. However, we did not observe an effect of Group 
on the other structure test blocks or structure test trials in earlier blocks, which all 
used familiar verbs. Additionally, the effects we observed, were not limited to the 
passive construction as we had hypothesised, given that the manipulation was only 
on passive items. In the comprehension test, the advantage for the Surprisal group 
was found across both structures. In the Grammaticality Judgment Task, against our 
expectations, the main difference between groups emerged on active sentences, 
where only the Surprisal group showed a significant ability to distinguish 
grammatical from ungrammatical sentences.  

Our secondary hypothesis was that surprisal would also lead to greater awareness of 
the functional distinction between active and passive constructions, measured as the 
ability to verbalise the distinction in retrospective verbal report. While there was a 
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numerical advantage for the Surprisal group, this was not statistically significant. We 
consider these findings below, offering possible interpretations for the observed 
pattern of results and discussing the limitations of the current study. 

Structural Accuracy in Comprehension 

Against our expectations, we did not find an effect of Group in the structure tests 
which used familiar verbs (on either the structure tests blocks or the structure tests 
trials following feedback trials). We discuss potential explanations for these findings 
in the section on 'Study limitations' below. However, in the structure test on Day 3 
(new verbs), we found a main effect of Structure, and one of Group: Both groups were 
better at selecting the correct interpretation of active sentences than they were for 
passive ones, and the Surprisal group was overall more accurate than the Control 
group. The effect of structure is compatible with our experimental design: Given that 
participants had received more and earlier exposure to this structure than to the 
passive, it is not surprising that they developed higher accuracy on it. We also 
expected the Surprisal group to perform better than the Control group in the 
structure test, which was confirmed. However, the effect was found for both Active 
and Passive structures (and was numerically greater for active ones), whereas we had 
expected to find an advantage specifically for passive sentences, given that they were 
the target of our experimental manipulation.  

One possible explanation is that the mere presence of surprising trials led to greater 
attention and therefore better overall learning in the Surprisal group. In a series of 
cross-situational learning studies of vocabulary learning, Fitneva & Christiansen 
(2011, 2017) found that experiencing error (i.e., initially forming incorrect label-
referent mappings) led to better learning in adults. Crucially, this effect was not 
limited to the words that participants had initially assigned to the wrong referent, but 
to the whole set of items, suggesting that experiencing error may have led to greater 
attention and better encoding of information overall (Fitneva & Christiansen, 2017). 

A second possibility is that the effect was due to an interplay between the two 
structures: better knowledge of the passive construction could have led to higher 
accuracy on active trials, by providing negative evidence that helped participants rule 
out the incorrect alternative. In our structure test, the competitor (incorrect) picture 
always depicted the same action happening with Agent and Patient roles reversed, 
meaning the two constructions were effectively put in competition against each 
other. If the sentence was in the active form, e.g., Lu meeb flugat lu prag (‘The girl calls 
the boy’), then the target picture would depict a girl calling a boy, while the 
competitor would depict a girl being called by a boy. This means that a sentence with 
the same nouns in the same positions as the target sentence could be used to describe 
the competitor picture, but only if it had different morphosyntax, that is, Lu meeb 
fluges ka lu prag, (‘The girl is called by the boy’). Being sensitive to this distinction 
would help participants make the correct choice by ruling out the competitor picture, 
that is, by providing negative evidence of what the active sentence could not describe. 
Crucially, however, this requires specific sensitivity to the morphosyntactic 
distinction, which would in turn depend on accurate knowledge of the passive 
construction, as well as the active. Relying only on vocabulary would not be of help 
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in this context, as both pictures could be described by sentences containing the same 
verb and nouns in the same order.  

Yet another potential explanation for our findings is that the surprisal feedback trials 
did lead to better structural learning, but not in the way we had hypothesised. It is 
possible that what drove the effect of the surprisal feedback trials was actually the 
juxtaposition of an active and passive sentence used in sequence to describe the same 
event, rather than the passive feedback sentence being better encoded due to it being 
unexpected. This would have showed learners that the two structures could be used 
to describe the same event, potentially prompting them to pay more attention to the 
specific form-meaning mappings in the two structures. If learners follow a 
‘uniqueness principle’ and assume that any given meaning can only be encoded by 
one grammatical form (Pinker, 2009), then the presence of two superficially 
equivalent forms may trigger a search for functional distinctions that may justify the 
existence of both forms in the grammar. We have no way to confirm or rule out this 
explanation given the currently available data. One future development of this 
research, however, will be to include a measure of item memory, testing for specific 
memory of the feedback sentences received in the critical feedback trials. If 
participants do show better memory for passive feedback sentences encountered in 
the surprising condition, this will lend support to our original hypothesis, that the 
surprisal manipulation improved memory for specific, individual items, which in 
turn lead to better generalisation. However, this would not entirely rule out a role for 
the second potential mechanism just described (i.e., juxtaposition of two structures 
leading to more accurate representations of structure-meaning mappings). In order 
to fully investigate this point, further research could include a different way to 
generate surprisal, that does not result in juxtaposition of an active with a passive 
sentence describing the same picture. If the same effects are observed, it would 
suggest that the effect of our experimental manipulation was not primarily driven by 
an artefact of our experimental design (the juxtaposition of two structures for the 
same event) but, rather, but the surprisal phenomenon itself.  

In sum, further research needs to attempt to identify the explanatory power of these 
two accounts. However, it might also be worth bearing in mind that these two 
mechanisms could in fact—at least some of the time—be two sides of the same coin, 
working reciprocally, in tandem; that is, surprisal may serve to highlight meaning- 
(or function-) bearing linguistic contrasts, and, in turn, meaning-bearing contrasts 
may be a cause of surprisal events. 

Development of Explicit Knowledge 

Our second experimental hypothesis was that the surprisal manipulation may lead 
participants to develop a higher degree of awareness of the functional distinction 
between active and passive sentences. The data we collected does not allow us to 
satisfactorily answer this question, unfortunately. The debriefing questionnaire we 
used to measure explicit rule knowledge showed a numerical difference between 
groups, with higher rates of awareness among the Surprisal group; however, this was 
not significant in a statistical test. It is possible that the questionnaire may simply 
have been underpowered: due to the lack of previous research using a similar 
manipulation, we did not have a reference effect size which we could expect to see in 
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this study, with regards to explicit knowledge3. Future developments of this research 
could employ larger sample sizes to address the possibility that our manipulation did 
have an effect on rule awareness, but that the effect was too small to be detected with 
sufficient confidence in our sample.  

In addition to the potential lack of power, our measure of awareness was admittedly 
not a fine-grained one. It merely set a threshold based on retrospective verbal report, 
to divide participants into two categories (aware and unaware). Retrospective verbal 
report has been criticised for a potential lack of sensitivity to awareness; for instance, 
lack of confidence may lead to underreporting in some participants (Rebuschat, 
2013). It could still be that awareness itself was emerging in a graded manner as 
structural representations were becoming stronger and more stable in the Surprisal 
group, in a way that is not captured by our cut-off point (the ability to verbalise the 
functional distinction between structures). This kind of graded emergence of 
awareness was the other potential mechanism that we hypothesised may have led to 
increased awareness in the Surprisal group, compatible with the radical plasticity 
theory of the relation between implicit and explicit knowledge (Cleeremans, 2008, 
2011).   

A related question, answers to which can only remain speculative for now, concerns 
the extent to which accuracy in the structure test may have been driven by explicit 
knowledge. While the difference between groups in terms of their reported 
awareness of the structure was not statistically significant, there was a numerical 
advantage for the Surprisal group. A higher degree of structural awareness may have 
helped participants in the Surprisal group to perform better in the structure test, once 
they did become aware (or were ‘on their way to’ awareness). However, given that 
awareness was assessed at the end of the study by verbal report, we do not know at 
which point participants did become sufficiently aware of the distinction to influence 
accuracy. Knowing that tipping point would be a prerequisite for any analysis aiming 
to use awareness as a predictor for accuracy. To address both of these points—the 
gradual emergence of awareness, and the extent to which it contributed to 
performance in the structure test—future research would need to include more fine-
grained measures of awareness administered as the trials progressed, such as source 
attribution (Dienes & Scott, 2005) or the use of multiple direct and indirect tests to 
tease apart the contribution of different types of knowledge (Ellis Rod, 2009). The 
challenge for that line of research is to avoid ‘reactivity’, whereby the probe of 
awareness itself promotes, or interferes with, actual awareness (Bowles, 2010). 

Grammaticality Judgment Task  

In the grammaticality judgment task, we found further evidence that the Surprisal 
group had developed better structural knowledge than the Control group, broadly 

3 The effect size we observed in the Day 3 Structure Test on new verbs was Cohen's d = .64 (a medium 
effect size according to Cohen's (1988) benchmark, but a small one in the context of L2 acquisition 
research (Plonsky & Oswald, 2014)). Based on this effect size, we carried out a post-hoc power analysis 
in G*Power, which showed that the study had .84 power to detect the effect which we observed in 
structural comprehension. However, this does not provide an indication of the power the study had to 
detect a potential effect in awareness, which may be smaller than the one on structural 
comprehension (see section on Study limitations). 
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supporting our experimental hypothesis. However, we did not find the exact effect 
that we had anticipated, that is, greater accuracy in discriminating grammatical from 
ungrammatical sentences by the Surprisal group on passive items, compared to the 
Control group. Instead, both groups were significantly more likely to endorse 
grammatical sentences relative to ungrammatical ones in the passive structure, and 
the magnitude of the effect was the same in both groups. The two groups, however, 
differed in their overall likelihood to endorse passive sentences—irrespective of 
grammaticality—in that endorsement of passives was lower in the Surprisal group. 
This was not predicted by our experimental hypothesis. It may reflect a greater sense 
in the Surprisal group of the fact that the passive was an entirely new structure, while 
the Control group was more accepting of all sentences that resembled items they 
encountered during training. 

On the other hand, a significant interaction between grammaticality and group—
indicating that the groups differed in their ability to discriminate between 
grammatical and ungrammatical sentences—did emerge, but only for Active items. 
Here, the difference was remarkable: The Surprisal group showed a difference in 
endorsement rates between grammatical and ungrammatical sentences which was 
statistically significant and comparable in size to the effect observed for passive 
items. The Control group, by contrast, showed practically no difference in their 
endorsement of grammatical and ungrammatical items, and were equally likely to 
endorse any sentence containing an active verbal form (ending in -es), regardless of 
whether it was used in a grammatical way. An analysis of d' scores confirmed that the 
Surprisal and Control group differed significantly in their ability to discriminate 
grammatical from ungrammatical sentences, but only when they were in the active 
form. 

This pattern may be explained by considering the way in which ungrammatical items 
were constructed in the grammaticality judgment task. These items mixed 
morphosyntax from different structures to create sentences that were unattested in 
the input participants had thus far received. Specifically, ungrammatical active 
sentences contained the active verbal suffix -at followed by the passive agent marker 
ka, while ungrammatical passive sentences contained the passive verbal suffix -es 
without the agent marker ka (see Table 2 for example stimuli). It appears that 
participants in the Control group were equally likely to endorse any sentence that 
contained chunks they had already encountered in training: either a verb with an 
active suffix, or a verb with a passive suffix followed by ka. When one of these chunks 
was broken—as happened in the case of ungrammatical passive sentences, which had 
a passive verb suffix but no ka—they were sensitive to this violation, resulting in lower 
endorsement rates. However, when a chunk was found in its entirety, as previously 
attested (verb + active suffix), but followed by a novel element—as in ungrammatical 
active sentences, where the active verb inflection was followed by ka—they did not 
perceive this as violating an established pattern. This could indicate that they were 
paying less attention to the material that followed the verbal inflection in the 
sentence, compared to the Surprisal group.  

By contrast, the Surprisal groups showed equal sensitivity to ungrammatical usage of 
both active and passive verb forms, showing that they also paid attention to the 
material following the verbal inflection, resulting in lower endorsement for active 
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inflections being followed by a novel item (the ka marker). This suggests that they 
had developed a more sophisticated kind of knowledge than the Control group. They 
had not only acquired the individual forms for active and passive inflection (and its 
associated marker), but, crucially, they had learned better that the two forms were 
associated with a different order of Agent and Patient. This suggests that they paid 
attention to both the material that followed the verb as well as that preceding it. In 
the grammaticality judgment task, this allowed them to discriminate between 
grammatical and ungrammatical usage of both verbal suffixes.  

The lack of sensitivity shown by the Control group to grammaticality in active items 
is seemingly at odds with the results of the structure test, where they were able to 
pick the correct interpretation for active sentences with reasonably good accuracy. 
However, in the active items in the structure test, participants did not technically 
need to pay attention to the noun following the verb (the Patient) to answer correctly. 
Just correctly identifying the first noun as the Agent of the action, in combination 
with the active inflection, would suffice to answer correctly. Therefore, considering 
the results of both the structure and the grammaticality judgment task together, it is 
possible that participants in the Control group had settled on a basic heuristic, 
namely identifying the first noun as the Agent of the sentence (independently of 
verbal inflection), which was sufficient to answer correctly to active sentences in the 
structure test. This is also compatible with the fact that they were essentially at 
chance level in their responses to passive items in the structure test. By contrast, the 
Surprisal group could rely on additional cues for determining the correct meaning of 
the sentences (by attending to the material that came after first noun), resulting in 
higher accuracy on both active and passive items. 

Crucially, however, it is not the case that Control participants simply never paid 
attention to the second noun in sentences. There was a specific task in the study—
namely, the vocabulary test blocks—which could only be performed correctly by 
paying attention to the Patient noun (always in second position, since all sentences 
in vocabulary test blocks were active). There was no significant difference between 
groups in vocabulary test blocks, indicating that both groups were attending to the 
relevant noun. When the task did not specifically demand it (as in the structure test), 
however, the Control group did not seem to attend to the material following the 
verbal inflection. This suggests that they had developed little sensitivity to the 
relation between noun position, verb form, and sentence meaning. The Control 
group learned that different verbal forms existed, but their knowledge of the 
structures they were found in, with the relevant form-meaning connections—that is, 
the different assignment of Patient and Agent roles—was reduced, relative to that of 
the Surprisal group. In turn, this resulted in lower accuracy in the Control group in 
the comprehension task, too, for passive sentences.   

Study Limitations 

Against our expectations, we did not observe an effect of group in structure tests that 
used previously trained verbs, in either the structure test blocks (on Days 2 and 3) or 
in the individual test trials following feedback (on Day 2). To some extent, these 
findings may be explained by limitations in the structure tests themselves. As we 
previously mentioned, the first structure test on Day 3 (old verbs) was affected by a 

Language Development Research 217

Volume 1, Issue 1, 31 December 2021



 

counterbalancing problem. The lack of an effect on the individual test trials following 
feedback, too, could be due to limitations in the study setup. These structure test 
trials were placed after 'critical' learning trials, that is, those which included 
incongruent passive feedback in the Surprisal group, and their congruent passive 
counterparts in the Control group. We hypothesised that surprisal may lead to a 
stronger structural priming effect in the Surprisal group, which may manifest itself 
as higher accuracy on passive structure test trials. However, congruent trials in the 
Control group involved passive feedback presented after a passive sentence, meaning 
that Control participants were exposed to two passive sentences in a row, leading to 
potential cumulative priming. Therefore, it is possible that even if any effect due to 
surprisal was present, its effects relative to the Control group may have been 
obscured by cumulative priming effects in the Control group. This could have 
potentially cancelled out any differences between groups. 

However, these problems do not affect the first structure test block using old verbs, 
which was administered at the end of Day 2. Why did we observe an effect of Group 
in the generalisation test on Day 3, but not in the old verbs test on Day 2? One 
possibility is that the surprisal effect, which we hypothesised to affect memory 
formation for critical passive sentences, may have required overnight sleep for 
memory consolidation and abstraction to take place4. The possible need for overnight 
consolidation was one of the reasons behind the decision to add tests on Day 3, in 
addition to the test at the end of Day 2. Under this interpretation, we should have 
observed an effect on first Day 3 structure test (old verbs), too. However, the technical 
error affecting this test blocks means that we have no conclusive evidence on this 
point. Further research replicating this design would be needed to provide evidence 
in support of this hypothesis about the role of sleep consolidation. 

There are, however, other indicators from the study suggesting that the surprisal 
manipulation did not work as intended, i.e., by generating stronger memories for 
passive sentences when presented in surprising feedback. One point, which we 
already raised in the discussion, was that the effect on structural comprehension was 
found for both structures, not just the passive. Since only the passive was meant to 
be affected by our surprisal manipulation, it seems that the manipulation did not 
have the effect it was meant to have. We mentioned in the discussion the possibility 
that juxtaposition between structures in incongruent trials may have caused the 
effect we observed, by leading to higher awareness of the rule. The results of the 
debriefing questionnaire are not conclusive in this respect: they show a numerical 
difference between groups, which, however, is not significant. We have discussed 
the possibility that, while the study appeared sufficiently powered to detect the effect 
on structural comprehension, it may not have been sufficient to detect potentially 
smaller effects on awareness (footnote on p. 25). Indeed, sensitivity to differences 
between structures as a result of juxtaposition could have been stronger in the 
Surprisal group than in the Control group, leading to better performance in 
comprehension, but still not strong enough to lead to the level of explicit awareness 
needed to verbalise the distinction.   

4 While we are not aware of any research on the consolidation of syntactic structure, work using novel 
(artificial) L2 morphology shows an effect of overnight consolidation on the acquisition of new 
systematic patterns (Mirković et al., 2019; Tamminen et al., 2015).  
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Similarly, in the Grammaticality Judgment Task we observed an effect of Group but 
only for active sentences, not for passive ones, which is at odds with the fact that our 
manipulation was intended to target passive sentences. In the discussion, we offered 
a potential explanation of the results of the Grammaticality Judgment Task based on 
different patterns of attention in the two groups: we hypothesised that the Surprisal 
groups had developed stronger sensitivity to the fact that different morphosyntax on 
the verb correlated with different orderings of Agent and Patient, while the Control 
group relied on an 'Agent first' heuristic which accounted for their low performance 
in structural comprehension of passive sentences. However, the juxtaposition of 
active and passive sentences in the feedback, a potential limitation (confound) in the 
design, could plausibly have caused such an effect, too.  

Finally, we should point out that the manipulation we used, whatever its effects, was 
quite subtle: there were only 4 critical trials per block, for a total of 16 over the whole 
experiment. Additionally, the expectation for congruent feedback—which was 
necessary for participants to experience surprisal at incongruent feedback—was only 
set up over the course of the first two learning blocks on Day 2 (a total of 24 trials with 
congruent feedback), which may have been insufficient to set up sufficiently strong 
expectations for congruent feedback to influence some of the dependent variables 
examined. In sum, some of the limitations and incongruities in this study may also 
be the result of a relatively weak manipulation. Future developments of this study 
could use a stronger surprisal manipulation, which may shed more light on some of 
the issues raised in this section. 

Conclusion 

In this study, we examined the effect of expectation violation on the acquisition of 
novel syntactic structures. Specifically, we examined the acquisition a minority 
syntactic structure (passive) introduced after the default structure (active) had been 
consolidated. We hypothesised that presenting instances of the passive structure in 
a way that violated expectations (surprisal) would lead to better acquisition of the 
passive structure itself, and greater awareness of its function. Our predictions with 
regards to accuracy were mainly supported: Although the pattern of results did not 
support the prediction of an isolated effect on only the passive structures, it clearly 
demonstrated that the Surprisal group developed stronger and more accurate 
structural representations than the Control group, for both constructions. In 
contrast, the experimental manipulation did not lead to statistically significantly 
sufficient levels of awareness to lead to knowledge that could be articulated 
explicitly, despite a numerical trend in that direction. The lack of statistical 
significance could be due to a number of design and methodological limitations, 
however, and the role of explicit knowledge should be investigated further. 
Nevertheless, it seems intriguing to us that a very simple manipulation, on a 
relatively small number of trials, had quite significant consequences for the 
representations developed by the two groups, and seemed to lead to different 
patterns of attention, too. Further research will be needed to investigate the effects 
we found, and to pinpoint their exact origin, among the different explanations we 
offered. 
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Appendix S1 – Individual differences 

We report here the results of the two cognitive tests that were administered: Serial 
Reaction Task and LLAMA B3. In order to determine whether the observed effects of 
our experimental manipulation were independent of any individual differences 
captured by these cognitive measures, we ran a series of glmer models where we 
added the z-transformed scores from cognitive measures as fixed predictors, in 
addition to the factors already entered in the main analysis. As random effects 
structure, we used the same structure that was originally used for the corresponding 
models in the main analysis. As in the main analysis, we used buildmer to simplify the 
models to only retain predictors that significantly improved model fit.  

Serial Reaction Task 

There was no significant difference in mean SRT score between the two groups 
(t(65.32) = -0.7601, p = 0.45). The distribution of scores is shown in Figure 9. Both 
groups deviated from the normal distribution to some extent, which was significant 
in a Shapiro-Wilk test for the Control group (W = 0.929, p = 0.03) but not for the 
Surprisal group (W = 0.953, p = 0.13). When adding SRT scores to the model for 
accuracy on the Day 3 structure test block (new verbs), the effects of Group and 
Condition were still observed, in addition to a negative effect of SRT score (Table 4 & 
Figure 10). When adding SRT scores to the model for item endorsement in the GJT, 
SRT score was removed as a predictor during model selection as it had no significant 
effect on model fit, while the original Group x Verb Type x Grammaticality remained 
significant. We report the output of the initial model (with maximal fixed structure) 
for reference (Table 5).  

Figure 9. SRT scores by group 
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Table 4. Final model for accuracy on Day 3 structure test (new verbs) with SRT score 
added to fixed effects structure 

Accuracy 

Predictors Odds Ratios CI p 

(Intercept) 1.14 0.67 – 1.94 0.622 

Structure (Active) 3.09 1.57 – 6.05 0.001 

Group (Surprisal) 2.65 1.42 – 4.95 0.002 

SRT score 0.70 0.52 – 0.95 0.023 

Observations 1120 
Marginal R2 / Conditional R2 0.102 / 0.483 

Random effects: (1 + Structure | subject) 

Figure 10. Accuracy on Day 3 structure test (new verbs) plotted against z-
transformed SRT score 
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Table 5. Initial model for endorsement in GJT, with SRT score added to fixed effects 
structure 

Endorsement 

Predictors Odds Ratios CI p 

(Intercept) 1.09 0.66 – 1.78 0.740 

cond [SG] 0.51 0.25 – 1.02 0.056 

sentenceType [Grammatical] 5.25 2.38 – 11.58 <0.001 

verbType [Active] 4.60 2.23 – 9.50 <0.001 

SRT_z_score1 1.21 0.68 – 2.15 0.513 

cond [SG] * sentenceType [Grammatical] 1.07 0.37 – 3.11 0.896 

cond [SG] * verbType [Active] 0.75 0.28 – 2.01 0.571 

sentenceType [Grammatical] * verbType [Active] 0.27 0.10 – 0.77 0.015 

cond [SG] * SRT_z_score1 0.89 0.44 – 1.82 0.750 

sentenceType [Grammatical] * SRT_z_score1 0.85 0.34 – 2.13 0.726 

verbType [Active] * SRT_z_score1 1.15 0.51 – 2.60 0.734 

(cond [SG] * sentenceType [Grammatical]) *  
verbType [Active] 

5.77 1.39 – 23.89 0.016 

(cond [SG] * sentenceType [Grammatical]) *
SRT_z_score1 

0.92 0.30 – 2.85 0.890 

(cond [SG] * verbType [Active]) * SRT_z_score1 0.96 0.35 – 2.65 0.939 

(sentenceType [Grammatical] * verbType [Active]) * 
SRT_z_score1 

1.18 0.36 – 3.79 0.787 

(cond [SG] * sentenceType [Grammatical] *  
verbType [Active]) * SRT_z_score1 

0.64 0.15 – 2.76 0.548 

Observations 2240 
Marginal R2 / Conditional R2 0.179 / 0.464 

Random effects: (1 + sentenceType + verbType + sentenceType:verbType | subject) 
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LLAMA B3 

Due to a technical problem, we lacked LLAMA B3 scores for two participants. For 
remaining participants, there was no significant difference in mean LLAMA B3 
scores between the two groups (t(62.769) = -0.472, p = 0.64). t = -0.47254). The 
distribution of scores is shown in Figure 11. Scores tended to deviate from normality, 
although this was only significant in the Control group (W = 0.909, p = 0.01) and not 
for the Surprisal group (W = 0.970, p = 0.42).  

When adding z-transformed LLAMA B3 scores to the model for accuracy on the Day 
3 structure test block (new verbs), all interactions were removed as they did not 
significantly improve model fit. The effects of Group and Condition were still 
observed, and the effect of LLAMA B3 score was not significant (Table 6). When 
adding LLAMA B3 scores to the model for item endorsement in the GJT, LLAMA B3 
score was removed as a predictor during model selection as it had no significant 
effect on model fit, while the original Group x Verb Type x Grammaticality remained 
significant. We report the output of the initial model (with maximal fixed structure) 
for reference (Table 7). 

Figure 11. LLAMA B3 scores by group 
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Table 6. Final model for accuracy on Day 3 structure test (new verbs) with LLAMA 
B3 score added to fixed effects structure 

Accuracy 

Predictors Odds Ratios CI p 

(Intercept) 1.08 0.64 – 1.83 0.779 

LLAMA B3 score 1.10 0.79 – 1.53 0.569 

Structure (Active) 3.48 1.84 – 6.58 <0.001 

Group (Surprisal) 2.45 1.30 – 4.63 0.006 

Observations 1088 

Marginal R2 / Conditional R2 0.098 / 0.464 

Random effects: (1 + Structure | subject) 
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Table 7. Initial model for endorsement in GJT, with LLAMA B3 score added to fixed 
effects structure 

Endorsement 

Predictors Odds Ratios CI p 

(Intercept) 1.07 0.65 – 1.76 0.790 

cond [SG] 0.52 0.26 – 1.05 0.067 

sentenceType [Grammatical] 5.28 2.36 – 11.80 <0.001 

verbType [Active] 4.11 1.99 – 8.47 <0.001 

LLAMA_B3_z_score 0.99 0.62 – 1.60 0.979 

cond [SG] * sentenceType [Grammatical] 1.02 0.35 – 2.98 0.971 

cond [SG] * verbType [Active] 0.86 0.32 – 2.28 0.757 

sentenceType [Grammatical] * verbType 
[Active] 

0.30 0.11 – 0.88 0.028 

cond [SG] *LLAMA_B3_z_score 0.57 0.28 – 1.15 0.116 

sentenceType [Grammatical] * 
LLAMA_B3_z_score 

0.77 0.37 – 1.61 0.489 

verbType [Active] * LLAMA_B3_z_score 1.20 0.61 – 2.36 0.600 

(cond [SG] * sentenceType [Grammatical]) * 
verbType [Active] 

4.93 1.18 – 20.54 0.029 

(cond [SG] * sentenceType [Grammatical]) * 
LLAMA_B3_z_score 

2.64 0.90 – 7.70 0.076 

(cond [SG] * verbType [Active]) * 
LLAMA_B3_z_score 

1.17 0.44 – 3.14 0.753 

(sentenceType [Grammatical] * verbType 
[Active]) * LLAMA_B3_z_score 

0.76 0.29 – 1.97 0.574 

(cond [SG] * sentenceType [Grammatical] * 
verbType [Active]) * LLAMA_B3_z_score 

0.93 0.23 – 3.85 0.924 

Observations 2176 
Marginal R2 / Conditional R2 0.185 / 0.466 

Random effects: (1 + sentenceType + verbType + sentenceType:verbType | subject) 
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Appendix S2 – Additional descriptive statistics 

Cross-situational learning task 

Day 1, accuracy by block: 

Group Block Mean Sd 
Control 1 0.51 0.13 
Control 2 0.59 0.19 
Control 3 0.62 0.18 
Control 4 0.71 0.19 
Control 5 0.71 0.19 
Control 6 0.70 0.23 
Control 7 0.65 0.17 
Surprisal 1 0.53 0.11 
Surprisal 2 0.59 019 
Surprisal 3 0.63 0.22 
Surprisal 4 0.69 0.22 
Surprisal 5 0.71 0.20 
Surprisal 6 0.73 0.20 
Surprisal 7 0.68 0.21 

Day 2, accuracy by block: 

Group Block Mean Sd 
Control 1 0.66 0.18 
Control 2 0.73 0.18 
Control 3 0.80 0.17 
Control 4 0.72 0.22 
Control 5 0.73 0.15 
Control 6 0.77 0.16 
Control 7 0.77 0.17 
Control 8 0.78 0.15 
Control 9 0.82 0.16 
Control 10 0.61 0.23 
Surprisal 1 0.70 0.21 
Surprisal 2 0.80 0.19 
Surprisal 3 0.82 0.16 
Surprisal 4 0.79 0.19 
Surprisal 5 0.75 0.14 
Surprisal 6 0.79 0.20 
Surprisal 7 0.80 0.16 
Surprisal 8 0.80 0.16 
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Surprisal 9 0.83 0.16 
Surprisal 10 0.71 0.15 

Day 3, accuracy by block: 

Group Block Mean Sd 
Control 1 0.84 0.15 
Control 2 0.66 0.20 
Control 3 0.61 0.18 
Surprisal 1 0.85 0.14 
Surprisal 2 0.71 0.26 
Surprisal 3 0.74 0.20 

Day 3, accuracy on structure test block (New verbs), by structure: 

Group Structure Mean Sd 
Control Passive 0.52 0.26 
Control Active 0.71 0.28 
Surprisal Passive 0.65 0.34 
Surprisal Active 0.84 0.20 

Vocabulary tests, accuracy by vocabulary item type: 

Group Vocab type Test Mean Sd 
Control Nountest 1 0.65 0.27 
Control Nountest 2 0.70 0.23 
Control Nountest 3 0.74 0.25 
Control Nountest 4 0.85 0.23 
Control Nountest 5 0.90 0.17 
Control Verbtest 1 0.65 0.17 
Control Verbtest 2 0.62 0.27 
Control Verbtest 3 0.72 0.26 
Control Verbtest 4 0.80 0.18 
Control Verbtest 5 0.80 0.21 
Surprisal Nountest 1 0.70 0.23 
Surprisal Nountest 2 0.75 0.28 
Surprisal Nountest 3 0.81 0.25 
Surprisal Nountest 4 0.85 0.19 
Surprisal Nountest 5 0.86 0.19 
Surprisal Verbtest 1 0.67 0.26 
Surprisal Verbtest 2 0.65 0.23 
Surprisal Verbtest 3 0.77 0.20 
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Surprisal Verbtest 4 0.80 0.20 
Surprisal Verbtest 5 0.84 0.17 

Grammaticality Judgment Task 

Grammaticality Judgment Task, endorsement by grammaticality and structure (verb type): 

Group Sentence type Error type Verb type Mean Sd 
Control Ungrammatical Actka Active 0.75 0.26 
Control Ungrammatical Passnoka Passive 0.51 0.28 
Control Grammatical None Passive 0.79 0.23 
Control Grammatical None Active 0.84 0.16 
Surprisal Ungrammatical Actka Active 0.61 0.35 
Surprisal Ungrammatical Passnoka Passive 0.39 0.29 
Surprisal Grammatical None Passive 0.69 0.26 
Surprisal Grammatical None Active 0.91 0.15 

Grammaticality Judgment Task, d' scores (sensitivity to grammaticality) by structure (verb 
type): 

Group Verb type Mean Sd 
Control Active 0.44 1.24 
Control Passive 0.07 1.34 
Surprisal Active 0.33 1.37 
Surprisal Passive 0.01 1.54 
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Appendix S3 – Additional figures (Day 2) 

Figure 12. Accuracy on Day 2 structure test block, group means. Horizontal bars 
represent group means, shaded rectangles 95% CIs. 

Figure 13. Accuracy on Day 2 structure test block by subject. Horizontal bars 
represent group means, shaded rectangles 95% CIs. 
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Appendix S4 – Details of Day 3 Structure Test block (Old verbs) 

The Structure Test (Old verbs) block on Day 3 was affected by a counterbalancing 
problem, which meant roughly half of participants saw pictures described with the 
same structure they had encountered them with in the Day 2 Structure Test block, 
while the other half saw the pictures described with the other structure. This 
distinction was orthogonal to Group, although participants in the Surprisal group 
were numerically more likely to be exposed to the opposite structure, compared to 
the Control group (Table 1).  

Table 8. Structure counterbalancing between Day 2 and Day 3 Structure Tests (Old 
verbs) 

Structure encountered on Day 3 

Same as Day 2 Different 
Control group 19 15 
Surprisal 15 21 

Figure 1 shows the mean accuracy scores obtained by participants in the Structure 
Test (Old verbs) block on Day 3, broken down by whether the item had been seen in 
the Day 2 structure test block with the same structure. Figure 2 shows the same data, 
further broken down by whether participants had answered correctly (i.e., picked the 
correct structural interpretation) to the item on Day 2.  

Figure 14. Mean accuracy on Day 3 Structure Test (Old verbs), divided by whether 
items used the same structure as in the Day 2 Structure Test. 
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Figure 15. Mean accuracy on Day 3 Structure Test (Old verbs), divided by whether 
items used the same structure as in the Day 2 Structure Test, and by response 
accuracy to those items on Day 2. 
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Appendix S5 – Final statistical models for all tests 

Day 1, learning blocks 

      Accuracy 

Predictors Odds Ratios 95% CI p 

(Intercept) 2.36 1.90 – 2.94 <0.001 

Block 1.28 1.21 – 1.36 <0.001 

Observations 6720 
Marginal R2 / Conditional R2 0.043 / 0.221 

Random effects: (1 + Block | Subject) 
Groups SD 

Subject (Intercept) 0.90 
Block 0.21 

Day 2, learning blocks 

Accuracy 

Predictors Odds Ratios 95% CI p 

(Intercept) 6.90 5.34 – 8.90 <0.001 

Block 1.12 1.06 – 1.18 <0.001 

Observations 5600 
Marginal R2 / Conditional R2 0.013 / 0.256 

Random effects: (1 + Block | Subject) 

Groups SD 

Subject (Intercept) 1.01 
Block 0.13 
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Vocabulary test blocks: Verbs 

Accuracy 

Predictors Odds Ratios 95% CI p 

(Intercept) 1.45 1.08 – 1.95 0.013 

Test 1.33 1.24 – 1.41 <0.001 

Observations 2800 
Marginal R2 / Conditional R2 0.037 / 0.230 

Random effects: (1 + Subject) 
Group SD 
Subject (Intercept) 0.91 

Vocabulary test block: Nouns 

Accuracy 

Predictors Odds Ratios 95% CI p 

(Intercept) 1.43 0.84 – 2.45 0.186 

Test 1.69 1.51 – 1.88 <0.001 

Group (Surprisal) 1.48 0.74 – 2.96 0.269 

Test x Group (Surprisal) 0.80 0.69 – 0.93 0.004 

Observations 2800 
Marginal R2 / Conditional R2 0.068 / 0.405 

Random effects: (1 + Subject) 
Group SD 

Subject (Intercept) 1.36 
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Day 2, Structure Test trials after feedback trials 

    Accuracy 

Predictors Odds Ratios 95% CI p 

(Intercept) 1.43 1.11 – 1.85 0.005 

Trial 1.40 1.17 – 1.67 <0.001 

Observations 1120 
Marginal R2 / Conditional R2 0.024 / 0.265 

Random effects: (1 + Trial | Subject) 
Groups SD 

Subject (Intercept) 0.92 
Trial 0.47 

Day 2, Structure Test block 

Accuracy 

Predictors Odds Ratios 95% CI p 

(Intercept) 2.03 1.34 – 3.07 0.001 

Structure (Active) 1.44 0.86 – 2.39 0.162 

Observations 1120 
Marginal R2 / Conditional R2 0.006 / 0.351 

Random effects: (1 + Structure | Subject) 
Groups SD 

Subject (Intercept) 1.50 
Structure 1.72 
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Day 3, Structure Test block (Old verbs) 

      Accuracy 

Predictors Odds Ratios 95% CI p 

(Intercept) 2.15 1.28 – 3.61 0.004 

Structure (Active) 2.80 1.50 – 5.23 0.001 

Observations 1120 
Marginal R2 / Conditional R2 0.040 / 0.506 

Random effects: (1 + Structure | Subject) 
Groups SD 

Subject (Intercept) 1.89 
Structure 1.87 

Day 3, Structure Test block (New verbs) 

Accuracy 

Predictors Odds Ratios 95% CI p 

(Intercept) 1.25 0.82 – 1.90 0.303 

Structure (Active) 2.82 1.42 – 5.59 0.003 

Group (Surprisal) 2.50 1.25 – 4.99 0.009 

Observations 1120 
Marginal R2 / Conditional R2 0.073 / 0.496 

Random effects: (1 + Structure + Group | Subject) 
Groups SD 

Subject (Intercept) 1.12 
Structure 2.30 
Group 1.59 
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Grammaticality Judgment Task: Endorsement  

Endorsement 

Predictors Odds 
Ratios 95% CI p 

(Intercept) 1.05 0.66 – 1.67 0.845 

Sentence Type (Grammatical) 4.45 2.19 – 9.03 <0.001 

Verb Type (Active) 3.68 2.45 – 5.52 <0.001 

Group (Surprisal) 0.52 0.27 – 1.00 0.050 

Sentence Type (Grammatical) x Group 
(Surprisal) 

1.15 0.43 – 3.05 0.781 

Verb Type (Active) x  
Group (Surprisal) 

0.85 0.49 – 1.48 0.562 

Sentence Type (Grammatical) x 
Verb Type (Active)  

0.40 0.22 – 0.73 0.003 

Sentence Type (Grammatical) x Verb 
Type (Active) x Group (Surprisal) 

4.44 1.85 – 10.64 0.001 

Observations 2240 
Marginal R2 / Conditional R2 0.184 / 0.396 

Random effects: (1 + Sentence Type | Subject) 
Groups SD 

Subject (Intercept) 1.14 

Sentence Type 1.70 

Grammaticality Judgment Task: d' 

Effects DFn DFd SSn SSd Generalised 
h2 

F p 

(Intercept) 1 68 0 169.677 0 0 1 

Group 1 68 4.514 169.677 0.017 1.809 0.183 

Verb Type 1 68 0.301 89.125 0.001 0.230 0.633 

Group x Verb 
Type 

1 68 6.016 89.125 0.023 4.590 0.036 
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Debriefing questionnaire 

      Awareness 

Predictors Odds Ratios 95% CI p 

(Intercept) 1.43 0.73 – 2.89 0.306 

Group (Surprisal) 0.50 0.19 – 1.28 0.153 

Observations 70 
R2 Tjur 0.029 
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Introduction 

Children modify their communication according to audience and context (Akhtar et 
al., 1996; Mori & Cigala, 2016; Nadig & Sedivy, 2002; Nilsen & Fecica, 2011; Shatz & 
Gelman, 1973). For example, four-year-olds speak in shorter sentences and use more 
utterances to draw the listener's attention when addressing toddlers than peers or 
adults (Shatz & Gelman, 1973). However, this early emerging skill must be honed over 
developmental time as children encounter new contexts. In this paper, we considered 
remote communication, a context that is prominent in the everyday lives of children 
(McClure et al., 2015; MPFS, 2018) and particularly so since the first quarter of 2020 
when many families were quarantined in response to the COVID19 pandemic (Koeze 
& Popper, 2020). We investigated second-graders' ability to engage in discourse via an 
audio-only channel to simulate phone communication and via an audiovisual channel 
to simulate video chat, and we determined whether language ability, theory of mind, 
and shy temperament predicted their success.  

Children’s Phone and Video Communications 

From birth, children have access to various technologies with which they learn to 
share meaning with others (Erstad et al., 2020). Children’s phone talk has long been 
recognized as a developmental step between the ‘here and now’ audible and instanta-
neous exchange characteristic of face-to-face talk and the decontextualized nature of 
written communication (Cameron & Lee, 1997; Gillen, 2002). Children talk on the 
phone long before they can read and write yet, to do so successfully, they must heed 
the needs of listeners who do not share their immediate context, just as the successful 
writer must.  

Children’s phone communication skills emerge early but follow a protracted develop-
mental course. Take, for example, a study by Cameron and Lee (1997). They had three 
to eight-year-olds solve the Tower of London (Shallice, 1982), a task in which the child 
must move beads, one at a time, onto pegs to match an array demonstrated by the 
examiner in as few moves as possible. Afterward, they asked the children to explain 
the task to listeners face-to-face or on the phone. The older children gave more com-
plete directions than the younger children. Children of all ages provided more detail 
and used more specific vocabulary while speaking on the phone than in person (Cam-
eron & Lee, 1997). However, their communication was not necessarily worse when in 
person. The children used frequent visual checking of the listener's performance, pre-
sumably to adapt the directions to the listener's needs; what they accomplished with 
shared visual contexts when face-to-face, they accomplished with more extensive, de-
tailed instructions when on the phone.  
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An early ability to adjust to a remote listener’s needs is also evident in narrative dis-
course. For example, Pinto et al. (2016) found that 5-to7-year-olds make more mention 
of characters' mental states when narrating a pictured event during phone talk than 
when face-to-face, presumably because they realize that the listener cannot intuit the 
characters' mental states without seeing the pictures.  

Children’s communication on video-chat platforms has been less extensively re-
searched than their phone talk. However, here too, we find very young children 
demonstrating some success. For example, McClure et al. (2018) observed families 
with babies ages 6 to 24 months as they engaged in video chats with the babies' grand-
parents. They were particularly interested in times when the baby initiated joint at-
tention with the grandparent across the screen by, for example, showing a toy. 
Whereas only 8% of the babies under 15 months ever did so, 46% of the babies older 
than 15 months engaged their grandparents in this way. This extremely early perfor-
mance reflects an essential difference between video chat and phone talk, shared vis-
ual context.  

In complicated communicative exchanges, even adults may benefit from shared vis-
ual context. For example, Veinott et al. (1999) asked native and non-native English 
speakers to explain a mapped route to a listener who joined them via video or audio-
only. Although the native-speaking pairs were equally successful in the video and au-
dio conditions, the non-native speakers benefitted from the video context. Specifi-
cally, they were faster and more accurate at communicating the route in the video 
condition. This success was engendered by more talk devoted to instruction, more 
checks on mutual understanding, and more frequent gesturing. However, gesture was 
not considered in the Cameron and Lee (1997) comparison of children's phone and in-
person communication; therefore, we do not know the extent to which children's 
communication might be enhanced by gesture in remote communication contexts 
that involve shared visual access. 

The Development of Discourse in the Gesture and Speech Modalities 

Gesture and speech are integrated systems of communication. They work together to 
convey meaning and affect, and they do so in ways that benefit both the listener and 
the speaker. When compared to speech alone, speech plus gesture reliably enhance 
listeners' comprehension. The benefits are greater for gestures that convey actions 
(e.g., how to do something) rather than abstract concepts (e.g., how something feels) 
and for gestures that complement rather than reproduce the meanings conveyed by 
words (Hostetter, 2011). In addition, children benefit from gestured input more than 
adults (Hostetter, 2011). Not surprisingly then, children tend to learn more readily 
from teachers who frequently gesture in ways that accurately convey new concepts 
than from teachers who do not (Alibali et al., 2013; Ovendale et al., 2018).  
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For the speaker, gesture assists with memory and planning the information to be con-
veyed (Alibali et al., 2000). Moreover, gesture supports thought. Under high cognitive 
load, like solving a problem, counting, or reasoning out load, children’s gestures re-
flect their understanding (Alibali & Goldin-Meadow, 1993; Broaders, et al., 2007; 
Church & Goldin-Meadow, 1986; Ehrlich et al., 2006; Garber & Goldin-Meadow, 2002; 
Göksun et al., 2010; Pine, et al., 2004). When on the cusp of understanding, children 
often convey a more accurate grasp with their gestures than with their words, and this 
gesture-speech mismatch indicates learning readiness (Alibali & Goldin-Meadow, 
1993). 

Children communicate with gestures before they speak their first word (Capone & 
McGregor, 2004). However, gesture, like spoken language, continues to develop well 
into the school years. Alamillo et al. (2013) observed six- and 10-year olds during mon-
ologic narrative and dialogic explanation tasks. The older children used not only more 
complex spoken language but also more complex gestures. Both groups of children 
used more gestures during dialogue than monologue, suggesting some awareness of 
their partner's needs during the dialogic exchange.  

Roth (2002) argues that gesture provides a stepping stone along the path of discourse 
development and in the expression of new knowledge during discourse. He observed 
tenth-grade students over multiple physics lessons as they conducted hands-on exper-
iments and then explained their findings. The result was a robust developmental pro-
gression. First, the students spoke as they repeated their actions on the objects used 
in the experiments and, soon after, as they simulated the actions on other arbitrary 
objects. Gradually, they supplemented their spoken explanations with gestures pro-
duced without the support of objects. In these early attempts, the students tended to 
be more accurate in their actions on objects and their gestures in general than in their 
spoken explanations. Finally, the students arrived at a mature understanding of the 
physics problems they expressed in written or spoken words. At this mastery stage, 
spoken language and gesture continued to co-occur, although the gesture frequency 
was lower than in the more novice stages. In this way, the developmental course of 
these much older children faced with a new and complex task recapitulated the early 
communicative development of toddlers. Both demonstrate a progression from ac-
tions on objects to gesture to speech while never abandoning any of these highly func-
tional modalities (Capone & McGregor, 2004). 
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The Contribution of Language Ability, Theory of Mind, and Shy Temperament to 
Successful Remote Communication 

The success of any communicative interaction and the extent to which speakers can 
adapt their gestured and spoken communication to contextual demands will depend, 
in part, on the language abilities of the interlocutors. When communicating on the 
phone, the lack of shared visual context means that the speaker must provide infor-
mation via words rather than gestures and that the words and their organization must 
be specific enough to enable comprehension. In these decontextualized exchanges, 
language becomes the context, and thus the communication partners must have the 
lexical, syntactic, and discourse skills necessary for creating clarity and common 
ground (Uccelli et al., 2019). When communicating via video chat, the shared visual 
context lessens these demands. However, challenges remain relative to face-to-face 
communication where the extent of the shared visual context is greater, the signal-to-
noise ratio is higher, and physical interaction is viable.  

Another factor influencing the success of communicative exchange is the interlocu-
tors’ ability to engage in theory of mind (Hughes & Leekham, 2004; Miller, 2006). The-
ory of mind refers to perceiving one's own and others' emotions, beliefs, desires, 
thoughts, and knowledge systems. Theory of mind develops from early childhood 
well into adolescence (Dorval et al., 1984). A speaker with a mature theory of mind 
will recognize the listener's need for more or less information.  

Nevertheless, remote communication may present some challenges to perspective-
taking, even for those with a strong theory of mind. Keeping track of the listener’s 
perspective without a shared visual context, as during phone conversations, may im-
pose a high memory load (Zhao et al., 2018). Moreover, primate work demonstrates 
that face, hand, and body movements provide essential cues to accurate social per-
ception (Allison et al., 2000). Adult humans will even infer mental states from the 
movement of animated abstract shapes (Castelli et al., 2002). During remote commu-
nication, movements that cue the extent of the listener’s understanding are limited 
(in video chat) or missing (in phone interactions). 

The temperament of the interlocutors may influence the success of communication 
as well. Temperament is a stable trait that is highly heritable (Buss & Plomin, 1984; 
see Henderson & Wachs, 2007, for a review). Children who possess a shy tempera-
ment are inclined to withdraw from social interaction, particularly in unfamiliar so-
cial situations (Schmidt & Tasker, 2000). Shy children are reticent to talk; they talk 
less, make fewer spontaneous remarks, and are more likely to be unresponsive to 
strangers than their outgoing peers (Prior et al., 2000; Smith Watts et al., 2014). Thus, 
the high verbal demands of remote communication contexts may be especially chal-
lenging for shy children. That said, remote communication may be more comfortable 
than face-to-face communication for some shy children, in which case they may be 
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less reticent than documented in previous (in-person) research. 

Although they are separate constructs, language ability, theory of mind, and shy tem-
perament are interrelated. The relation between language and theory of mind is well 
studied. A meta-analysis of 104 studies with English-speaking children below age 
seven revealed a significant positive relationship between language and theory of 
mind abilities (Milligan et al., 2007). For example, vocabulary and grammar skills at 
two (Farrar & Maag, 2002) and grammar skills at three (Astington & Jenkins, 1999) 
predict theory of mind skills two years later. Language and shyness are also related. 
Specifically, shy children tend to score lower on formal tests of pragmatics (Copelan 
& Weeks, 2009), receptive vocabulary, and phonemic awareness (Spere et al., 2004) 
than their more outgoing peers, although not so low to be of clinical concern. 

In contrast, the relation between shyness and theory of mind is not fully understood. 
Some investigators find that shy children perform more poorly on theory of mind tests 
than outgoing children  (Banerjee & Henderson, 2001; DeRosnay et al., 2014; Walker, 
2005), leading them to hypothesize that a shy temperament limits their social-com-
municative interactions, and thus their opportunities to learn more about reading an-
other’s mind. On the other hand, others report that shy children demonstrate an ad-
vantage on theory of mind tests (Mink et al., 2014; Wellman et al., 2011), leading them 
to hypothesize that shy children sharpen their theory of mind by observing others' 
social-communicative interactions.  

The Current Study 

In the current study, we examined the expository discourse of second graders in two 
remote communication contexts, one that simulated phone communication by 
providing an audio channel only and the other that simulated video chat communica-
tion by including both audio and visual channels. We were particularly interested in 
second graders because they are in the throes of language and theory of mind devel-
opment and, by second grade, their temperament is highly stable (Neppl et al., 2010). 
Moreover, they are still early in their formal reading and writing instruction years, a 
time when individual differences in bridging the fully contextualized nature of face-
to-face talk and the fully decontextualized nature of formal writing are likely to be 
high. 

Expository discourse typically involves more complex syntax and more specific or so-
phisticated vocabulary choices than conversational discourse. We selected an expos-
itory discourse task because it is more likely than conversational exchange to reveal 
individual differences between children. For example, adolescents with language im-
pairments do not differ significantly from their typical age-mates in conversation but, 
during exposition, they tend to use shorter, less syntactically complex sentences (Nip-
pold et al., 2008). Expository discourse is also high in ecological validity given that 
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mastery of expository discourse is recommended as an instructional goal in the aca-
demic curriculum (CCSS; Common Core State Standards Initiative, 2015), and it is the 

type of discourse required for everyday communicative goals such as giving directions 
or explaining the rules of a game (Lundine & McCauley, 2016). 

Like Cameron and Lee (1997), we used the Tower of London to elicit the expository 
discourse. The task requires problem-solving and planning (visualizing several moves 
ahead) and other aspects of executive function such as attention, memory, and inhi-
bition. Language, either internalized or externalized, is helpful for scaffolding perfor-
mance on the Tower of London. Perhaps, as a result, children with developmental 
language disorder tend to perform poorly on the task (Larson et al., 2019; Marton, 
2008; Roello et al., 2015, and verbal suppression impairs performance in children with 
and without language disorder (Lidstone et al., 2012). After completing the Tower of 
London, we asked the children to explain the game to two naive adults, one who was 
not present but could hear them (audio condition) and one who was not present but 
could hear and see them (audiovisual condition). 

Questions and Hypotheses 

We preregistered the study (McGregor et al., 2019, available at this link: OSF Registries 
| Children's Voabulary Project; Remote Communication) as a comparison between 
second graders with and without developmental language disorder, a prevalent neu-
rodevelopmental condition characterized by limitations in language learning, com-
prehension, and use. Unfortunately, because of the COVID-19 pandemic, we were 
forced to close the study before recruiting enough participants with developmental 
language disorder. Nevertheless, we had an excellent distribution of language abili-
ties represented in the sample and adequate power to investigate language ability as 
a continuous predictor of remote communication performance. Thus, we modified 
our predictions to be: 

Children would provide more complete directions in the audiovisual than audio con-
dition because they would more frequently supplement their verbal message with ges-
tures in the latter than the former. 

There would be individual differences across children such that those who have more 
robust vocabularies, who are less shy, and who have a more highly developed theory 
of mind would be more successful on the task than those who scored lower in these 
domains. We also determined the effect of age, sex, and success on the Tower of Lon-
don itself. 

Finally, we took this opportunity to explore the relationships between vocabulary, 
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theory of mind, and shyness to address incomplete or conflicting reports in the liter-
ature. 

Methods 

Participants 

The project was conducted in compliance with protocols approved by the Internal Re-
view Board of Boys Town National Research Hospital to ensure the protection of hu-
man subjects. Participants were 50 second graders (29 girls), ages 7 to 9 years (median 
= 100 months, min-max = 88 to 109). Two additional children were tested but are not 
included here, one because of a subsequently diagnosed seizure disorder and the 
other because of attrition. 

All participants were monolingual English speakers from Iowa or Nebraska in the 
United States recruited from a larger longitudinal study of language development (Re-
search Registry 3425, 2017). According to parents’ reports of ethnicity, one participant 
was Hispanic or Latino, 41 were neither Hispanic nor Latino. Eight parents did not 
report ethnicity. According to parents’ reports of race, one participant was African 
American, 43 were Caucasian, and six were more than one race.  

The children presented with a range of spoken language abilities, with standard 
scores from 72 to 127 on the Test of Narrative Language-second edition (TNL-2, Gillam & 
Pearson, 2017). Eleven were receiving special support for language in or outside of 
school. To ensure that neither intellectual disability nor hearing loss contributed to 
variability in task performance, we limited enrollment to participants who earned a 
perceptual index score of 70 or higher on the Wechsler Abbreviated Scale of Intelligence 
(Wechsler, 1999) and passed a pure tone audiometric screening. 

Procedure 

We administered standardized tests to determine the abilities that predict expository 
discourse performance, and then we administered the expository discourse task it-
self. Data collection occurred over two or three sessions scheduled within two weeks. 

NIH Toolbox Picture Vocabulary Test 

The NIH Toolbox Picture Vocabulary Test (Gershon et al., 2013) measures receptive sin-
gle-word vocabulary. The participant is instructed to touch the image in a 4-alterna-
tive forced-choice array that they believe is most closely associated with the word they 
heard. The difficulty level of each trial is automatically adjusted by the software pro-
gram, contingent on the participant's previous response's accuracy. Raw scores on 
this task were converted to normally distributed standard scores (scaled scores) that 
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were not age-corrected. Specifically, the raw scores were ranked and then trans-
formed to create a standard normal distribution, which was then re-scaled to have a 
mean of 10 and a standard deviation of 3.  

Temperament in Middle Childhood Questionnaire (TMCQ) 

The TMCQ (Simonds & Rothbart, 2006) taps caregiver judgments of the emotional 
temperament of children between 7 and 10 years of age. Although the TMCQ 
measures a broad range of temperament traits, we only used the items that tapped 
shyness. The temperament dimension "shyness" is operationally defined in the TMCQ 
as "slow or inhibited approach in situations involving novelty uncertainty." The shy-
ness score was calculated by summing the ratings for the five questions categorized 
within the shyness temperament dimension.  

Theory of Mind Inventory-2 (ToMI-2) 

On the ToMI-2 (Hutchins & Prelock, 2016), caregivers mark along a 5-point continuum 
ranging from “Definitely Not” to “Definitely” to describe the most likely way their 
child would mentalize in 60 different scenarios. The questionnaire is scored by plot-
ting each response along a 20-centimeter scale and rounding the score to the nearest 
tenth. In the present analysis, these scores were then summed and divided by 60 to 
derive a mean score ranging from 1 to 20.  

Tower of London (ToL) 

The Tower of London Drexel University -2nd Edition (Culbertson & Zillmer, 2005) 
measures problem-solving and planning. In the ToL, both the children and the exam-
iner use boards containing three pegs of varied sizes holding one to three colored 
beads. The examiner demonstrates beads stacked in 10 different arrangements on 
wooden pegs. The goal is for the child to move their beads one at a time and in as few 
moves as possible from a start position to match the examiner’s array.  

We administered the task according to the directions in the test manual. The critical 
directions given to the children were: 1) the two pegboards must be alike, 2) as few 
moves as possible must be used to copy the design on the examiner's board, 3) no peg 
may contain more beads than it can hold, and 4) only one bead at a time can be moved, 
in other words, two or more beads cannot be taken off the board at one time. The 
score we derived was the number of moves needed to solve each. Four of the partici-
pants skipped one (N = 3) or 5 (N = 1) items on the ToL due to experimenter error or 
participant fatigue; therefore, we transformed scores by dividing the total number of 
extra moves (total moves – minimum moves) by the minimum number of moves for 
each child. A child who completed each arrangement in the minimum number of 
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moves would have a proportion of 0, whereas a child who completed each arrange-
ment with twice the number of the minimum possible moves would have a proportion 
of 1. 

Expository Discourse 

After completing the ToL, we asked the child to explain its procedures and five exam-
ple problems to two naive adults who were not present, one who could hear them 
(audio condition), and one who could hear and see them (audiovisual condition). By 
simulating phone and video chat rather than engaging the children in these actual 
contexts, we ensured that the performance was the child’s own, not the result of more 
or less scaffolding from a communicative partner. The exact instructions are included 
in the Appendix. All children participated in both conditions with order counterbal-
anced across participants. 

 In the audio condition, we showed the child a photograph of an unfamiliar adult 
woman. We said that she did not have access to video technology but would hear the 
child's instructions when she called later. A phone was included in the photograph. 
The children were then asked to explain to their listeners what the game looks like, 
what the rules are, and exactly how to play.  

In the audiovisual condition, we showed the child a photograph of a second unfamil-
iar adult woman. We said that she had access to a computer (a computer was included 
in the photo), so she would hear and see the child's instructions when she logged in 
later.  

The entirety of the data collection session was video recorded via a laptop camera for 
later scoring. For the audiovisual condition only, we also recorded with a camera on 
a tripod to illustrate more clearly to the child that their remote partner would be able 
to not only hear them but also see them. An example of a child participating in the 
aduio and audiovisual conditions is available at OSF | Example of child completing the 
discourse task. 

Discourse Scoring 

A 15-item rubric was created to capture the pragmatic and semantic content of each 
child’s discourse (see Appendix). The child could receive one point for each of the first 
11 items in the rubric, regardless of whether they expressed that item in gesture, spo-
ken words, or both. Gestures could be representational (e.g., making a circle shape to 
indicate a bead), deictic (e.g., pointing or showing), or demonstration (e.g., moving 
the bead from one peg to the next). The items scored were: item 1, introducing the 
discourse (e.g., saying or gesturing hello); items 2 – 5, explaining each of four rules 
well enough for a naive listener to apply the rule successfully; items 6 – 10, explaining 
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each of five trials well enough for a naive listener to complete the trial successfully; 
and item 11, closing the discourse (e.g., saying or gesturing goodbye, we’re done). In 
addition, we were interested in the children’s use of vocabulary deemed essential to 
the explanation. Thus, they could also earn one point for each of four spoken vocab-
ulary items. These were at least one mention of 1) the bead/ball, 2) the peg/stick/stand, 
3) the location (e.g., here, long peg), and 4) the sequential order (e.g., next, last). A 
second coder independently scored 22% of the discourse samples. The point-to-point 
agreement was 91.94%. 

When using the overall score as a dependent variable, the highest possible score was 
15: 11 spoken and/or gestured items + 4 spoken words. Because some children skipped 
items due to experimenter error or participant fatigue (in the audio condition, 10 par-
ticipants skipped one item and one participant skipped two; in the audiovisual condi-
tion, six participants skipped one item), we transformed scores into proportions 
(points received/total maximum points possible given items administered) and ap-
plied a logit transformation. 

Statistical Analysis 

The preregistered data analysis plan was to use a linear mixed-effects model with the 
explanation score as the dependent variable and independent variables including a 
fixed within-subjects factor of condition (audio or audiovisual) and between-subjects 
effects of diagnosis (DLD or TD), sex (M, F), age, diagnosis x sex, and scores from the 
ToL, vocabulary, theory of mind, and shy temperament assessments. The random-
effects structure was specified as a random intercept for subject. In the modified ver-
sion presented here, we ran the model without the effects of diagnosis and the inter-
action between diagnosis and sex. Before conducting the analysis, we simulated 1000 
datasets to determine the power of the study using a random intercept mixed model 
with a 2-factor within-group variable (condition was a 2-factor within-group variable),  
with 50 total participants and an intraclass correlation of 0.33. We found approxi-
mately 89% power to detect the difference between conditions with an effect size 
of 0.50, a moderate effect. 

We also ran two exploratory models. To anticipate, we had predicted better scores in 
the audiovisual condition but, instead, obtained better scores in the audio condition. 
To explore this finding, we split the omnibus score into one for the gestured modality 
(maximum possible = 11) and one for the spoken modality (maximum possible = 11). 
We then ran a linear mixed model that included the original model variables plus the 
additional vocabulary x condition, modality, and modality x condition variables.  

In a second exploration, we asked whether overall language ability predicted the ex-
pository discourse score. In effect, this is the same question we posed in the registered 
version of the project but abandoned because we were unable to recruit a sizeable 
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cohort of children with developmental language disorder before COVID-19. Instead 
of including the diagnostic category—language disorder or typical language develop-
ment—in the model, we regressed children’s average explanation score (across audio 
and audiovisual conditions) on their scores on the TNL-2. The TNL-2 was used to 
group children into DLD or TD categories in the larger longitudinal project. There is 
evidence that developmental language disorder is a spectrum condition, not a cate-
gorical one (Lancaster & Camarata, 2019; Dollaghan, 2004); thus, considering the 
scores of children who potentially have developmental language disorder on a con-
tinuum with those of children who have typical language development is a valid ap-
proach. 

Finally, we ran a confirmatory model, retesting our primary hypotheses with a linear 
model. 

Results 

Descriptive Data 

The children’s performance on the measures that served as independent variables in 
the statistical models appears in Table 1. Note from the min-max information that 
there was a reasonable range of scores on all measures for use in the statistical mod-
els. The exact distributions are plotted in the Supplemental Materials (Figures S8 
through S18) available at this link OSF | Children's Vocabulary Project; Remote Com-
munication). 

Table 1. Summary statistics for scores that serve as predictors of expository dis-
course performance 

Construct Measure Score Mean (sd) Median Min-Max 

Receptive & Expressive 
Language 

TNL-2 Omnibus Standard 
Score 

104.74 
(14.96) 

108 72-127

Receptive Vocabulary NIH PVT Uncorrected Standard 
Score 

76.76 
(6.97) 

76.5 60-89

Planning & Problem 
Solving 

ToL Proportion Extra 
Moves Score 

0.91 
(0.32) 

0.93 0.14-1.71 

Theory of Mind ToMI-2 Composite Mean 16.95 
(1.94) 

16.84 12.42-19.89 

Shyness TMCQ Shyness Total 13.28 
(3.41) 

13 5-20

Note: TNL-2 = Test of Narrative Language-2nd edition, NIH PVT = NIH Toolbox Picture 
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Vocabulary Test, ToL = Tower of London, ToMI-2 = Theory of Mind Inventory-2nd edition, 
TMCQ = Temperament in Middle Childhood Questionnaire. 

Before proceeding, we examined the relationships between the independent varia-
bles. The univariate correlations appear in Figure 1. As expected for two language 
measures, the TNL-2 and NIH Toolbox PVT scores were highly and positively corre-
lated. The TNL-2 scores were also moderately correlated with the ToMI-2 scores. 
Higher language scores were associated with better theory of mind. Higher language 
scores were weakly correlated with the shyness scores. Shyer children had lower lan-
guage scores on the TNL-2 than more outgoing children. The NIH Toolbox PVT scores 
were moderately correlated with age; higher vocabulary scores were associated with 
older ages. There were also weak correlations between vocabulary scores and scores 
on the TMCQ-shy and the ToMI-2. Children with larger vocabularies tended to be less 
shy and to have a stronger theory of mind. 

 
Figure 1. Matrix of univariate correlations between Predictor Variables. Cells with 
circles indicate a significant correlation (p < .05). Figure created via code in Wei and 
Simko (2017). 
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We derived variance inflation estimates (VIF) to determine multicollinearity 
(Choueiry, 2021; Fox & Weisberg, 2019). The VIF is equal to 1 when a given independ-
ent variable is orthogonal to the other independent variables. VIF values between 5 to 
10 are considered large and indicative of multicollinearity. To anticipate, we ran mod-
els with language measured by the NIH Toolbox PVT or the TNL-2. In either case, VIF 
estimates were <1.775; thus, we could proceed with the models as planned. The de-
tailed results of the VIF analysis appear in the Supplemental Materials. 

Discourse 

The expository discourse scores are plotted in Figure 2. Scores ranged widely, from 
as low as 27% of total possible points in the audiovisual condition to as high as 87% 
in the audio condition. 

Figure 2. Explanation scores (proportion) as a function of Condition (Audio vs. Au-
diovisual). Diamonds represent the group average and error bars +/- 1 SE. Violins 
show the distribution of Explanation scores across children. 

The outcome of the model predicting expository discourse performance indexed by 
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mean explanation scores appears in Table 2. Performance varied with condition; how-
ever, the effect was the opposite of our prediction. We found that children’s explana-
tion scores were significantly lower in the audiovisual (b=0.493) than in the audio 
(b=0.671) condition. As predicted, there was a significant effect of vocabulary. Chil-
dren with larger vocabularies had significantly higher explanation scores. For in-
stance, the average explanation score for a child with below-average vocabulary (i.e., 
69.79; -1 SD below mean) was 0.55. The average explanation score for a child with an 
above-average vocabulary (i.e., 83.73; +1 SD above mean) was 0.62. 

Table 2. Results of Linear Mixed Model Evaluating Predictors of Discourse Perfor-
mance 

Variable Estimate  SE df t Pr(>|t|) 
Intercept 0.582266 0.011192 43  52.023 < 0.00000001 
Condition    -0.177751   0.013307  49  -13.358           < 0.00000001 
Sex       -0.009997   0.023173  43 -0.431                0.6683 
Age          -0.001828   0.002686  43 -0.680                0.4999     
Vocabulary         0.005246 0.002130  43 2.463                0.0179 
Tower of London          - 0.013447 0.035539 43 -0.378               0.7070 
Theory of Mind          0.010406  0.006326  43 1.645                0.1073 
Shyness       -0.002423  0.003554  43 -0.682                0.4990    

Note: SE = standard error, df = degrees of freedom, Pr = probability 

The remaining predicted effects were not obtained. Among these, it is notable that 
the explanation scores did not vary with performance on the ToL, the same task the 
participants were attempting to explain. Thus, any problems in explaining the task 
were not the result of an inability to understand its rules or goals. 

To further understanding of the discourse performance, we examined variation by 
item (Table 3). The children seldom framed their discourse with salutations, open-
ings, or closings. At the other extreme, nearly all children specified spatial and tem-
poral information when conveying how to solve the ToL.  

Exploratory analyses 

The planned analyses revealed, contrary to prediction, that the children performed 
better in the audio condition than in the audiovisual condition. Before drawing any 
conclusions, we examined the data anew. First, we asked whether the condition ef-
fect varied with vocabulary knowledge to determine whether the decrease in perfor-
mance in the video compared to the audio condition was greater for children with 
better vocabularies. A significant condition x vocabulary interaction could suggest 
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that the lower explanation scores in the audiovisual condition indicate more mature 
behavior than higher scores(i.e., children with better vocabularies may be more 
aware of the increased common ground in the audiovisual condition and therefore 
decrease how much they explain). Next, we asked whether the condition effect var-
ied with modality to determine whether the more robust overall performance in the 
audio condition was primarily the result of children using more spoken communica-
tion when on the phone. The results appear in Table 4. 

Table 3: The proportion of participants who conveyed each item. 

Item Audiovisual Audio 
Opening salutation .22 .10 
Closing salutation .16 .04 
Rule 1: boards must look alike .42 .66 
Rule 2: use fewest moves possible .22 .20 
Rule 3: number of beads must not exceed height of peg  .26 .32 
Rule 4: move one bead at a time .14 .30 
Problem 1 .20 .54 
Problem 2 .22 .60 
Problem 3 .24 .50 
Problem 4 .20 .46 
Problem 5 .18 .38 
Specific word for bead .46 .66 
Specific word for peg .36 .66 
Specific word for spatial information .82 .96 
Specific word for sequential information .78 .84 

Table 4: Results of Linear Mixed Model Evaluating Predictors of Discourse Perfor-
mance 

Variable Estimate  SE df t Pr(>|t|) 
Intercept 0.582266    0.011192  43   52.023  <0.0001 
Condition    -0.177751    0.013132  48   -13.536               <0.0001 
Sex       -0.009997    0.023173  43   -0.431               0.6683 
Age          -0.001828    0.002686  43   -1.680               0.4999 
Vocabulary         0.005246    0.002130 43    2.463              0.0179 
Tower of London          -0.013447    0.035539  43   -0.378              0.7070 
Theory of Mind          0.010406 0.006326  43    1.645               0.1073 
Shyness       -0.002423    0.003554  43   -0.682               0.4990 
Condition x Vocabulary -0.002895    0.001902  48    -1.522   0.1346 
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Note: SE = standard error, df = degrees of freedom, Pr = probability 

Does the Condition Effect Vary with Vocabulary Knowledge? 

The significant effect of Vocabulary, b=0.005, t(43)=2.463, p=0.018 did not vary signif-
icantly between conditions, b=-0.003, t(48)=-1.522, p=0.135. In other words, the effect 
of condition, b=-0.178, t(48)=-13.536, p=0 (i.e., higher explanation scores in the audio 
than the audiovisual condition) was similar for children with smaller vocabularies 
and children with larger vocabularies. 

Does the Condition Effect Vary with Modality? 

We credited the child one point per the first 11 rubric items in the original analysis, 
whether produced in words, gestures, or both. Here, to discern any differential re-
sponses to condition according to the modality of the response, we instead awarded 
the child one point for each item conveyed with words (11 points maximum) and one 
point for each item conveyed with gesture(11 points maximum). Children responded 
primarily by demonstration gestures, scoring on average 5.66 points (SD=1.12) in the 
audio condition and 6.37 points (SD=1.13) in the audiovisual condition. Children only 
occasionally responded using deictic gestures, scoring on average 1.35 (SD=1.73) in 
the audio condition and 1.56 out (SD=2.05) in the audiovisual condition. In addition, 
children rarely (if ever) responded using representational gestures, scoring on aver-
age 0.34 (SD=1.02) in the audio condition and 0.14 (SD=0.4) in the audiovisual condi-
tion. Given the relative infrequency of deictic and representational gestures, we did 
not repeat our analyses separately for each type of gesture. These distributions, how-
ever, indicate that children’s gesture explanation scores primarily reflect their ability 
to demonstrate actions on the objects used to complete the task. 

Note that, when broken apart by modality, the children’s explanation scores were 
highly correlated, b=0.724, t(48)=2.887, p=0.006. For every one-point increase in chil-
dren's gestured explanation score, there is a 0.724 increase in their spoken explana-
tion score. 

We ran a linear mixed model that included the original model variables plus the mo-
dality and modality x condition variables. The results appear in Table 5. 

There was a significant effect of condition, b=-0.037, t(97.997)=-2.134, p=0.035. As be-
fore, the explanation scores were lower in the audiovisual (b=0.4205) than the audio 
(b=0.4575) condition. Also as before, vocabulary was a significant predictor, b=0.007, 
t(42.999)=2.747, p=0.009. There was a significant effect of modality. Children’s ges-
ture explanation scores were higher (b=0.5755) than their spoken explanation scores 
(b=0.3025). The effect of condition was qualified by a condition x modality interac-
tion, b=0.232, t(97.997)=6.614, p=0. This captures a reversal in the effect of condition. 
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Children's spoken explanation scores are lower in the audiovisual than the audio 
condition (b=-0.081), while their gestured explanation scores are higher in the audio-
visual than the audio condition (b=0.151). In both conditions, however, children’s 
gestured explanation scores are higher than their spoken explanation scores. This 
difference is larger in the audiovisual condition (b=0.389) than the audio condition 
(b=0.157) (Figure 3). 

Table 5: Results of Linear Mixed Model Evaluating Predictors of Discourse Perfor-
mance 

Variable Estimate SE df t Pr(>|t|) 
Intercept 0.439048 0.015628 43.152702 28.094 <0.0001 
Condition    -0.037414 0.017528 97.996544 -2.134 0.03530 
Sex       -0.002562 0.027175 42.998779 -0.094 0.92531 
Age        -0.003715 0.003150 42.998779 -1.179 0.24484 
Vocabulary        0.006863 0.002498 42.998779 2.747 0.00874 
Tower of London        -0.020329 0.041675 42.998779 -0.488 0.62816 
Theory of Mind        0.004530 0.007418 42.998779 0.611 0.54464 
Shyness       -0.003506 0.004168 42.998779 -0.841 0.40497 
Modality 0.272788 0.024900 48.998357 10.955 <0.0001 
Condition x Modality 0.231879 0.035057 97.996544 6.614 <0.0001 

Note: SE = standard error, df = degrees of freedom, Pr = probability 

Language Ability as a Predictor of Expository Discourse 

We already have some evidence that language ability influences expository discourse, 
given that vocabulary scores were a significant predictor. Next, we determined 
whether the effect was limited to vocabulary or extended to language ability more 
broadly defined. Because performance on the NIH PVT and the TNL-2 were signifi-
cantly correlated, r = .62, we removed vocabulary from the model and replaced it with 
the TNL-2 scores. The results appear in Table 6. 
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Figure 3: Explanation scores (proportion) as a function of Condition (Audio vs. Au-
diovisual) and modality (Spoken vs. Gestured). Diamonds represent the group aver-
age and error bars +/- 1 SE. Violins show the distribution of Explanation scores 
across children. 

Table 6: Results of Linear Mixed Model Evaluating Predictors of Discourse Perfor-
mance 
 

Variable Estimate  SE df t Pr(>|t|) 
Intercept 0.5819619   0.0095073  42   61.212  <0.00000002 
Condition    -0.1777509   0.0130155  48   -13.657           <0.00000002 
Sex       -0.0082890   0.0195446 42 -0.424                 0.6737 
Age          0.0002123   0.0019940 42 0.106               0.9157 
Language        0.0035786   0.0007266  42 4.925           0.0000136 
Tower of London          -0.0108946  0.0301276  42 -0.362                0.7195 
Theory of Mind          0.0043402   0.0055416  42 0.783                 0.4379 
Shyness       -0.0009602   0.0029443  42 -0.326                 0.7459 
Sex x Language -0.0011283 0.0013768  42 -0.819                0.4171 

 
Note: SE = standard error, df = degrees of freedom, Pr = probability 
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As expected by now, there was a significant effect of condition. Children’s explanation 
scores were significantly lower in the audiovisual (b=0.493) than in the audio 
(b=0.671) condition. There was a significant effect of language ability: Children with a 
higher score on the TNL-2 had significantly higher explanation scores. For instance, 
the average explanation score for a child with a below-average TNL-2 score (i.e., 89.78; 
-1 SD below mean) was 0.52. The average explanation score for a child with an above-
average TNL score (i.e., 119.7; +1 SD above mean) was 0.64. There were no other sig-
nificant effects.

Confirmatory Analyses 

In our planned analysis, we found a significant effect of condition (audio vs. audiovis-
ual). This analysis, however, controlled for individual differences in our predictor var-
iables (i.e., it was the effect of condition for a child with average performance on each 
measure). Moreover, the model did not include the full random effects structure (Barr 
et al., 2013). We could not include a random slope for condition because the model 
would overfit the data (the number of random effects would match the number of data 
points per participant - 2). Therefore, we repeated our analyses using the difference 
between children’s explanation scores in each condition and without the predictor 
variables. This linear model allowed a more direct test of Hypothesis 1 - testing 
whether explanation scores differ for children in general, and the use of a linear 
model provided a more transparent way to calculate p-values and effect sizes without 
the need for random effects. Consistent with the results of our planned analysis, chil-
dren’s total explanation score was significantly lower in the audiovisual condition 
than the audio condition, b=-0.178, t(49)=-13.358, p=<.001. The condition effect ac-
counted for 78.8% of the variance in children’s explanation scores. We fit a second 
linear model in which we regressed children's explanation scores (averaged across 
Conditions) on sex, vocabulary, ToL performance, TMCQ-Shyness, ToMI-2, and age. 
The significant effect of vocabulary was confirmed, b=0.007, t(43)=2.457, p=0.018. 
Children with larger vocabularies have significantly higher explanation scores. For 
instance, the average explanation score for a child with below-average vocabulary 
(i.e., 69.79; -1 SD below mean) was 0.75. The average explanation score for a child with 
above-average vocabulary (i.e., 83.73; +1 SD above mean) was 0.85. Controlling for the 
other predictor variables, the size of children's vocabulary accounted for 12.3% of the 
variance in children's explanation scores. No other predictors were significant, p’s > 
0.112. The details appear in the Supplemental Materials. 

Discussion 

Remote communicative contexts are part of everyday social, familial, and academic 
interactions for the modern child. However, much of what we know about the child's 
ability to meet the informational needs of a communicative partner is based on data 
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collected during face-to-face interactions. This study adds to the sparse extant litera-
ture on communicative success in remote contexts.  

Thanks to the rise in video-chat apps available in home and school settings, remote 
communication increasingly involves a shared visual context. Traditional phone com-
munication does not. Thus, in this study, we were interested in the completeness of 
children’s remote discourse, its variation with the presence or absence of visual con-
text, the extent to which children modified their use of gestural communication when 
moving between contexts, and the characteristics that predict children’s communica-
tive success. Below we organize our findings into two main categories: how remote 
communication varies with context and how it varies with child characteristics. 

Variation Associated with Context Demands 

Remote communication places a high demand on speakers. They must infer and then 
meet their listeners’ need for information without many of the cues available in face-
to-face communication. Given that the audiovisual condition reinstates some of these 
cues, we predicted that the children’s overall explanation scores would be higher in 
the audiovisual condition than in the audio condition. Specifically, we anticipated that 
the children would use gestures to supplement their spoken messages. Relative to the 
audio condition, the children did gesture more information in the audiovisual condi-
tion, but, at the same time, they provided less information in the spoken modality; 
thus, the overall rubric score was higher in the audio condition, contrary to predic-
tion. This finding is consistent with Cameron and Lee (1997), who reported that 3-to-
8-year-olds provided more detail and specificity while speaking on the phone than in
person. The children responded to their listeners’ needs by adjusting to the listener’s
need for spoken input.

The particular items that the children most often included in their discourse also il-
lustrate their sensitivity to listeners' needs. Consider, for example, the low rate of sal-
utations and the high rate of spatial and temporal content. The pragmatic framing of 
the discourse with salutations was uncommon, but such niceties are not necessary for 
explaining the task (and perhaps awkward given that the partner was not present). In 
contrast, when and where to move the beads were details that nearly every child in-
cluded, and this information was essential for solving the task.  

Thus, just as they do when face-to-face (e.g., Akhtar et al., 1996; Mori, & Cigala, 2016; 
Nadig & Sedivy, 2002; Nilsen, & Fecica, 2011; Shatz & Gelman, 1973), children demon-
strate adaptations in content and modality according to their listener’s needs when 
communicating remotely. When the remote context lacked shared visual reference, 
they enhanced the clarity and completeness of their spoken messages. When their 
partner was able to see them, they offloaded some of their verbal explanation into 
gestures. In her nuanced description of discourse in a year-five classroom, Taylor 
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(2014, p. 416) wrote:  

“It is important to emphasize that modes other than language are not simply addi-
tional contextual information but part of an enmeshed nexus of many modes used in 
conjunction with one another for the purpose of making meaning. All modes are po-
tentially available for making meaning, within the constraints of our social world. The 
mode selected by the communicator is the one judged by them to be the most apt and 
expedient at that moment in time.” 

Gesture was, of course, an apt and expedient means of communication in the audio-
visual condition. The types of gestures the children used were well suited to the part-
ners’ needs. All of the participants used demonstration gestures. These were hand 
gestures that resulted from manipulating the materials, in other words, moving the 
beads. As the primary goal was to teach the partner how to move the beads, demon-
stration gestures were an effective means of explanation.  

Of course, the demonstration gestures were apt and expedient for the partner in the 
audiovisual condition only. Nonetheless, the children gestured more items than they 
presented in words even in the audio condition. We do not take this as a counter to 
the conclusion that they were sensitive to the partners' needs. Instead, gestures can 
be apt and expedient for the speaker as well as the listener (Goldin-Meadow, 2003). 
Speakers use gestures with exceptionally high frequency when communicating spa-
tial information (Alibali, 2005). When explaining a visual-spatial task, working out the 
problem by moving the hands through space is an excellent strategy for thinking 
through the steps one must convey. The children likely gestured in the audio condi-
tion (and to some extent in the audiovisual condition) because the gestures helped 
them explain the task. Had the children been given repeated practice with the ToL, 
we would predict less reliance upon gestures that involved demonstrations on objects 
and more free-handed gestures. As it were, their high use of demonstration gestures 
was consistent with their status as novice ToL solvers (Roth, 2002). We turn now to 
other characteristics that were related to the success of their remote discourse. 

Variation Associated with Language Ability 

Motivated by previous work on the influence of language, theory of mind, and tem-
perament on communicative success, we tested the predictive utility of language 
scores, theory of mind ratings, and temperament—specifically shyness—ratings in 
our models of remote discourse success. However, we first measured the inter-de-
pendence of these predictors. Given the equivocal reports of relationships between 
shyness and theory of mind, some reporting a negative relationship (Banerjee & Hen-
derson, 2001; DeRosnay et al., 2014; Walker, 2005) and others a positive relationship 
(Mink et al., 2014; Wellman et al., 2011), it is noteworthy that we found neither in the 
current sample. 
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That said, we did find a relationship between shyness and language; specifically, the 
shyer children in our sample tended to have lower vocabulary and receptive/expres-
sive language scores than more outgoing children. Spere et al. (2004) compared the 
receptive vocabulary scores of four-year-olds grouped as shy or not shy and found the 
shyer children to have significantly lower scores. Here we extend these findings to an 
older cohort. Some have speculated that their reticence to speak masks the language 
competency of shy children (see summary in Coplan & Evans, 2009). Although this 
could be the case, we found a negative relationship between shyness and perfor-
mance on a receptive vocabulary test (which does not require spoken responses), a 
finding at odds with the masked language competency hypothesis. Another possibility 
is that the lower test scores on both the TNL-2 and the NIH-PVT reflect more test anx-
iety on the part of the shyer children, but we think this is unlikely given that previous 
work has established the validity of standardized tests administered to shy children. 
Specifically, shy children did not perform better on language tests administered in the 
home by a familiar adult than on those same tests administered at school by an unfa-
miliar adult (Spere et al., 2009).As has been previously proposed (Spere et al., 2004), 
we think it likely that children who are shy limit their opportunities for language 
learning by refraining from social-communicative interactions. Shyness (or tempera-
ment more broadly measured) may be a source of individual differences in children’s 
language outcomes. 

Language, as measured by the TNL-2 and, to a lesser extent, by the NIH-PVT, was also 
correlated with theory of mind. Milligan et al. (2007) also reported a positive relation-
ship between language and theory of mind with an overall effect size of .43 among 
children below seven. Here we extend that finding to children who are seven to nine 
and report a similar effect size of .37 (on the TNL-2). The relation between language 
and theory of mind is likely bidirectional. Children who participate frequently and 
competently in communicative exchange access multiple opportunities for learning 
about others' mental states, and conversely, children who are skilled at mind-reading 
may learn mental state vocabulary and hone their social language skills upon realiz-
ing that their listener is confused, skeptical, interested or bored (De Rosnay et al., 
2014). Language ability in the form of complex sentence construction may also aid 
thought about others’ mental states, especially at the relatively older ages tested here, 
years during which children may be progressing from first order (I suspect he is hun-
gry) to second-order observations (He knows that I suspect he is hungry) (de Villiers, 
2007). 

Our analyses allowed us to examine the potential effects of language, theory of mind, 
and shy temperament on discourse, each after controlling for the others. We also ex-
amined the effects of sex, ability to solve the ToL, and age. Whether measured as re-
ceptive vocabulary or a receptive and expressive narrative ability, language was the 
only predictor. Children with stronger language abilities produced more complete ex-
planations of the ToL during the discourse task, as evident by their rubric scores. 
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There were no significant interactions between language and condition or between 
language and modality. In other words, regardless of their vocabulary knowledge, 
children tended to offload more information onto gestures when the visual context 
allowed. The high positive correlation between gesture scores and spoken language 
scores further supports the conclusion that children's gesture use was a sign of the 
integrity of their overall communicative competence rather than a way of compensat-
ing for communicative weaknesses. These findings are consistent with age-related 
differences in communicative competence. Older children not only use more com-
plex spoken language but also more complex gestures than younger children (Ala-
millo et al., 2013). Like teachers who package relevant information into their gestures 
during classroom lectures (Alibali et al., 2013; Ovendale et al., 2018), children who 
frequently gesture when sharing a visual context with their interlocutor likely max-
imize the effectiveness of their message.  

We do not dismiss the potential influence of theory of mind or shy temperament in 
other discourse contexts. Recall that, in the discourse task used here, we told the chil-
dren that their communication partner did not know how to solve the ToL; thus, we 
likely reduced the need for mind reading. Moreover, the children did not interact with 
their partner but, instead, were recorded for later listening or viewing. This situation 
may have lessened the burden that shyer children may have felt had they been part 
of an actual exchange. The decision to simulate phone and video chat rather than en-
gage the children in these actual contexts was purposeful. We wanted to control the 
amount of feedback a listener would provide, but we could not imagine how to do so 
in a pragmatically appropriate way. By recording the children's discourse, we got 
around this problem. That said, this strength is also a limitation of the work. The child 
was at a remove from an actual communicative exchange. Moreover, the child did not 
receive the scaffolding that the verbal and gestural responses of a listener would have 
provided, which surely made the discourse task more difficult than usual, perhaps 
especially so for those with weaker language abilities. Observations of naturalistic re-
mote discourse would be a valuable complement to the work reported here. Also, a 
comparison between the two types of remote discourse studied here and actual face-
to-face discourse would be helpful if we are to understand fully the challenges in-
volved in remote communication. 

Finally, we turn to the implications of the language as a predictor of remote discourse 
skills. This remote discourse task was difficult. None of the children provided 100% 
of the information we deemed essential. That said, some of the children had particu-
larly poor performance. On average, those whose receptive/expressive language 
scores fell one standard deviation below the mean provided only 30% of the essential 
information. Real-world remote communication is likely to be challenging for these 
children unless their partner provides ample scaffolding in the form of feedback and 
questions. Given the ubiquity of remote communication in children's lives, it is essen-
tial to document how the estimated 9% of children with language disorders (Norbury 
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et al., 2016) fare in remote contexts and determine the supports needed to ensure ad-
equate remote discourse function. 

Conclusions 

Among the limitations of this study were our inability to complete it as registered and 
the lack of ecological validity inherent in a partnerless simulation. That said, we pro-
vided evidence of positive relationships between language and theory of mind and 
negative relationships between language and shyness, extending the extant literature 
to older children. We also confirmed that, as a group, seven-to-nine-year-olds adjust 
their discourse to the needs of their remote communication partners. They include 
essential semantic information, and when they know that their partner does not share 
their visual context, they still gesture frequently, but they increase their reliance upon 
the spoken modality. Perhaps the primary contribution of this work is the finding that 
remote discourse is challenging, even for children as old as nine,  and especially so 
for children who have below-average receptive and expressive language abilities. This 
finding has important practical implications given that children’s communication 
partners—their friends, families, teachers, and health care providers—are frequently 
remote. Children with low language abilities may experience functional limitations 
during remote communication, a context that is increasingly necessary in today’s 
world.  
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Appendix 

Discourse Instructions for Participants 

“Now that you know how to play this game, I’m going to ask you to teach two of my 
friends.”  

Audio 

“This is X (photo of woman A or B on phone). She couldn’t be here today but she told 
me that we could record the directions. Then she will borrow the game later and try 
it out. She doesn’t have a computer screen so she won’t be able to see you but she 
DOES have her cell phone, so she can listen to your recording. I’ll start the recording 
(make a big fuss about the microphone). You explain to her how to play the game, and 
she will listen to what you say. Be very careful to tell her what the game looks like, 
what the rules are, and exactly how to play.”  

Now that they know about the game, you can help them solve five of the problems. 
I’ll get the game set up for you each time. “You are the teacher. Tell X how to make 
this one (pt to child’s board) look like this one (pt to target board further away).”  

Repeat for items p, p, 1, 2, 3. 

“That was great! Okay, I’m going to ask you to do that one more time for a different 
friend.”  

Audiovisual 

“This is X (photo of woman A or B facing screen). She couldn’t be here today but she 
told me that we could video the directions. Then she will borrow the game later and 
try it out. She has a computer so she WILL be able to hear you AND see you. I’ll start 
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the recording (make a big fuss about the video camera). You explain to her how to play 
the game. She will watch and listen to what you say. Be very careful to tell her what 
the rules are, and exactly how to play.”  

Now that they know about the game, you can help them solve five of the problems. 
I’ll get the game set up for you each time. “You are the teacher. Tell X how to make 
this one (pt to child’s board) look like this one (pt to target board further away).”  

Repeat for items p, p, 1, 2, 3.  

Debriefing  

You did so well being the teacher. Sometimes it is harder to be the teacher when the 
person you are talking to can’t see you. My friends are going to study your record-
ings to see how children talk to people who can’t see them, like when you talk on a 
phone. They won’t really be watching to learn the game, that part was just pretend.  

Discourse Scoring 

One point was awarded for each item that the child completed successfully. Except 
for the final four items, the child was credited for successful completion via words 
OR gestures. For the five trials (items P1, P2, 1, 2, 3 on the ToL), we assumed that the 
listener had the visual context of the two boards, one in start position and one in tar-
get position. Total scores could range from 0 – 15.  

Greets the listener (2 points): 

• Hello 
• Goodbye 

Verbal credit was given if the child offered the listener a stated “hello” or  “good-
bye.”  Iconic gestures were credited if the child waved to greet or bid farewell to the 
listener. 

Rules (4 points): 

• Explains that the two boards must be alike  
• Explains that you must use as few moves as possible  
• Explains that no peg can have more beads than it can hold  
• Explains that you can move only one bead at a time  

Children earned one point per rule if they provided an adequate explanation with 
words and/or gestures.  
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Examples for both boards must look alike: 

o “You have to copy the teacher’s board.”
o “Try to do the same pattern.”
o The child set-up the teacher’s board with an example pattern,  and then

showed the listener how to manipulate the beads in order to make the
other board match.

Examples for complete the pattern in as few moves as possible: 

o “Solve in the least amount of moves”
o “Use less moves as possible”
o “Whoever has less of the movings wins.”
o The child used a hand gesture to illustrate moving the beads, while using

the word ‘moves,’ and holding up two fingers to show that the example
problem required only two moves.

Examples for no peg can contain more beads than it can hold: 

o “The small one can hold one bead, the middle one can hold two, and the
tall one can hold three,”

o “The large peg can hold three, the middle peg can hold two and the small
one can hold one.” The child manipulated the beads on the board to show
the listener the maximum bead amounts for each peg.

o The child pointed to a peg as they stated how many beads could be placed
on it.

Examples for move only one bead at a time. 

o “You can only move one bead at a time.”
o “You can only take one off the peg at a time.”
o Children often explained this rule via demonstration gestures by showing

the various ways in which this rule can be  broken, in the same way it was
presented to them prior to completing the standardized portion of the test
(i.e.,  lifting two beads off the pegs with one hand/lifting two beads off the
pegs with two hands/lifting one bead off the peg and placing it on the ta-
ble, and then proceeding to take another bead off a peg).

Example Problems (5 points): 

• Gives enough information for listener to correctly solve trial P1, minimum
number of moves is not required

• Gives enough information for listener to correctly solve trial P2, minimum

Language Development Research 280

Volume 1, Issue 1, 31 December 2021



number of moves is not required  
• Gives enough information for listener to correctly solve trial 1, minimum 

number of moves is not required  
• Gives enough information for listener to correctly solve trial 2, minimum 

number of moves is not required  
• Gives enough information for listener to correctly solve trial 3, minimum 

number of moves is not required  

To earn verbal points in the absence of gesture, the child was required to provide the 
listener with sufficient information to solve the problem accurately using only spo-
ken language. Credited instructions included referents and/or descriptive words for 
each move within the problem. Acceptable descriptors for identifying the target peg 
included distinctions in size (e.g., short/tall/little/long/middle) and body-oriented di-
rectional terms (e.g., left/middle/right.)  Credit was also given if the child identified 
where a bead should be placed by stating the color of the bead already atop the tar-
get peg (e.g., Put the green one on the red one), or by stating the color of the bead 
that was in the target position prior to the previous move (e.g., “Put the red one 
where the blue one used to be”). In the absence of gesture, environmental-oriented 
directional terms (e.g., front/back, first/last) were not considered specific enough to 
describe target pegs (e.g., “Put the blue bead on the front peg and move the red bead 
to the back one” was too vague to receive credit because it is not clear which is front 
and which is back).  

To earn credit via demonstration gestures, the child needed to move the beads from 
the starting position to the target position without breaking any rules. Credit was 
given for the successful completion of the problem, despite move count.  

Children received credit if they combined verbal description and gesture to clearly 
convey content: 

o “The red one goes on this peg” (pointing to peg) 
o “See this blue bead [participant moves bead closer to the listener], it goes 

on this peg”.  
o “I move the red one to the small peg, and that’s one move [holds up one 

finger]”, and “I’m going to switch these around [moves hand from left to 
right to indicate switching].” 

 

Specific content words (4 points): 

• Refers to the beads with a relevant word (e.g., bead, ball) at least once  
• Refers to pegs with a relevant word (e.g., peg, stick, stand) at least once  
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• Uses a relevant directional term (e.g., here/there, right/left) at least once
• Uses a relevant sequential term (e.g., first, next, then) at least once

The words ‘bead’ and ‘peg’ were credited with one point each if used correctly to 
identify the corresponding item, at least once, during the discourse task. Acceptable 
synonyms were also given credit, and included words such as, ball and block for the 
target vocabulary word bead, and the words ‘stick and stand ’ for the target word peg. 
Spatial/Location terms (e.g., here/there, middle, tall) and sequential words (e.g., 
first, next, then) were credited, with one point each, if the participant used one or 
more of these during the problem-solving portion of the task. 
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Introduction 
 

A developmental relationship between sleep and the emergence of linguistic skill in 
typically developing children has been repeatedly demonstrated. Observationally, 
unfragmented night-time sleep is positively associated with language performance in 
pre-school (Lam et al., 2011; Touchette et al., 2007; Quach et al., 2009), and school-age 
children (Buckhalt et al., 2009). Experimentally, daytime naps enhance new word 
learning in pre-school children (see Axelsson, Williams & Horst, 2016; Hubach et al., 
2009; Kurdziel et al., 2013), and such behavioural gains are positively correlated with 
expressive vocabulary skill (Horváth et al., 2015). In school-aged children, sleep, com-
pared to equivalent time awake, has been found to support the consolidation of de-
clarative word learning and lexical integration (Henderson et al., 2012) and benefit 
the learning of word-pair associations (Backhaus et al., 2008).  
 
Decades of work with adults has built a picture of the neural mechanisms by which 
sleep promotes the consolidation of new memories, including linguistic material, 
through a process of hippocampal re-activation (see Paller et al., 2021 for a recent 
review). While equivalent work on the mechanisms on memory consolidation during 
sleep is still to emerge in children, behavioural research converges on the importance 
of sleep for the acquisition of language. Despite this, children’s behavioural sleep hab-
its, such as duration and efficiency, have never been objectively measured in those 
with language disorder.  
 
Sleep in Language Disorder 
 
The term language disorder refers to a neurodevelopmental disorder characterised by 
a deficit in the acquisition of language over childhood at any level of language descrip-
tion and in both receptive and expressive modalities. This definition covers idiopathic 
developmental language disorder (DLD), but extends more broadly to include any 
children who may not meet the criteria for DLD but ‘who are likely to have language 
problems enduring into middle childhood and beyond’ (Bishop et al., 2017; p.1070). 
 
Describing behavioural sleep habits in the language disordered population is of con-
siderable theoretical and clinical interest. Data from electroencephalography record-
ing suggest that around half of children with DLD show atypical electrophysiological 
activity such as epileptiform discharges during sleep (Dlouha et al., 2020; Echenne et 
al., 1992; Fabbro et al., 2000; Overvliet  et al., 2011; Picard et al., 1998). Initial behav-
ioural evidence also exists to suggest that sleep may not support language learning in 
individuals with DLD to the same extent or in the same way as in typically developing 
peers, with adults who have language disorder showing reduced overnight consolida-
tion of new phonemic learning (Earle et al., 2017). A description of sleep behaviour in 
children with language disorders is currently a missing link in understanding the as-
sociation between sleep and language development. By ‘sleep behaviour’ here we 
mean habitual patterns of behaviour, cognition and emotion which occur during and 
proximate to sleep. Measurements of sleep behaviours includes subjective estimates, 
as well as objectively measured sleep parameters such as duration and timing of sleep 
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activity.      
 
Botting and Baraka recently explored subjectively measured sleep habits of 3-18 year 
old children with language disorders or typical development, using parent report 
(Botting & Baraka, 2017). Children with language disorders were reported to experi-
ence longer sleep-onset latencies (the time it takes to fall asleep after lights out) than 
their typically developing peers, and were more likely to wake early. Across the sam-
ple, sleep-onset latency was found to correlate with both syntax and semantic/prag-
matic ability as measured by the Children’s Communication Checklist (CCC; Bishop, 
1998). One other study using parent-report found that children with clinically mean-
ingful delays in receptive vocabulary at 60 months showed less mature sleep patterns 
(i.e., less consolidated night-time sleep) at 6 and 18 months of age compared to chil-
dren with typical language development or transient delays (Dionne et al., 2011)1.  
 
Sleep in Autism 
 
The work of Botting and Baraka represents an important step forward in understand-
ing the sleep behaviours of children with language disorders. However, nearly a third 
of the language disordered participants in this study also had an autism spectrum con-
dition. This is an important limitation as children with autism are already known to 
show extended sleep-onset latency according to parental report (see Díaz-Román  et 
al., 2018 for a review). Indeed links between sleep difficulties and autism have been 
fairly consistently demonstrated. According to parent report, sleep problems co-oc-
cur with early autism symptoms and worsen over development (Verhoeff et al., 2018), 
with children who have autism going to bed later and getting up earlier than their 
peers from around 30 months of age (Humphreys et al., 2014). Over the pre-school 
years, sleep problems as defined by the Children’s Sleep Habits Questionnaire (CSHQ; 
Owens et al., 2000) are more than twice as common in children with a diagnosis of 
autism, with group differences emerging on every subscale of the questionnaire 
(Reynold et al., 2019). Actigraphy data from pre-schoolers with autism and general 
developmental delay have also shown greater night-to-night variability in sleep 
measures for both groups compared to typically developing peers (Anders et al., 
2011). Overall, sleep difficulties in this group are seen in objectively recorded global 
measures such as total sleep time (Elrod et al., 2015) but are more consistently ob-
served in subjective, parent-reported measures (Díaz-Román  et al., 2018 ).  
 
The Current Study 
 
The current paper aims to describe basic sleep behaviour in relation to language de-
velopment over childhood. The extant literature is suggestive of a link between im-
poverished sleep behaviour and the disordered development of structural language; 
however this is currently based on subjective parent-report. The nature of objectively 
measured sleep behaviour in children with clinically significant language deficits is 
yet to be described. Furthermore, it is not yet clear whether an association between 

1 While this study considered a linguistic domain relevant to clinical language disorders (receptive 
vocabulary), diagnoses were not reported. 
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sleep problems and language disorder can be explained by the inclusion of children 
with autism in previous studies of language disorder (Marini et al., 2020; Williams et 
al., 2008). We therefore focused on the relationship between sleep in early-mid child-
hood (primary school age) and the acquisition of oral language independent of social 
communication skills over two studies. Study 1 employed parent-report to consider 
subjective relationships between language ability and sleep behaviour, while Study 2 
employed actigraphic recording to look at the duration and efficiency of children’s 
sleep along with objectively measured language ability. 
 
Study 1 utilised two questionnaires to replicate and extend the work of Botting and 
Baraka (2017). The aim of Study 1 was to describe basic, parent-reported sleep behav-
iour and estimates of sleep quantity (as described by the Children’s Sleep Habits Ques-
tionnaire) in relation to language development (as described by parent report and the 
Children’s Communication Checklist-2) in primary-school aged children without au-
tism. We hypothesised that children whose parents reported better language ability 
would also have fewer parent-reported sleep problems. 

 
Study 1 

Method 
Measures 
 
Parents were asked to fill out two well-established questionnaires, the CSHQ (Owens 
et al., 2000), and the Children’s Communication Checklist-2 (CCC-2; Bishop, 2003), 
along with their child’s age, sex, and a description of any developmental disorders 
and/or diagnoses. The study was granted ethical approval from the Department of 
Psychology’s Departmental Ethics Committee at the University of York. 
 
The CCC-2 is a 70 item parent-rated questionnaire, which asks respondents to quantify 
their children’s strengths and weaknesses in communication on a scale of 0 (“less than 
once a week”) to 3 (“every day”). The questionnaire is split into 10 sub-scales, which 
generate a General Communication Composite (hereafter referred to as CCC General) 
and a Social Interaction Deviance Composite (hereafter referred to as CCC Social). 
The CCC General describes structural language ability and is composed of the sub-
scales: A-Discourse, B-Syntax, C-Semantics, D-Coherence, E-Inadequate initiation, F-
Stereotyped language, G-Use of context and H-Non-verbal communication. The CCC 
Social describes whether or not pragmatic aspects of communication are in line with 
a child’s general communication skill and is calculated by subtracting the age-normed 
scores for the grammatical/semantic sub-scales (A + B + C + D) from the age-normed 
scores for the pragmatic sub-scales (E + H +I-Social relations + J-Interests), a score of 
0 suggests that structural language and social language are exactly in line. A score 
below 55 on the CCC General, in conjunction with a CCC Social score of 9 or more is 
consistent with a profile characteristic of DLD. A CCC General score below 55 with a 
negative CCC Social score is suggestive of autism, as is a CCC Social score of -15 or 
below with any CCC General score.  
 
The CSHQ is a 33 item sleep screening instrument which asks parents about their 
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child’s sleep habits over the last week (or the most recent typical week). The CSHQ is 
concerned with sleep behaviour, that is, behavioural habits, emotions and cognitions 
about sleep, night-time activity including sleep-walking (an example of a parasom-
nia), as well as medical aspects such as sleep-disordered breathing as indicated by 
snoring. Scores are given for eight subscales plus a total score (CSHQ Total), with high 
scores indicating more difficulty in that domain. The subscales are as follows: Bed-
time Resistance; Sleep Onset Delay; Sleep Duration; Sleep Anxiety; Night Wakings; 
Parasomnias; Sleep Disordered Breathing; and Daytime Sleepiness. Each item is 
scored on a scale of 1-3, such that the minimum score is 33 and the maximum 99; the 
clinical threshold for concern on the CSHQ is a total (sum) score of 41. Parents are 
also asked to estimate their child’s ‘bed time’, ‘waking time’ and their ‘usual amount 
of sleep each day’.  Test-retest reliability for subscales ranges from r= .62-.79, while 
sensitivity for distinguishing between clinical and control groups is .80, and specific-
ity .72. In addition to these two published questionnaires, parents were asked to fill 
out a descriptive Sleep History questionnaire devised by the research team to give an 
overall impression of how parents viewed their child’s sleep. This questionnaire is 
available in Supplementary Materials. 
 
Participants  
 
In total, 273 datasets were available for analysis. 242 datasets were collected from par-
ents completing the questionnaires online; these parents were recruited through so-
cial media, parent groups, schools and the University of York newsletter. A link to the 
questionnaire was sent out with a brief description of the aims of the study which 
mentioned the team’s interest in all children, particularly those with developmental 
disorders of language. An additional 31 datasets were included from a previous study 
in the lab (Fletcher et al., 2019; Knowland et al., 2019), to which participants were 
recruited either as typically developing controls, or on the basis of parental concerns 
about language development (n = 9). Methods of recruitment were the same in this 
latter case, but parents completed the questionnaires on paper.  
 
Thirty datasets were removed as parents reported that their child had a diagnosis or 
suspected diagnosis of autism (to address whether any differences in sleep behav-
iours are apparent in language disorder independent of autism); a further 14 were 
removed because parents did not complete the CSHQ. As the CSHQ was developed to 
assess the sleep behaviour of 4-to-10 year old children (Owens et al., 2000), and the 
CCC-2 was developed to assess the language profiles of 4-to-16 year olds (Bishop, 
2003), children outside the age range of the CSHQ were removed from the analysis. 
This process left 196 participants whose parents reported no developmental concerns 
(n=135) or whose parents described a developmental language difficulty but no other 
biomedical condition (n=61).  
 
If parents reported that their child had a difficulty with language development they 
were asked to describe it and to provide any diagnoses their child had been given. 
Sixty one parents described their child as having a difficulty with language develop-
ment that extended beyond pronunciation. Although a smaller number (n=38) used 

Language Development Research 287

Volume 1, Issue 1, 31 December 2021



the term DLD or similar, we included all 61 children in a Language Disordered (LD) 
group as language disorder of unknown origin is understood to extend beyond the 
group of children who meet criteria for a diagnosis of DLD (see Norbury et al., 2016).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Scores on the CCC General (CCC-2 GCC subscale) and CCC Social (CCC-2 
SIDC subscale). A CCC Social score of 0 suggests that social and pragmatic skills are 
exactly in line with general language skill, while scores above this indicate better so-
cial and pragmatic skill compared to language. 188 participants in Study 1 are 
shown who either did or did not have a Language Disorder according to parent re-
port. (Those participants represented by filled shapes also participated in Study 2.) 
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Of the sample of children in the LD group, 38 were male and 23 female, with an aver-
age age of 80.44 months (6 years, 8 months; SD = 23.58 months); while in the compar-
ison group (Typically Developing; TD), 76 were male and 59 female, with an average 
age of 86.09 months (7 years, 2 months; SD = 23.58 months).  CSHQ profiles for the 
whole sample are given in Table 1. The Language Disordered group scored signifi-
cantly lower on CCC General (group mean = 42.11 (SD = 21.26), compared to the TD 
group (group mean = 81.51, SD = 20.72;  t(104.2)=11.770, p <0.001), but had higher 
scores on the CCC Social as this measure is relative to language ability (LD group mean 
= 10.98, SD = 9.52; TD group mean = -1.43, SD = 8.24; t(94.2) = -8.547, p <0.001). The 
relationship between CCC General and CCC Social is illustrated in Figure 1 for each 
group. 
 
 
 
Table 1. CSHQ profiles for the sample N = 196. SDB = Sleep Disordered Breathing. 

 
CSHQ subscale # of 

items 
Mean SD Min Max Skew Kurto-

sis 
Bedtime resistance 6 7.76 2.49 2 16 1.31 1.16 
Sleep onset delay 1 1.62  0.76 1 3 0.76 -0.86 
Sleep duration 3 4.10 1.52 2 9 1.26 0.64 
Sleep anxiety 4 5.63  1.89 2 12 1.18 0.81 
Night wakings 3 4.06 1.48 2 9 1.44 1.39 
Parasomnias 7 8.80 1.73 7 15 0.85 0.17 
SDB 3 3.39 0.85 2 8 2.75 9.79 
Daytime sleepiness 8 11.01 2.51 8 18 0.82 -0.06 
Total 33 45.78 8.10 33 73 0.75  -0.17 

 
 
 
 
Results 
Exploratory Analyses  
 
Analysis of the questionnaire data was undertaken in an exploratory manner to allow 
a focused, pre-registered analysis of the objective, actigraphy data in Study 2. Corre-
lations were assessed between CCC General and each of the CSHQ subscales (see Ta-
ble 2). High scores on the CSHQ subscales indicate poor sleep, while high scores on 
the CCC-2 indicate better language ability. The negative correlations evident in Table 
2 therefore suggest that those with better language have better sleep habits.  
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Table 2. Correlations between each subscale of the CSHQ and the general language  
score from the CCC-2 (CCC General). Italic font indicates those p-values that do not 
survive Bonferroni-Holm correction. 188 parents completed both the CCC-2 and the 
CSHQ. SDB = Sleep Disordered Breathing. *p<0.05, **p<0.01, ***p<0.001. 
 
   CCC General CCC Social 
  df r p r p 

C
SH

Q
 s

ub
sc

al
e 

Bedtime resistance 186 -0.10 0.194 0.06 0.400 

Sleep onset delay 186 -0.12 0.111 -0.04 0.580 
Sleep duration 186 -0.25 <0.001*** 0.10 0.174 
Sleep anxiety 186 -0.23 0.002** 0.08 0.270 
Night wakings 186 -0.22 0.003** 0.21 0.004** 
Parasomnias 186 -0.26 <0.001*** -0.03 0.725 
SDB 186 -0.16 0.031* 0.15 0.037* 
Daytime sleepiness 186 -0.16 0.024* 0.02 0.772 

 Total 186 -0.34 <0.001*** 0.09 0.220 
 
 
 
Having established sample-wide associations between CSHQ and CCC General, a 
weighted regression was run to predict CSHQ Total score from a binary measure of 
whether children were reported by their parent as being language disordered or not. 
Five predictors were controlled for in the model, as they might be expected to explain 
variance in the dependent measure independently of the main predictor of interest. 
The continuous predictor Age (in months), and the binary predictor Sex were in-
cluded, along with binary predictors describing whether or not parents reported a 
difficulty with Attention, Literacy and/or Social interaction, each of which has been 
associated with sleep differences in children (Carotenuto et al., 2016; Díaz-Román  et 
al., 2018; Mehta et al., 2019 respectively). Parents had an opportunity to report these 
issues either in response to whether their child had a developmental disorder such as 
dyslexia or ADHD (‘Does your child have a diagnosis, or possible diagnosis, of any other 
developmental disorders?’), or when they described a language disorder (‘Please describe 
your child's language difficulties and what their diagnosis is, if they have one. ‘). Of these 
five predictors, Age (B = -0.02, z = -2.83, p = 0.005), Literacy (B = 2.90, z = 3.99, p <0.001) 
and Social interaction (B = 3.02, z = 2.58, p = 0.010) were predictive of Language Disor-
dered group membership. These five predictors were used to calculate propensity 
scores for membership of the Language Disordered group.  
 
Table 3 shows the details of a linear regression model predicting CSHQ Total by LD 
group membership, Literacy, Social skills, Attention, Age and Sex weighted by pro-
pensity score. The weighted model controls for differences between the LD and TD 
groups with respect to those factors included in the propensity score. After weighting, 
the groups are matched with respect to these factors, allowing an analysis of the effect 
of LD group membership only.  
 
The model significantly predicted CSHQ Total; F (11.2, 189) = 3.213, p = 0.005, with 
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membership of the Language Disordered group being the sole independently signifi-
cant predictor. An unweighted model was also run as is presented alongside the 
weighted model in Supplementary Materials (Table SM1). Notably, membership of 
the Language Disordered group remains a significant predictor in the unweighted 
model. The relationship between language skill and CSHQ Total score is illustrated in 
Figure 2, which shows CSHQ Total for the LD and TD groups. Despite some visual 
indication of bimodality in the LD scores, both groups show unimodal distributions 
according to Hartigan’s Dip Test (for TD D = 0.037, p = 0.120 and for LD D = 0.519, p = 
0.246). 
 
 
 
Table 3. Weighted regression model predicting CSHQ Total scores. ***p<0.001. 
 

 B Lower 
95% CI 

Upper 
95% CI 

t p 

Intercept 44.96 40.03 49.88 17.879 <0.001*** 
LD group 3.21 0.98 5.44 2.820 0.005*** 
Age -0.04 -0.08 0.01 -1.530 0.128 
Sex 2.05 -0.24 4.34 1.756 0.081 
Attention 8.90 -0.21 18.01 1.915 0.057 
Literacy 2.93 -1.30 7.15 1.359 0.176 
Social 6.72 -1.22 14.66 1.659 0.099 

 
 
 
 
The CSHQ asks parents for their child’s ‘bed time’, ‘waking time’ and their ‘usual 
amount of sleep each day’. Given that bed times, wake times and sleep duration 
change as children get older (see Acebo et al., 2005; Iglowstein et al., 2003), we ran 
partial correlations to assess relationships with CCC General, taking Age (in months) 
into account. Controlling for Age, significant partial correlations emerged between 
CCC General and ‘bed time’ (rpartial (174) = 0.18, p = 0.020), as well as ‘usual amount of 
sleep’ (rpartial (160) = -0.20, p = 0.013), but not with ‘waking time’ (rpartial (162) = 0.13, p = 
0.100). So as general language ability increased, bed time got later in this sample, and 
sleep amount was reduced, suggesting that children with poorer language got more 
sleep than their peers rather than less. This result was unexpected in the context of 
the rest of the CSHQ showing the opposite pattern of association with language skill.  
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Figure 2. Box plot of CSHQ Total by membership of the Language disordered group.  

 
  
Discussion 

 
Study 1 aimed to describe parent-reported sleep behaviour in primary-school aged 
children as a function of parent-reported language ability. We saw an association be-
tween better general language ability as described by the CCC-2 and better scores in 
the following domains of sleep behaviour as described by the CSHQ: Sleep Duration, 
Sleep Anxiety, Night Wakings, and Parasomnias (Sleep Disordered Breathing and 
Daytime Sleepiness were also associated with language ability but did not survive Bon-
ferroni-Holme correction). CCC Social was shown to correlate with the Night Wakings 
and Disordered Breathing scales of the CSHQ (although the latter did not survive Bon-
feroni Holm correction), with more sleep problems seen in those with better so-
cial/pragmatic skills relative to general language skill. CCC Social was included here 
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to consider whether sleep variables co-vary more closely with structural or so-
cial/pragmatic aspects of language. The relative lack of correlations between CSHQ 
subscales and CCC Social does not indicate an absence of any relationship between 
social competence and sleep behaviour, just an absence of clear relationships be-
tween social difficulty over and above language difficulty, and sleep behaviour. The 
positive correlation between CCC Social and two CSHQ scales may reflect the fact that 
children in the LD group have higher CCC Social scores and more sleep problems in 
this sample.  
 
In support of an association between fewer sleep problems and better language abil-
ity, we went on to show that parent-reported language difficulty (a binary measure) 
predicted CSHQ Total score. Interestingly though, while parents reported poorer 
sleep behaviours in those children with poorer language, when asked for numerical 
estimates of bed time, wake time and usual sleep amount, children with poorer lan-
guage were shown to get more sleep than their peers rather than less.  
 
In order to further understand the links between sleep behaviour and language ability 
in young children, Study 2 objectively measured sleep duration and efficiency using 
actigraphy in a subgroup of children with or without clinically significant language 
disorder. We focused on 4-to-6 year old children, as this is the earliest age at which 
language disorder is routinely diagnosed in clinic, and an age at which vocabulary 
development is rapid as children start school. The findings from Study 1 were used to 
pre-register hypotheses and analyses for Study 2 (https://osf.io/yftqb).  
 
The predominant pattern to emerge from Study 1 was more sleep problems in chil-
dren with poorer language; and while we also saw evidence for longer parent-reported 
sleep in those same children, we suspected that this might be due to the approximate 
nature of parent-reported bed and wake times. Under-estimates of time spent awake 
after lights out are particularly prevalent in parent-reported estimates of sleep (Day-
yat et al., 2011). In Study 2 we therefore expected to see support for the idea that chil-
dren with poor language have worse (objectively measured) sleep than their peers. 
Hypothesis 1: children with Language Disorder will show shorter sleep duration, and lower 
sleep efficiency, or more variability in these measures, compared to typically developing age-
matched peers; we also hypothesise more parent-reported bedtime anxiety; Hypothesis 2: 
language composite score will show a positive relationship with mean sleep duration, and 
sleep efficiency over and above the predictive power of social/pragmatic ability; while the 
latter will better predict sleep onset latency, and bedtime anxiety. 
 

 
Study 2 

 
Method 
Participants 
 
Participants in Study 2 were a sub-sample from Study 1. Parents from Study 1 were re-
contacted if their children fulfilled criteria for inclusion in Study 2, that is they were 
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aged 4.0-to-6.11 and either showed no indication of neurodevelopmental disorder, or 
were reported to have language concerns and also had a CCC-2 profile indicative of 
language difficulties. More typically developing males than females were invited to 
take part in order to match gender ratio across groups. Children were excluded from 
participation if they did not have sufficient oral language to provide assent or if Eng-
lish was not their first language. Children were also excluded if they were being raised 
bilingual as at the age of this sample, bilingualism is likely to be an important factor 
explaining variability in English language skill and may overshadow any influence of 
sleep. 
 
We recruited and tested 52 children in total for this study. However, having decided 
before pre-registration to only include children with structural language difficulties, 
we then excluded data from children who had a speech sound difficulty for which 
they were receiving speech and language therapy, but who did not show a profile of 
language disorder on standardised assessment and whose parents did not report a 
language difficulty on the CCC-2; on these grounds, 10 children were excluded. Two 
further children were excluded because they did not provide enough actigraphy data2 
(one from the LD group and one from the TD group). This left a sample of 40 children: 
20 controls with no reported language issues (14 males, 6 female) with a mean age of 
64.90 months (5 years, 5 months; SD = 9.84 months) and 20 children with language 
disorder (15 male, 5 female) with a mean age of 66.40 months (5 years, 6 months; SD 
= 11.53 months). One child in the LD group was reported to be taking melatonin to 
support sleep at the time of data collection. See Figure 1 for a description of CCC-2 
scores for this sample in relation to the larger sample included in Study 1. 
 
All those in the Language Disordered (LD) group were being seen by speech and lan-
guage services for issues relating to vocabulary and/or syntax development at the time 
of recruitment. 14 children in the LD group were classified by the CCC-2 as having 
language profiles consistent with a diagnosis of DLD (CCC General < 55 & CCC Social 
> 9), while the remaining 5 either had a CCC General score slightly higher than 55 
(range = 57-69), or a CCC Social score slightly lower than 9 (range = 4-6). The cognitive 
scores and questionnaire scores for the LD and TD groups can be seen in Table 4, with 
the one subscale of the CSHQ that shows a group difference illustrated in Figure 3. 
Note that although most of these children show considerable difficulties in more than 
one domain of language function, three children were unable to complete some as-
sessments and one child did not score below 1SD on any task. Based on postcode data, 
mean national Indices of Multiple Deprivation (IMD) decile was 7.65 for the TD group 
and 6.65 for the LD group, a non-significant difference (t (38.0) = 1.24, p = 0.223).   
 
The TD children who took part in Study 2 can be considered a representative sub-
sample of Study 1 with respect to parental views on sleep. The representativeness of 
the Study 2 TD sub-sample is demonstrated by a non-significant two sample Kolmo-

2 In the pre-registration 21 children are included in the TD group. One child was removed after pre-
registration due to insufficient actigraphy data to provide reliable estimates of sleep. Their non-inclu-
sion did not change the interpretation of the data. 
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gorov-Smirnov test of whether participants who were included in Study 2 can be con-
sidered to be drawn from the same population with respect to total CSHQ score as 
those not included (D = 0.189, p = 0.549). 
 
Unfortunately, testing was interrupted by the COVID-19 pandemic; 25 children were 
tested before the UK lockdown on 23rd March, 2020 (17 TD and 8 LD), and 15 children 
were tested after. The children tested before lockdown were seen in person for their 
cognitive assessment, while the children tested after lockdown were tested via video 
call. This change meant that we were unable to use the Block Design subtest from the 
BAS-III for the children who were tested via video call; for these children we used the 
Matrices subtest from the BAS-III in order to measure visuospatial intelligence. We 
therefore report visuospatial intelligence for each group but do not use that measure 
as a co-variate. Regardless of how children were tested, parents provided written in-
formed consent and each child gave verbal assent at the start of the first session. The 
study was granted ethical approval from the Department of Psychology’s Depart-
mental Ethics Committee at the University of York, as well as the Coventry and War-
wickshire Research Ethics Committee on behalf of the UK National Health Service. 
 
Measures 
 
Data for this study consisted of: sleep measurements (up to ten nights of actigraphic 
recording, and up to ten nights of parent-reported sleep diary data – TD mean = 7.0 
nights, SD = 0.00; LD mean = 7.25 nights, SD = 1.21); standardised language and cogni-
tion assessments; and parental questionnaires. For correlations between parent-re-
port (CSHQ) and actigraphy measures of sleep and between parent-report and stand-
ardised measures of language, see Supplementary Materials (Tables SM2 & SM3).  
 

Sleep Measures. Families were asked to complete seven consecutive nights of 
sleep measurement, using a Philips Respironics Actiwatch2 actigraphy watch and an 
online parental sleep diary (with nightly reminders provided via text or email). Chil-
dren were asked to wear the watch on their non-dominant wrist during the night-time 
only. Children were not asked to wear the watch during the day as, after consultation 
with parents, it was felt that they may have removed and potentially misplaced the 
devices. Data from at least five nights was deemed sufficient to reliably establish ob-
jective measures of sleep duration and quality, including sleep onset latency and sleep 
efficiency (Acebo et al., 1999; Meltzer et al., 2012); participants who provided fewer 
than five nights were therefore excluded. Parents were asked to press a marker button 
on the watch to indicate when the child was left to sleep, and when they woke in the 
morning; the Actiwatch2 also has a luminance monitor. Parent diaries and luminance 
changes were used to mark the beginning and end of the rest period, from when chil-
dren settled down to sleep to when they got out of bed in the morning. The actiwatch 
luminance monitor provides Lux-minutes (lux multiplied by sleep epoch length), to 
indicate the amount of light children were exposed to overnight. This measure did not 
differ between the TD (mean = 139.4 SD = 417.6) and LD (mean = 101.4 , SD = 245.9) 
groups: t(30.77) = 0.352, p = 0.728. 
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Actigraphy data were extracted via Respironics Actiware using the built-in algorithm. 
Data were collected in 30 second epochs. Sleep onset in the evening was calculated 
from the first epoch after which no activity was indicated for at least ten minutes (20 
epochs). The two key estimates in this study were Sleep Duration and Sleep Efficiency; 
Sleep Duration refers to the total time that the child was asleep for (as distinct from 
the total time in bed), and Sleep Efficiency refers to the percentage of time the child 
was asleep for compared to total time in bed. Night waking was determined on an 
epoch-by-epoch basis, using an automated weighted calculation centred on the epoch 
of interest, and taking into account activity in the adjacent four epochs. The wake 
threshold was set to the default ‘medium’ (40 activity counts per minute). In 3-to-5 
year old children the low (80 counts per second) and medium settings have both been 
shown to underestimate total sleep time relative to polysomnography (Meltzer et al., 
2012), but as the high wake threshold (20 counts per second) can overestimate total 
sleep time in this age group, we kept the default.  Sleep Onset Latency was also con-
sidered here and is defined as the time period between the start of the rest period and 
the first epoch marked as sleep. In pre-school children, sleep duration and efficiency 
metrics as measured by actigraphy correlate closely with concurrently measured pol-
ysomnography (intraclass correlations >.80), though number of awakenings show a 
weaker relationship (<.40) (Bélanger et al., 2013; Sitnick et al., 2008). 
 
The study was presented to children as the PJ Heroes study, relating it to the children’s 
TV programme ‘PJ Masks’, in which three children wear actigraphy-like watches to 
battle night-time villains. Children were given PJ Masks pyjamas and an Amazon 
voucher to thank them for their participation. 
 

Questionnaires. CCC-2, CSHQ and descriptive Sleep History data from Study 1 
were re-analysed for Study 2, and in addition, parents were asked to complete the So-
cial Responsiveness Scale 2 (SRS; Constantino & Gruber, 2012); and Brown Attention 
Deficit Disorder scales (ADD; Brown, 2001). The SRS assesses difficulties in social be-
haviour associated with autism symptomology; parents were asked to complete this 
in order to establish whether sleep parameters were better explained by language or 
social/pragmatic factors. The ADD assesses attention behaviour in daily life, and was 
included here in order to describe the groups appropriately. The Sleep History ques-
tionnaire (see Supplementary Materials), included the question Does your child get 
anxious about going to bed at night? where parents were given the options ‘no’ (coded 
1), ‘somewhat’ (coded 2) and ‘yes’ (coded 3). 
 

Cognitive Battery. Children were assessed on cognitive and language ability 
using a series of standardised tasks in accordance with administration instructions: 
British Picture Vocabulary Scale, 3rd Edition (BPVS-III; Dunn et al., 2009); British Abil-
ity Scale 3rd Edition (BAS-3), Naming vocabulary subscale (Elliott & Smith, 2011); Non-
word repetition subscale from the Comprehensive Test of Phonological Processing- 
2nd Edition (CTOPP-2; Wagner et al., 2013); Sentence Repetition subscale from the 
Clinical Evaluation of Language Fundamentals 5th Edition (CELF-5; Semel & Wiig, 
2017); BAS-3, Pattern Construction subscale/ Matrices subscale. Cognitive assessment 
and questionnaire scores are given in Table 4.  
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Table 4. Mean standard scores (and SD) for cognitive assessments carried out in 
Typically Developing (TD) and Language Disordered (LD) groups, and parent ques-
tionnaires. * p< 0.05, ** p< 0.01, ***p<0.001. SDB = Sleep Disordered Breathing; 
NWR = non-word repetition 
 

  TD 
Mean  (SD) 

LD 
Mean (SD) 

t-test 

St
an

da
rd

is
ed

 BAS-3 Naming 115.71 (12.0) 87.79 (14.5) t (35.1) = 6.60,  p < 0.001*** 
BPVS-2 111.00 (11.4) 90.28 (13.2) t (34.0) = 5.20, p <0.001*** 
CELF-5 Recalling Sentences 118.10 (14.1) 82.22 (15.4) t (34.9) = 7.55, p <0.001*** 
CTOPP-2 NWR 108.33 (19.1) 70.28 (12.9) t (34.2) = 7.37, p < 0.001*** 
BAS-3 non-verbal measure 
 

101.52 (14.0) 88.32 (21.7) t (30.4)= 2.26, p = 0.031* 

Pa
re

nt
 q

ue
st

io
nn

ai
re

s 

SRS total (T-score) 45.86 (5.1) 58.15 (12.3) t (25.1) = -4.14, p < 0.001*** 
ADD total (T-score) 44.19 (6.4) 53.80 (7.7) t (37.0) = -4.35, p < 0.001*** 
CCC-2 General 85.90 (18.3) 44.65 (13.2) t (36.4) = 8.32, p <0.001*** 
CCC-2 Social -0.14 (7.8) 15.50 (7.0) t (38.9) = -6.76, p <0.001*** 
CSHQ_Bedtime resistance 8.19 (2.7) 8.30  (2.7) t (38.9) = -0.13, p = 0.898 
CSHQ_Sleep onset delay 1.62 (0.7) 1.60  (0.8) t (38.8)= 0.08, p = 0.935 
CSHQ_Sleep duration 3.86 (1.2) 4.15  (1.5) t (35.7) = -0.70, p = 0.489 
CSHQ_Sleep anxiety 5.67 (1.9) 6.40 (2.0) t (38.4)= -1.20, p = 0.239 
CSHQ_Night wakings 3.95 (1.2) 4.30 (1.5) t (36.7)= -0.80, p = 0.430 
CSHQ_Parasomnias 8.57 (1.5) 9.25 (1.8) t (37.0)= -1.33, p = 0.191  
CSHQ_SDB 3.05 (0.2) 3.55 (0.7) t (22.6)= -3.13, p = 0.005** 
CSHQ_Daytime sleepiness 10.52 (1.9) 10.30 (2.5) t (36.2)= 0.32, p = 0.748 
CSHQ_Total 42.81 (5.8) 46.60 (8.5) t (33.4) = -1.65, p = 0.108 

 
 
 

Confirmatory analysis plan 
 
To assess Hypothesis 1, mean and night-to-night variability (standard deviation) of 
objective Sleep Duration and Sleep Efficiency estimates were established for each par-
ticipant. To analyse group differences between the typically developing (TD) and LD 
groups, t-tests were run on the mean and variability observed for each objective be-
haviour estimate.  
 
To assess Hypothesis 2, linear regressions were run to test whether performance on 
a composite of standardised scores (Language Composite) from all four language 
measures (Receptive Vocabulary, Expressive Vocabulary, Sentence Repetition, and 
Non-word Repetition), SRS total score, or an interaction between the two would pre-
dict mean objective Sleep Duration, mean objective Sleep Efficiency, and mean ob-
jective Sleep Onset Latency. A logistic regression was run (N = 40) to assess whether 
Language Composite scores, total SRS score or an interaction between the two, could 
predict the presence of parent-reported bedtime anxiety from the Sleep History ques-
tionnaire.  
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Figure 3. Box plot showing a group difference on the Sleep Disordered Breathing sub-
scale of the CSHQ (sum of 3 items, each scored 1-3). 
 
 
 
 
Results 
Confirmatory Analysis  
 

Confirmatory Group Differences: Hypothesis 1. Mean Sleep Duration differed 
significantly between groups, but contrary to Hypothesis 1, the TD group showed 
shorter Sleep Duration (mean = 518.7 minutes, SD = 21.9)  than the LD group (mean = 
546.3, SD = 45.6), t (27.39) = -2.44, p = 0.022 (see Figure 4). No group differences 
emerged for night-to-night variability in Sleep Duration (TD mean = 45.4 minutes, SD 
= 14.7; LD mean = 41.1 minutes, SD = 15.9; t (37.76) = 0.88).  
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Mean Sleep Efficiency also differed between groups, and again contrary to Hypothe-
sis 1, the TD group showed lower efficiency (mean = 78.6%, SD = 3.5) than the LD 
group (mean = 81.3%, SD = 4.1), t (37.00) = -2.28, p = 0.032.  Night-to-night variability 
in Sleep Efficiency was equivalent across groups (TD mean = 5.5, SD = 1.8; LD mean = 
5.3, SD = 2.5; t (34.73) = 0.34. Finally, a group difference in bedtime anxiety fell just 
short of significant in the anticipated direction, W = 148, p = 0.055. For the TD group, 
mean response on the three point scale was 1.10 (SD = 0.3), while for the LD group, 
mean response was 1.45 (SD = 0.69).  
 
Previous actigraphy estimates (Acebo et al., 2005) for typically developing children 
aged 60 months (5;0 years) have shown a total sleep duration of 8.6 hours for girls (516 
minutes) and 8.9 hours for boys (534 minutes) with a standard deviation of 48 minutes 
for both; and sleep efficiency estimates of 88.6% (SD = 4.5%) for girls, 87.9% (SD = 
4.9%) for boys. The TD group in the current sample showed Sleep Duration in line 
with this previous estimate, though Sleep Efficiency fell below -1SD of the previous 
estimate. 
 

 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Individual mean and night-to-night variability (standard deviation) and 
group means for a) Sleep Duration and b) Sleep Efficiency for the typically develop-
ing group (TD) and the language disordered group (LD). Grey bars indicate the 
mean for each estimate and the individual circled in black was the only participant 
in the study to be taking melatonin at the time of testing. The error bars show stand-
ard deviation in each direction. 
 
 
 

Group 
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Follow-on Exploratory Analyses. In our confirmatory analysis, mean night-
to-night variability (intra-individual variability) in Sleep Duration did not differ be-
tween the groups. However, the summary statistics suggest that the LD group showed 
more inter-individual variability in mean values. We evaluated this possibility with an 
F-test for equality of variance, which supported the notion of more variability in mean 
Sleep Duration within the LD group than the TD group, F (19/19) = 0.23, p = 0.002. By 
contrast, variability in mean Efficiency did not differ between groups (F (19/19) = 
0.72). 
 

Confirmatory Linear Regressions: Hypothesis 2. Linear regressions were run 
to assess the predictive power of the Language Composite and SRS total score on ob-
jective Sleep Duration, Sleep Efficiency, and Sleep Onset Latency, as anticipated in 
Hypothesis 2. For each of these models, variance inflation factors were above 10 when 
the interaction term was included in the model (Language Composite VIF = 33.9, SRS 
VIF = 31.3, Language Composite*SRS VIF = 25.3), while variance inflation factors with 
the interaction term removed were acceptable (Language Composite VIF = 1.6, SRS 
VIF = 1.6). This possibility was anticipated in our pre-registration as the language 
composite significantly correlated with SRS total score (r(37)= -.55, p<0.001). Conse-
quently, no models are presented with the interaction term included.  
 
No models significantly predicted sleep parameters: for mean Sleep Duration, F(36,2,) 
= 2.67, p = 0.083; for mean Sleep Efficiency, F(36,2) = 1.47, p = 0.244; for mean Sleep 
Onset Latency, F(36,2) = 0.365, p = 0.697. Finally, the prediction of bedtime anxiety 
was assessed via ordinal logistic regression, and again no significant predictors 
emerged, although SRS approached significance: Language Composite odds ratio = 
0.99 (97.5% CI: 0.93 – 1.05), and SRS odds ratio = 1.09 (97.5% CI: 1.00 – 1.22). 
 
Further Exploratory Analyses  
 
Confirmatory analyses for Study 2 broadly failed to support our hypotheses; we there-
fore ran a series of exploratory analyses in order to better understand these data and 
develop new hypotheses moving forward.  
 
We were interested to explore differences between parent-reported sleep behaviour 
and objective sleep estimates of duration and efficiency in children with language dis-
order. The relationship between good parent-reported language (CCC General) and 
good parent-reported sleep behaviour (CSHQ Total) that we saw in Study 1 held in the 
sub-sample of children who completed Study 2: r(38) = -0.45, p = 0.003, so those with 
better parent-reported language also had better subjective sleep behaviour. We then 
considered the relationship between CCC General and objective estimates of Sleep 
Duration, which fell short of significance (r(38) = -0.28, p = 0.083), and Sleep Effi-
ciency, which showed a negative correlation, r(38) = -0.32, p = 0.047. So children with 
poorer parent-reported general language scores slept more efficiently according to 
objective data.  
 
The CSHQ seems to capture aspects of sleep behaviour that are unrelated to objective 

Language Development Research 300

Volume 1, Issue 1, 31 December 2021



estimates of sleep quantity (Markovich et al., 2014). Our results suggest that parents 
of children with language difficulties show concern regarding the sleep behaviour of 
their children over and above what would be expected given estimates of sleep quan-
tity (both subjectively and objectively estimated). We therefore considered group dif-
ferences in parental anxiety about children’s sleep. In the Sleep History questionnaire 
we asked parents Are you currently worried about your child’s sleep? and Were you wor-
ried about your child’s sleep when they were younger?. Running the same ordinal logistic 
models for these variables as we did to consider children’s bedtime anxiety, it 
emerged that current parental concern about sleep was predicted by high SRS total 
score (Language Composite odds ratio = 0.99 (97.5% CI: 0.94 – 1.06, p = 0.844), and SRS 
odds ratio = 1.11 (97.5% CI: 1.01 – 1.24, p = 0.050)), while previous concern was pre-
dicted by low language composite (Language Composite odds ratio = 0.957(97.5% CI: 
0.913 – 0.997, p = 0.043), and SRS odds ratio = 0.977 (97.5% CI: 0.909 – 1.046, p = 0.504)).  
Parental concern about children’s sleep was more likely in the past if the child cur-
rently has language difficulties, while parental concern about current sleep is more 
likely if the children shows autism symptomology. 
 
Finally, we needed to establish whether the relatively good objective measures of 
sleep duration and efficiency shown in the LD group were due to more of that group 
being tested during the COVID-19 pandemic lockdown. To check this, we split the LD 
group into those who had been tested before lockdown (n = 8) and those who were 
tested during lockdown (n = 12). Neither objective mean Sleep Duration (t(17.9) = -
0.89), nor objective mean Sleep Efficiency (t(16.8) = -1.63, p = 0.123) differed between 
groups. 
 

General Discussion 
 

The aim of this project was to test the hypothesis that sleep may be atypical in children 
who have developmental difficulties in the language domain. In Study 1, an explora-
tory analysis was conducted of subjective, parent-reported data concerning the sleep 
and language abilities of 4-10 year old children using the CSHQ and CCC-2 question-
naires. In agreement with Botting and Baraka (2017), our analysis indicated that poor 
sleep behaviour was associated with poor language development, but we extended 
the previous work to show that this relationship exists when no children with a diag-
nosis or suspected diagnosis of autism are included in the analysis. The better chil-
dren’s general language ability was reported to be, the better also their reported sleep 
behaviour with respect to Sleep Duration, Sleep Anxiety, Night Wakings, and Para-
somnias (Sleep Disordered Breathing and Daytime Sleepiness were also associated 
with language ability but did not survive Bonferroni-Holme correction). Further-
more, overall CSHQ score was predicted by whether or not children were described 
by their parents as having a difficulty with language development. The only measures 
from the CSHQ to indicate anything other than a positive relationship between sleep 
behaviour and language skill were parents’ numerical estimates of bed time and sleep 
duration, where, unexpectedly, better language skill was associated with later bed time 
and less overall sleep. 
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We took these data forward to pre-register Study 2, in which a sub-sample of 4-to-6 
year old children from Study 1 with clinical language deficits, along with age matched 
peers, wore an actigraphy watch for 5-10 nights. Here, contrary to our hypotheses (but 
consistent with the subjective estimates of bed time and total overall sleep from Study 
1), objective sleep estimates were negatively related to objectively measured language 
ability, again suggesting that those with language deficits actually slept for longer and 
more efficiently than their language-typical peers. So while weaker language skills 
are associated with parent-reported negative sleep behaviours (such as anxiety and 
night wakings), at the same time, both subjective and objective estimates of actual 
sleep episodes suggest that weaker language skills are associated with longer sleep 
duration and higher sleep efficiency. 
 
Parents of children with more language difficulties reported a high degree of concern 
about their child’s sleep, beyond what would be anticipated given objective estimates 
of sleep. This pattern of seeing more severe or broad difficulties with sleep in subjec-
tive parent-report compared to objective measures, has also been seen in the case of 
ADHD (Chin et al., 2018), ASD (see Díaz-Román et al., 2018), and visual impairment 
(Hayton et al., 2021). This pattern suggests that measures like the CSHQ are recording 
something quite different, and complementary, to actigraphy-derived objective sleep 
patterns.  
 
One reason for heightened parental concern might be children’s sleep history. In 
Study 2, the likelihood of parents reporting current concern about their child’s sleep 
was positively predicted by autism symptomology, but the likelihood of parents re-
porting that they were concerned about their child’s sleep in the past was predicted 
by language ability. Four parents of typically developing children expressed some de-
gree of concern about their child’s sleep in the past compared to ten parents from the 
language disordered group – all but one (who reported apnoea) said their child strug-
gled to initiate and maintain sleep as infants and did not sleep through the night until 
at least 18 months. For example, one parent of a child with language disorder reported 
‘From about 5 months up until 18 months, would wake between midnight and 3am and 
would not return to sleep until about 6/ 7 am.’ The finding that language scores only 
predicted the extent of past parental concern about their child’s sleep may speak to 
the complex and temporally extended nature of parental perceptions of sleep.  
 
Parents highlighted some areas of difficulty that were not possible to assess with actig-
raphy. Sleep disordered breathing was more likely to be reported in children with 
poor language in Study 1, and in Study 2 this was the only area of the CSHQ were the 
language disordered group differed significantly from their typically developing 
peers. Sleep disordered breathing has been associated with deficits in both phonology 
and vocabulary skill (see de Castro Corrêa et al., 2017; Mohammed et al., 2021), and 
may be a contributing factor to the aetiology of language difficulty as experienced by 
a sub-group of children. Sleep disordered breathing may affect language develop-
ment either by reducing the quantity of sleep children get and thereby resulting in 
daytime sleepiness, and/or by disrupting night-time sleep architecture resulting in a 
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poverty of consolidation opportunities. Although we did not see disrupted (less effi-
cient) sleep in our smaller clinical sample in Study 2, sleep disordered breathing can 
result in changes to sleep architecture without necessarily interrupting sleep effi-
ciency (Shahveisi et al., 2018), and actigraphy is not thought to be a good indicator 
of the sleep fragmentation seen in sleep disordered breathing (O’Driscoll et al., 2010).  
 
Unexpectedly, we saw with both subjective and objective data that children with lan-
guage disorders actually slept for longer and more efficiently than their typically de-
veloping peers. A possible interpretation of this finding is that the maturation of the 
sleep cycle might be generally delayed in the language disordered group relative to 
age matched peers. Sleep duration, efficiency, and global sleep patterns (Iglowstein 
et al., 2003) change gradually through infancy and childhood, with the amount of 
sleep needed over a 24 hour period decreasing, and with night-time sleep getting 
more efficient (Acebo et al., 2005). Infants who go on to demonstrate lower language 
ability show immature sleep relative to peers with better language (Dionne et al., 
2011; Knowland et al., 2021; Smithson et al., 2018), that is, more of their overall sleep 
occurs as naps during the day. If we see a continuation of delayed sleep maturation 
by the early school years, then what looks like better sleep could be construed as less 
mature sleep. In our data, longer night-time sleep duration could indicate a higher 
need for sleep in the context of less opportunity for day time napping (given the age 
of the children). The group effect of increased efficiency in the language disordered 
sample is more difficult to explain as sleep typically gets more efficient over develop-
mental time (Acebo et al., 2005). This group effect may have emerged because the 
typically developing children included in Study 2 showed unusually low sleep effi-
ciency. Alternatively, it could be reflective of the language disordered children need-
ing more sleep over 24 hours, given that when habitually napping pre-school children 
miss a nap their subsequent night-time sleep is both longer and more efficient com-
pared to a typical night (Lassone et al., 2016). 
 
Longitudinal work with young children showing early language delay would allow an 
analysis of trajectories of change in sleep behaviour. Such trajectories should con-
sider changes in parental evaluation of, and feelings about, their child’s sleep, along-
side objective measures. Both subjective and objective measures are highly informa-
tive but are not equivalent. This seems to be especially true in groups of children with 
neurodevelopmental disorders. As this story unfolds it is likely to reveal a dynamic 
interaction between multiple factors including neural maturation, behavioural man-
ifestation of disorder, parental sensitivity to child development and the perceptions 
of the child themselves around sleep.  
 
It should also be noted that even if sleep behaviour is unremarkable in children with 
language disorders, that does not guarantee that sleep performs the same functions 
in these children that it does in children who are developing as expected in the lan-
guage domain (Earle et al., 2017). Future studies in this area therefore need to con-
sider both the nature of sleep and the role that sleep plays in supporting language 
development over time in different developmental populations.   
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Limitations 
 

The success of this work should naturally be evaluated within the context of its limi-
tations. The size of the sample, particularly in Study 2, was limited. There are myriad 
influences on language development, and children present with profiles of strength 
and weakness across multiple dimensions. This heterogeneity in symptomology and 
aetiology means it is challenging to draw conclusions that can be extended beyond 
the current sample. The non-equality of variance in sleep duration seen across our 
groups here may well reflect that aetiological heterogeneity.  
 
It should be noted that the summary statistics for the typically developing and lan-
guage disordered groups in Study 2 both demonstrated relatively poor subjective 
sleep according to the CSHQ. The clinical threshold for concern on the CSHQ is a sum 
score of 41. Here, 66% of the LD group exceeded this threshold, as did 50% of the TD 
group, compared to 23% of the control group in the original description of the meas-
ure (Owens et al., 2000). This suggests that the TD group in Study 2 may experience 
more sleep-related difficulties than are typically observed in the general population, 
as supported by the lower than expected sleep efficiency for the TD group based on 
actigraphy data. This possibly reflects a sampling bias where parents whose children 
experience sleep difficulties are more likely to volunteer for sleep studies.  
 
Testing for this study was interrupted by the COVID-19 pandemic and resulting na-
tional UK lockdown in 2020. We did not find an effect of lockdown on either sleep 
duration or efficiency for children in the language disordered group, and we have 
demonstrated elsewhere that sleep duration was not interrupted in children over the 
UK lockdown (Knowland et al., in press). We are therefore confident in our results, 
but of course the circumstances must be taken into account. In summary, this project 
is a starting point; the work should be replicated with a larger sample in less interest-
ing times.  
 
Summary & Conclusions 
 
The aim of this paper was to investigate whether children with poor structural lan-
guage development exhibit poor sleep and sleep behaviour. Over two studies we saw 
that children who had worse parent-reported language abilities also showed worse 
parent-reported sleep behaviours, such as more sleep anxiety and more night waking. 
Conversely, in both subjective and objective estimates of sleep duration, children 
with language disorder slept for longer and also more efficiently than their language-
typical peers. Given that a weak relationship between objective estimates of sleep and 
the CSHQ has been shown before (Hayton et al., 2021; Markovich et al., 2014), we sug-
gest that subjectively reported sleep behaviour and objective sleep estimates be 
thought of as complementary, together building a complete picture of the behav-
ioural, cognitive and emotional components of sleep in young children. It is clear that 
the dynamic relationships between sleep and language are relevant not only to chil-
dren’s development but also the wider picture of family functioning and parental con-
cern, and as such this is a topic that deserves further careful consideration. 
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Supplementary Materials 

 
Descriptive sleep history  
 
Q1. How old is your child (years, months; e.g., 12 years 6 months) 

Years   ____________      Months   __________ 
 
Q2. What was your child's gender at birth? 

Male  
Female  

 
Q3. Do they identify with a different gender now? 

Yes  
No   

 
Q4. What is your child's main language?   __________________________________ 
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Q5. Does your child speak any other languages as well as they speak their main lan-
guage?    _________________________________ 

 
Q6. In total, how many children (0-18) live in your household?   ____________ 
 
Q7. Of these, how many are older than the child you are filling in this questionnaire 
about?   ___________ 

 
Q8. What is the highest educational qualification achieved by someone in your child's 
household? ________________________________________________________ 
 
Q9. Does your child have difficulties with language development? 

Yes  
No   
I'm not sure    
 

Q10. Does your child receive support for their language development at school, or 
have they received support in the past? {Asked if Yes or I’m not sure in response to Q9} 

________________________________________________________________ 
 

Q11. Does your child see a speech and language therapist to support their language 
development, or have they seen one in the past? {Asked if Yes or I’m not sure in response 
to Q9}   ____________________________________________________________ 

 
Q12. Please describe your child's language difficulties and what their diagnosis is, if 
they have one. (Your description here might include whether your child has difficul-
ties with understanding spoken language and/or with speaking, and whether they 
have a diagnosis such as Developmental Language Disorder.)  {Asked if Yes or I’m not 
sure in response to Q9}   _______________________________________________ 
 
Q13. Does your child have a diagnosis, or possible diagnosis, of any other develop-
mental disorders? 

ASD    
ADHD   
Developmental Co-ordination Disorder   
Dyslexia  
Other  ____________ 
None  
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Q14. Are you currently worried about your child's sleep? 
Yes  
No  
Somewhat  

 
Q15. Please tell us what currently concerns you about your child's sleep: {Asked if Yes 
or Somewhat in response to Q14}   _____________________________________ 
 
Q16. Have you ever sought support for your child's sleep from a GP or other health 
professional? {Asked if Yes or Somewhat in response to Q14} 

Yes  
No   

 
Q17. Were you worried about your child's sleep when they were younger? 

Yes 
No 
Somewhat 

 
Q18. Please tell us why you were worried about your child's sleep when they were 
younger, and how old your child was when their sleep was a concern: {Asked if Yes or 
Somewhat in response to Q17}  ________________________________________________ 
 
Q19. Have you ever sought support for your child's sleep from a GP or other profes-
sional? {Asked if Yes or Somewhat in response to Q17}____________________________ 
 
Q20. What does a good night of sleep look like for your child? 

________________________________________________________________ 
 
Q21. How many times a week do you typically see this pattern of good sleep?    

________ 
 
Q22. What does a bad night of sleep look like for your child? 

________________________________________________________________ 
 

Q23. How many times a week do you typically see this pattern of bad sleep?  
_________ 

 
Q24. Does your child currently take daytime naps? 

Yes  
No   

 
Q25. How many times a day does your child usually nap? {Asked if Yes in response to 
Q24}_________ 
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Q26. When your child naps in the day how long do they usually sleep for? {Asked if Yes 
in response to Q24}_________ 
 
Q27. How many days a week does your child nap? {Asked if Yes in response to Q24} 

_________ 
 
Q28. At what age did your child stop napping in the day? Please tell us in Years and 
Months if you can (it might help to remember if it was linked with an event like start-
ing nursery) _________ 

 
Q29. Does your child get anxious about going to bed at night?              

Yes  
Somewhat  
No  

 
Q30. Can you describe your child’s bedtime routine? This might start when they have 
a bath, watch a special TV programme or when you ask them to go to bed. 

________________________________________________________________ 
 
Q31. How long does it take from when you start this routine to when your child falls 
asleep? 

_________ 
 
Q32. Once you’ve left your child’s bedroom, how many times do you typically have to 
go back to their room or put them back to bed before they fall asleep? 

_________ 
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 UnWeighted Weighted 
 B Lower 

95% CI 
Upper 
95% CI 

t p B Lower 
95% CI 

Upper 
95% CI 

t p 

Intercept 47.98 42.72 53.24 17.866 <0.001*** 44.96 40.03 49.88 17.879 <0.001*** 
LD group 2.72 0.15 5.29 2.071 0.040* 3.21 0.98 5.44 2.820 0.005*** 
Age -0.07 -0.11 -0.02 -2.664 0.008** -0.04 -0.08 0.01 -1.530 0.128 
Sex 1.49 -0.75 3.74 1.305 0.194 2.05 -0.24 4.34 1.756 0.081 
Attention 9.63 0.68 18.59 2.108 0.036* 8.90 -0.21 18.01 1.915 0.057 
Literacy 1.86 -2.76 6.48 0.790 0.431 2.93 -1.30 7.15 1.359 0.176 
Social 7.65 0.48 14.83 2.091 0.038* 6.72 -1.22 14.66 1.659 0.099 

 

Table SM1. Unweighted and weighted regression models predicting CSHQ Total scores. *p<0.05, 
***p<0.001. Unweighted model: F (6,189) = 4.40, p < 0.001;  
Weighted model: F (11.2, 189) = 3.213, p = 0.005. 
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 Actigraphy measures 
 

 

 Sleep  
Duration 
(mins) 

Sleep  
Efficiency 
(%) 

Sleep on-
set latency 
(mins) 

Average 
activity/ 
min 

Bed time Get-up 
time 

Pa
re

nt
-r

ep
or

t C
SH

Q
 

Bedtime resistance      r (38)=-.09, 
p=.585 
 

 

Sleep onset delay   r(38)=.46, 
p=.003 
 

   

Sleep duration r (38) = .08, 
p=.607 
 

     

Sleep anxiety   r(38)=-.12, 
p=.460 
 

   

Night wakings  r(38)=-.05, 
p=.768 
 

    

Parasomnias    r(38)=.012, 
p=.941 
 

  

SDB  r(38)=.24, 
p=.129 
 

    

Daytime sleepiness r(38)=.20, 
p=217 

r (38)=.181, 
p=.264 
 

    

Total score r(38)=.12, 
p=.478 

r(38)=.20, 
p=.215 
 

r(38)=-.11, 
p=.491 

r(38)=.05, 
p=.784 

r(38)=-.08, 
p=.627 

r(38)=.24, 
p=.132 

Bed-time     r(36)=.35, 
p=.033 
 

 

Get-up time      r(30)=60, 
p<0.001 
 

Sleep duration 
(mins) 

r(30)=.49, 
p=.004 

     

 
 
Table SM2. Pearsons correlations between parent-reported Child Sleep Habits Questionnaire (CSHQ) 
responses and actigraphy-derived measures of total sleep time, efficiency, bed time and get up times. 
Correlations are reported for theoretically relevant associations.  
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  Cognitive battery (standardised scores) 
 

Pa
re

nt
 r

ep
or

t C
CC

-2
  BAS-3 Nam-

ing 
BPVS-2 CELF-5 Re-

calling Sen-
tences 
 

CTOPP-2 
Non-word 
Repetition 

BAS-3 non-
verbal meas-
ure 

CCC 
General 

r (37) = 0.58, 
p<0.001 
 

r(36) = 0.50, p 
= 0.001 

r(36) = 0.69, 
p<0.001 

r(36) = 0.72, p 
<0.001 

r(37) =0.36, p 
= 0.025 

CCC So-
cial  

r(37)=-0.56, 
p<0.001 

r(36)=-0.49, 
p= 0.002 

r(36)=-0.64, 
p<0.001 

r(36)=-0.69, 
p<0.001 

r(37)=-0.27, 
p= 0.095 

 

Table SM3. Pearsons correlations between parent-reported Children’s Communication Checklist 2nd 
Edition responses and standardized cognitive assessments. British Ability Scales 3rd Edition (Nam-
ing); British Picture Vocabulary Scale 2nd Edition; Clinical Evaluation of Language Fundamentals 5th 
UK Edition (Recalling sentences); Comprehensive Test of Phonological Processing 2nd Edition (Non-
word Repetition); British Ability Scale 3rd Edition (Matrices or Block Design). 
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