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Introduction

Research on language learning has largely focused on investigating how children ac-
quire language form (e.g., phonology, lexicon, and syntax) and content (e.g., word and
sentence meanings). Yet, an important aspect of language learning, which has received
less attention, is the mastery of how to use language adequately in natural social in-
teractions (Bloom & Lahey, 1978). This mastery involves, in particular, using linguistic
utterances to encoding and decode communicative intents (Grice, 1975) or speech acts
that characterize the illocutionary force of an utterance (e.g question, assertion, and
request) (Searle, 1976). Children’s learning of speech acts is crucial for their ability
to engage in coherent conversations. For example, it is important to recognize that
an utterance is a “question” requiring an “answer”, or that it is a “request” requiring
“acceptance” or “refusal”, instead.

Several taxonomies have been proposed that purport to capture children’s emergent
repertoire of speech act categories in the context of early child-caregiver social interac-
tions (for reviews, see Cameron-Faulkner, 2014; Casillas & Hilbrink, 2020), the most
comprehensive to date is the Inventory of Communicative Acts and its abridged version
INCA-A (Ninio et al., 1994).

Snow et al. (1996) used INCA-A to study the emergence of speech act major classes in a
longitudinal corpus of children aged 14 to 32 months old.1 They documented several
important �ndings that not only informed our understanding of language use develop-
ment, but also shed light on how children’s emerging linguistic skills interface with the
development of their social-cognitive competences. By analyzing the development of
the number of distinct speech acts as well as the distribution of speech acts used by
children, they showed that when children utter their �rst words, they already express a
range of simple communicative intents such as requests and questions. The repertoire
of speech acts was observed in this study to increase rapidly within the �rst years of life,
in tandem with development in social-cognitive and linguistic skills: Children become
able to express more sophisticated speech acts such as “promise”, “prohibit”, and “per-
suade”. Using the same coding scheme, Rollins (1999, 2017) has shown that investigating
speech act development can also help us study atypical cognitive development such as
autism.

While this previous e�ort has been in�uential in the study of language use development,
it has relied on hand annotation to code the data, which has limited the researchers’
ability to explore how their �ndings generalize to larger population of children and
across di�erent interactive contexts. In fact, INCA-A is a rather complex scheme with a

1While the terms “speech act” and “communicative intent” have sometimes been used by di�erent
researchers to mean slightly di�erent things or to refer to di�erent taxonomies, here — and for simplicity
— we use them interchangeably to refer to the categories of communicative intents at the utterance level,
as de�ned in the INCA-A coding scheme.
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large number of categories (e.g., 67 di�erent types of illocutionary acts) and its hand-
annotation — including the e�ort of train annotators — is prohibitively expensive to
deploy at a large scale.

Current study

The current study aims at addressing this gap using recent advances in automatic speech
act labeling. Using Snow et al.’s child-caregiver corpus and its INCA-A annotation, we
tested various models on their ability to map utterances to corresponding speech acts
and we selected the one that provided the best performance on a testing set made of
unseen utterances from the same corpus.

Using this model, we examined how previous �ndings in speech act development gen-
eralized at scale. To this end we proceeded in two steps: First, we validated the chosen
model by testing its ability to replicate key �ndings from Snow et al. (1996). More specif-
ically, we reproduce developmental patterns regarding the number of distinct speech
acts as well as the distribution of speech acts used by children from 14 to 32 months of
age. Second, and a�er successful validation, we used the model to automatically label
the entire North American English-language section of CHILDES (MacWhinney, 2017)
and compared the results of this large-scale analysis to the original �ndings.

Additionally, we proposedmethods for quantifying the age of acquisition of a speech act
both in terms of production and comprehension. These measures have allowed us to
rank di�erent speech acts according to their order of emergence. We �rst examined this
order of emergence with data in Snow et al. (1996), and second, thanks to our automatic
labelling tool, we tested how this developmental trajectory generalized across all English
language corpora in CHILDES.

The paper is organized as follows. First, we introduce the dataset and provide an
overview of models for automatic annotation of speech acts that we evaluated in our
study. Further, we de�ne the measures for speech act emergence in production and
comprehension. In the results sections we compare the performance of the selected
models and present replications the �ndings of Snow et al. (1996) using automatically
generated labels. Additionally, the results contain predicted ages of acquisition for each
speech act using both manually-annotated and automatically-annotated data. Finally,
we discuss the results in the context of language development in general and point out
limitations of the current approach which o�er possibilities for future research.
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Datasets andMethods

Datasets

NewEnglandCorpus. Formodel training and validation, we use ground-truth labels
from the dataset collected by Snow et al. (1996) which is the largest child-caregiver inter-
action dataset annotated for speech acts. This dataset was collected for a longitudinal
study of 52 children aged 14, 20 and 32 months old. Child-caregiver dyads were invited
for three sessions that consisted of semi-structured free play. All conversations were
recorded, transcribed, and annotated with INCA-A coding scheme. There were 55,941
labelled utterances in total.

English-Language CHILDES. In order to test how �ndings from Snow et al. (1996)
generalize to a larger dataset of children and across di�erent contexts, we use the entire
North American English-language subset of CHILDES made of children in the same age
range (i.e., between 14 and 32 month old), resulting in 2078 di�erent transcripts totaling
354 children.2

INCA-A Coding Scheme

INCA-A is the most comprehensive coding scheme to date that was designed to capture
children’s emerging speech acts it the context of spontaneous social interaction with a
caregiver (Ninio et al., 1994). The coding scheme has two coding tiers: 1) the interchange
level that annotates the topic of the conversation (e.g., “discussing a recent event”),
and may span multiple utterances, and 2) the illocutionary force level (e.g., “Ask a
yes/no question”) which is determined at the utterance level. Here, we focus on the
illocutionary force. INCA-A has 67 di�erent speech act types, which are grouped into
several high-level categories such as directives, declarations, commitments, markings,
statements, questions, evaluations, and other vocalizations.3

Automatic Classi�cation of Speech Acts

Speech act classi�cation (also referred to as dialogue act tagging in the �eld of Natural
Language Processing) describes the task of annotating utterances in dialogue with their
respective speech act category. Given a transcript of a conversation and a speech act
coding scheme, each utterance in the transcript is assigned one of the speech acts in
the coding scheme (Stolcke et al., 2000).

Early work used Hidden Markov Models to map utterances to speech acts using a set of
lexical, collocational, and prosodic cues (Stolcke et al., 2000). Subsequent work has used

2For fair comparison, we excluded very short transcripts where the number of children’s utterances
was less than the minimum number of children’s utterances in transcripts of the New England corpus at
the same age.

3Refer to the appendix for the full list of speech acts.
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Recurrent Neural Networks (RNNs) such as Long short-termmemory networks (LSTMs)
for encoding transcribed utterances in order to leverage the sequential structure of
the data (Khanpour et al., 2016). More recent approaches combine hierarchical deep
neural network encoders with Conditional Random Field (CRF) decoders (Kumar et al.,
2018). While the encoder is aware of relationships between the di�erent utterances
of a transcript and thus models dependencies in the feature space, the CRF can model
transition probabilities in the label space. In this way, it can for example learn common
adjacency pairs (Scheglo� & Sacks, 1973) in conversation, e.g. that questions are usually
followed by answers.

Following this brief review, we considered and compared the following models.

Baselines

As this work is the �rst to propose automatic speech act annotation using the INCA-A
coding scheme on child-caregiver conversations, we run several baselines in order to
obtain reference performances on this speci�c task.

Majority Classi�er. As a �rst simple baseline, we consider the majority classi�er,
which always predicts the most frequent speech act.

Random Forests.We use the reference implementation of a random forests algo-
rithm from scikit-learn (Pedregosa et al., 2011). As features, we provide the model with
the speaker (caregiver or child), bag-of-words, part-of-speech tags (that are present in
the corpus4), and the number of words in the utterance.

Support Vector Machine. Using the same features as for the random forests model,
we train and evaluate a linear support vector machine from scikit-learn.

Conditional Random Field

Next, we consider a CRF as annotation model. We hypothesized this model would
outperform the baselines thanks to its ability to track transition probabilities in the
label space. We use pycrfsuite5 (Okazaki, 2007) to implement the CRF. We extend the
set of features used by the baseline models and add bigrams and repetitions (words
that are repeated from the previous utterance, as well as the number of repeated words
normalized by the utterances length) to provide the model with some context of the
previous utterances.6 The model uses the whole conversation in a transcript to �nd the
most probable sequences of labels using the Viterbi algorithm.

4The POS tags in CHILDES were automatically generated using the Morphological Analysis algorithm
(MOR; MacWhinney, 2000) which yields a high accuracy rate on CHILDES adult data (above 99%).

5https://github.com/scrapinghub/python-crfsuite
6In preliminary experiments we tested adding all the exact words of previous utterances as features

to the model but observed, if anything, a small degradation in performance.
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Hierarchical LSTM + CRF

We further consider a model that is inspired by state-of-the-art speech act annotation
models in other domains. More speci�cally, we implement a hierarchical LSTM en-
coder combined with a CRF decoder similar to the implementation of Kumar et al.
(2018). The encoder processes the utterances within a transcript on two levels. We add
a special token representing the speaker identity to the beginning of each utterance.
A�erwards, for each utterance, one-hot encodings of the words are passed through
word embeddings, and are then encoded using the word-level LSTM. The last hidden
representation of this LSTM forms the latent utterance representation, which is then
passed into the utterance-level LSTM. This higher-level LSTM processes the utterances
sequentially and generates conversation-context-aware representations. The output
of each timestep of the utterances LSTM is then passed as features to a CRF, which
predicts the corresponding speech act. The model has access to contextualized utter-
ance representations as well as the history of speech acts for the classi�cation task.
A high-level overview of the architecture of this model can be found in the appendix
(Figure 9).

BERT

Given recent developments in NLP regarding the success of pre-trained contextualized
embeddings (Devlin et al., 2018), we additionally test the performance of a model
where utterances are encoded using BERT. The success of these models relies on self-
attention mechanisms that allow the model to create contextualized representations
with long-range dependencies as well as setups in which the encoder is pre-trained
on large-scale data before being �ne-tuned on the actual task. Here we replace the
word-level LSTM of the Hierarchical LSTM + CRF model with a pre-trained publicly
available implementation of DistilBERT (Wolf et al., 2020). The weights of BERT are
�ne-tuned on the task. Details on the hyperparameters of the neural network models
can be found in the Appendix.

Measures of Speech Act Emergence

Here we introduce measures of speech acts’ age of emergence, both at the level of
children’s production and comprehension.

Production

By analogy to work in word learning (Braginsky et al., 2016; Goodman et al., 2008), we
de�ne the age of acquisition of a speech act in production as the month by which at
least 50% of the observed children produce it.7 More precisely, for each speech act S,

7In line with Snow et al. (1996), we consider that a child acquired a speech act if it is produced at least
twice at a certain age.
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we proceed as follows:

1. For each age in the dataset (i.e., 14, 20 and 32 months), calculate the proportion of
children who are producing S at least twice.

2. Perform a logistic regression over these proportions.

3. Measure the age of �rst production as the age where the logistic regression curve
surpasses the value 0.5.

Comprehension

Studying speech act emergence only from a production point of view may underesti-
mate children’s pragmatic competence. Thus, we additionally introduce a measure for
children’s comprehension, which we de�ne as the ability of children to respond to a
target speech act in a contingent fashion (e.g., responding to a “yes/no question” with
“yes” or “no”). More precisely, for each speech act S, we proceed as follows:

1. Find all utterances produced by the caregivers labelled as S.

2. Find all cases where these utterances are followed by an utterance of the child.

3. For each occurring follow-up utterance, annotate whether its speech act is con-
tingent as a response to S.8 Wemanually annotated the contingency of all combi-
nations of speech act categories that appear in the data. Using this annotation,
we could label each child utterance that follows a caregiver utterance as either
possibly contingent or non-contingent based on the corresponding speech act
category. The contingency annotation can be found in the GitHub repository:
https://github.com/mitjanikolaus/childes-speech-acts.

4. For each age (14, 20 and 32 months), calculate the proportion of contingent follow-
up utterances.

5. Perform a logistic regression over the proportion.9

6. Measure the age of comprehension as the age where the logistic regression curve
surpasses the value 0.5.

8Annotating contingency was done using a binary scale, indicating whether the speech act was possibly
contingent (1) or clearly non contingent (0). A speech act was considered contingent (1) if it can form a
coherent response with respect to the previous speech act, and non contingent (0) otherwise.

9We only regard data points where the proportion was calculated over at least 2 examples, i.e. where
there were at least two utterances with follow-ups.
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Table 1: Accuracy for all models.

Model Accuracy

Majority Classi�er 13.44% (±2.81%)
Random Forests 62.81% (±6.29%)
Support Vector Machine 62.42% (±6.97%)
Conditional Random Field 72.33% (±4.23%)
Hierarchical LSTM + CRF 69.77% (±3.70%)
+ BERT 68.50% (±4.29%)

Inter-Annotator Agreement 81% to 89%

Results and Analyses

First, we compare performance across all models presented above on the New England
corpus. Second, we choose the best performing model and test the extent to which its
predicted labels replicate major �ndings obtained using gold labels from Snow et al.
(1996). Finally, we use themodel to automatically label theNorth American section from
CHILDES and explore how original �ndings from Snow et al. (1996) on the emergence
of speech acts generalize to this larger dataset.

ComparingModels of Speech Act Labeling

We evaluate our models on the speech act annotations of utterances in the New England
corpus (Snow et al., 1996). We employ 5-fold cross validation so that we evaluate (and
later utilize in all analyses) only the predicted labels on the parts of the corpus that were
not seen by the model in the training phase. To this end, and to obtain labels for the
whole New England corpus, we train models on 5 di�erent training sets, always holding
out 20% of the data. Then we use each of the trained models to label their respective
test sets which together form a set of predicted speech act labels for the whole New
England corpus.

We report the mean and standard deviation (based on the �ve cross-validation runs)
of each model’s accuracy in Table 1. The majority classi�er had a high score given the
relatively large label space. This could be explained by the fact the label distribution
is heavily skewed (Figure 1). A small set of speech acts are used very frequently while
several others are rarely used. As for other baseline models, i.e., random forests and
support vector machine, the scores are relatively high despite the fact that they do
not have access to the conversation history or dependencies in the label space. Our
more sophisticatedmodels (Hierarchical LSTMwith andwithout BERT) did not improve
performance much, which could be explained by the lack of large-scale training data.
Further, in the case of the BERT-based model, we hypothesize that we do not see any
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Figure 1. Distribution of frequencies of all speech acts in the New England corpus. Labels
from the INCA-A tagset are listed in the Appendix.

performance gains because this model is pre-trained on large text corpora (based on
e.g. Wikipedia) that do not have much in common with the dynamics of child-caregiver
conversations.

Finally, we �nd that the CRF model shows the highest accuracy scores, outperforming
the baselines aswell as themore complex neural networkmodels. Its large performance
gains over the baseline are most likely explained by its ability to track transition proba-
bilities in the label space. This property is crucial for the task of speech act annotation;
given a speech act sequence, certain speech acts are very likely to follow and others
are not. The CRF is the best-performing model, and thus, it is the one we for the rest of
analyses in the paper.

Amount of Training Data

We further investigate the e�ects of the amount of training data on the performance of
the CRF model. Figure 2 presents the test accuracy as a function of training set size for
this model. The performance indicated in Table 1 was obtained when the model was
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trained on 80% of the dataset (around 44,000 utterances). However, from the learning
curve in Figure 2 we can see that the model actually achieves decent scores (around
65% accuracy) when trained on only 5,000 annotated utterances, and almost converged
when trained on about 20,000 annotated utterances.

Figure 2. CRF: Accuracy as a function of training set size.

Error Analysis

To gain a better understanding of our best performing model (the CRF), we perform
an error analysis. For each speech act category, we calculate precision, recall and f1-
score. Results can be found in the Appendix. The variance of the f1-scores for di�erent
categories is remarkably high, with values ranging from 0 to 95%. Performance is best
for speech acts QN (“Ask a product-question”) and EA (“Elicit onomatopoeic or animal
sounds.”) and worst for speech acts such as CR (“Criticize or point out error in nonverbal
act”) and AL (“Agree to do something for the last time.”).

One important factor a�ecting the per-label performance is the availability of training
examples and the distribution of speech acts in the dataset is heavily skewed with a long
tail (see Figure 1). For labels with only very few training examples themodel struggles to
pick up important features. Indeed we �nd a high correlation between the frequency of
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labels and their respective f1-score (Spearman correlation coe�cient: 0.59, p < 1 · 10−5).
The example in Table 2 illustrates this �nding. In the conversation, all speech acts have
been predicted correctly by our model except for the last utterance (“You’re a nut”),
which is labelled as ST (“Make a declarative statement”) while the ground-truth label is
DS (“Disapprove scold protest disruptive behavior”). Indeed, the speech act DS occurs
very few times in the training data (only 40 examples, i.e., less than 0.1% of the training
data).

Table 2: Excerpt of a conversation from the New England Corpus (Child: Liam, Age: 14
months, Transcript: 99) with manually-annotated speech acts ("Manual") and predicted
speech acts ("CRF"). Labels from the INCA-A tagset are listed in the Appendix.

Speech act
Manual CRF

Mother: We’re having a little problem here in the corner. ST ST
(Mother stands up)
(Child unplugs cord from wall again)
Mother: Liam ! CL CL
(Mother takes hold of Child’s hand)
Mother: No! PF PF
(Mother takes hold of cord and tries to pull it out of Child’s hand,
Child holds onto cord)
Mother: Let go. RP RP
(Child lets go of cord, Mother plugs cord back into wall, Child
watches what Mother does with cord)
Mother: No. PF PF
(Mother picks up Child)
Mother: You’re a nut. DS ST

Another factor that a�ects the model’s performance is what appears to be ambiguities
in the de�nition of some categories in the INCA-A coding scheme. In particular, many
pairs of speech acts are either very similar or hierarchically related (see Cameron-
Faulkner and Hickey (2011) for a similar observation). More concretely, there are
pairs of speech act categories that describe overlapping communicative intents (e.g.,
“Criticize or point out error in nonverbal act” (CR) can overlap with “Disapprove scold
protest disruptive behavior” (DS) and pairs of speech acts where the meaning of one act
appears to be covered by the other broader act (e.g., the speech act “Praise for motor
acts i.e for nonverbal behavior.” (PM) is part of “Approve of appropriate behavior.” (AB)).
Such overlaps in the de�nition of some categories do not help the model make clear
distinctions between the a�ected categories and, thus, tend to con�ate them.

We provide an example for this phenomenon in Table 3. In this conversation, the
mother’s utterance “Good girl” is labelled by the CRF as “Approve of appropriate be-

Volume 2, Issue 1, 31 December 2022



Language Development Research 279

havior.” (AB), which is not incorrect, but di�ers from the human annotation, which
categorizes it as “Praise for motor acts i.e for nonverbal behavior.” (PM). We hypoth-
esize that collapsing overlapping categories would improve the model performance.
Indeed, we experimentedwith an alternative coding schemewherewe collapsed certain
categories and the model achieves a higher average performance of 75.35% (±4.17%)
accuracy. However, for the remainder of this work, we continue using the original
coding scheme to ensure comparability to the work of Snow et al. (1996).

Table 3: Excerpt of a conversation from the New England Corpus (Child: Joanna, Age: 20
months, Transcript: 32) with manually-annotated speech acts ("Manual") and predicted
speech acts ("CRF"). Labels from the INCA-A tagset are listed in the Appendix.

Speech act
Manual CRF

Mother: Take it [= book] out of the box. RP RP
(The child struggles with both hands on the open book. Afterwards, the
child pulls the book up and out of the box)
Mother: Good girl. PM AB

Replicating Findings from Snow et al. (1996)

Here we validate the CRF model by testing its ability to lead to conclusions similar
to the ones obtained in Snow et al. (1996). To this end, and as we mentioned earlier,
we proceed in two steps: First, we replicate major �ndings in Snow et al. (1996) using
their hand-annotated labels. Second, we compared them to the corresponding �ndings
obtained using the labels that were predicted using our CRF model. In addition to
replicating main analyses from Snow et al. (1996) (i.e., development of the size and
distribution of speech acts), we also tested the models with a new, more speci�c task
that consists of predicting the precise normative age of acquisition of speech acts in
both production and comprehension.

Development of the Number of Distinct Speech Acts

Figure 3 shows the proportion of children producing a given number of di�erent speech
act types for the three age groups studied in Snow et al. (1996) (This is a direct replication
of Figure 2 in the original paper). Next to each bar obtained from the hand-annotation
(in blue) we plot the corresponding bar from the automatic labeling by CRF on the same
dataset (in orange).

We can see that the patterns observed in Snowet al. (1996) arewell captured by automatic
labeling data: At 14 months, most children produce only a handful of speech act types,
such as statements (ST), repetitions (RT) and markings (MK). This number increases on
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Figure 3. Proportion of children producing a given number of distinct speech act types
at 14, 20, and 32 months old. Note that the y-axis for the bottom two figures has been
shortened for better visibility.

average for children aged 20 months where now a substantial proportion of children
become able to produce around 10 di�erent speech act types (now starting to use
for example requests (RP), stating intent (ST) and product questions (QN)). Finally, at
32 months, children typically produce between 10 and 20 di�erent speech act types
(starting to use for example polar questions (YQ)). When compared to hand annotated
data in the New England corpus, the model was able to capture not only the rough
number of speech act types produced at each age range, it was also able to capture quite
well the variability between children at each age.

We can quantify the similarity between the hand- and automatic-annotation-based
distributions by computing their Jensen-Shannon distances. This measure quanti�es
the dissimilarity between two probability distributions with values ranging from 0
(maximally similar) to 1 (minimally similar). The similarities of distributions from
manually and automatically annotated data were as follows: 0.262 (at 14 months), 0.367
(at 20 months), and 0.186 (at 32 months).

Development of the Distribution of Speech Acts

Figure 4 shows the replication of the analysis on the development of the distribution of
speech acts (cf. Table 9 in Snow et al. (1996)). This analysis compares the proportions of
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utterances that fall within each speech act category for the three age groups. Similar
to the previous graph, next to each bar obtained from the hand-annotation (in blue)
we plot the corresponding bar from the automatic labeling by CRF (in orange). We
can see that the frequency distributions look remarkably similar in each age group
(see Appendix for the legend of what each speech act label refers to). Jensen-Shannon
distances of automatically annotated data (New England) compared to data from Snow
et al. (1996) were: 0.089 (14 months), 0.103 (20 months), 0.080 (32 months).

Figure 4. Frequency distribution of speech acts for di�erent ages. Note that the y-axes
have been trimmed for better visibility (The frequencies for YY at 14 months are around
0.6).

Generalizing Findings to Data in CHILDES

In the previous subsection, we validated the model by comparing �ndings from pre-
dicted and hand-annotated labels of the same data. Here, we use the trained model to
automatically annotate data from English corpora in CHILDES. The goal is to investigate
the extent to which �ndings obtained in Snow et al. (1996) generalize to a larger number
of children and to the variety of communicative contexts represented in these new
corpora.

More precisely, we trained the CRF on the whole New England corpus (no held-out test
set) and used it to annotate speech acts on transcripts of children aged between 14 to 32
months old in the North American English corpora of CHILDES (excluding transcripts
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from the New England corpus). Next, we perform the same analyses as in the previous
section using the large-scale annotated data.

Development of the Number of Distinct Speech Acts

The green bars in Figure 3 show the number of di�erent speech act types produced
by children from CHILDES. Developmental patterns are very similar to the original
graphs (in orange), with the exception of the oldest age group (i.e., 32 months) where
we found that more children produced a relatively larger number of di�erent speech
acts (more than 20). Jensen-Shannon distances of automatically annotated data (English
CHILDES) compared to data from Snow et al. (1996) were: 0.209 (at 14 months), 0.222 (at
20 months), and 0.418 (at 32 months).

Development of the Distribution of Speech Acts

We present the frequency distribution of speech acts for children from CHILDES in the
green bars of Figure 4. Again, patterns obtained by Snow et al. (1996) generalize very
well. Jensen-Shannon distances of automatically annotated data (English CHILDES)
compared to data from Snow et al. (1996): 0.204 (14 months), 0.173 (20 months), 0.197 (32
months).

Age of Acquisition of Speech Acts

In this section, we present results for the age of acquisition of speech acts in terms of
production and comprehension using the measures de�ned in the Section “Measures
of Speech Act Emergence”.

Production

We calculated the age of acquisition for a subset of 25 speech acts10 using both the
manually-annotated labels from Snow et al. (1996) and the automatically generated
labels from the CRF on the same dataset. Examples for regression plots and predicted
ages of acquisition for all speech acts can be found in the appendix. Then, we calculated
the Spearman rank-order correlation11 to examine whether the order of emergence of
speech acts is correctly captured by the automatically annotated data.

10These were the ones for which we could �t a logistic regression using at least two data points. While
the number of acts we keep may seem small compared to the original size (65 possible speech acts
excluding categories for unintelligible speech acts, YY and OO), it is due to the fact that the frequency
distribution is highly skewed: Most categories occurred rarely in the corpus (Figure 1) and therefore did
not provide enough data to be used in the calculation of age of acquisition.

11The rank-order correlation was computed over the subset of 25 speech acts for which an age of
acquisition could be calculated, details in the Appendix.
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Figure 5. Correlation of age of acquisition in terms of production as calculated using data
from Snow et al. (1996) and automatically annotated data for the New England corpus
and CHILDES. Note that some speech acts are not displayed because the axes limits were
set to 60 months for better visibility of early development. However, the correlation was
calculated for all values.

The resulting high correlation (see Figure 5 (le�); r ≈ 0.84, p < 1·10−6) indicates that the
automatically generated labels can provide reasonable estimates for the developmental
trajectory of speech acts.

We also calculated ages of acquisition using the predicted labels on CHILDES data.
Figure 5 (right) shows the correlation with the ages calculated using New England data.
Spearman rank-order correlation was r ≈ 0.81 (p < 1 · 10−6).

Comprehension

To illustrate the emergence of speech acts in terms of comprehension, we �rst show ob-
served adjacency pairs for adult-child turns for di�erent ages in Figure 6. The youngest
children respond with unintelligible utterances or utterances without clear function
(YY, OO) in most of the cases displayed. Children at 20 months show some consistent
patterns in their response behavior: Polar and product questions (YQ, QN) are answered
with adequate responses (AA, SA). Polite requests (RQ) are either accepted (AD) or refused
(RD). Requests or suggestions (RP) are also usually accepted or refused, although in some
cases children answer with a statement (ST), which is not contingent. Additionally,
there is still a large amount of utterances without clear function (YY). Only by the age of
32 months, most of the parents’ utterances are addressed with contingent responses (at
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Figure 6. Adjacency pairs of speech acts for children of 14, 20, and 32 months. Utterances
by the caregiver are on the le�, responses by the children on the right. Filtered to display
speech acts that occur in at least 0.01% of the data for better visibility. The colors indicate
the higher-level interchange type for each speech act (see Snow et al., 1996).

least as captured at the broad level of speech act categories).
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Examples for predicted ages of acquisition for all speech acts can be found in the
appendix. We observe that while there are similar trajectories in production and com-
prehension for some speech acts (e.g. RR), we also observed some striking di�erences in
other cases. For example, “demands for permission” (FP) is produced very late (around
52 months), but they are already understood a lot earlier (around 14 months).

As done for the production measure, we calculated the age of acquisition using both the
ground-truth labels from Snow et al. (1996) and the automatically generated labels from
the CRF on the same dataset, as well as using generated labels on the English CHILDES
data. As in production, the Spearman rank-order correlation coe�cient12 (see Figure 7,
le�; r ≈ 0.46, p < 0.01) indicates a statistically signi�cant positive correlation (however
lower than for the production measure). For the correlation with predicted labels on
CHILDES data, the Spearman rank-order correlation was r ≈ 0.63 (p < 1 · 10−5; see
Figure 7, right).13

Figure 8 shows the full distribution of age of emergence in both production and compre-
hension. It shows that, overall, comprehension of speech acts precedes their production.
Indeed, a paired t-test (using only speech acts for which we could calculate an age of
acquisition both in production and in comprehension) shows a mean di�erence of 2.51
months (p < 0.05).14

Finally, we ask how the trajectory of emergence in comprehension compares to that of
production. For instance, does production follow the same pattern/order of comprehen-
sion, only delayed? Pearson’s correlation between the two developmental trajectories
is r ≈ −0.07 (p ≈ 0.76), indicating that speech acts emerge di�erently in production
and comprehension, and suggesting that these two dimensions of development may be
explained by di�erent factors.

12The rank-order correlation was computed over the subset of 47 speech acts for which an age of
acquisition in terms of comprehension could be calculated, i.e. cases in which we could �t a logistic
regression using at least two data points, details in the Appendix.

13As we said above, we chose to �t the age of acquisition using logistic regressions following the
method used for the AoA of words Frank et al. (2021). The main limitation here was the sparsity of
available annotated data: The study by Snow et al. (1996) only considers 3 di�erent age groups: Children
at 14, 20, and 32 months. While the �tted curves were good for production, this was less obvious for
comprehension data based on contingency (see the graphs in the appendix). Note, however, that for
our analysis, i.e., correlating AoA from predicted vs. hand-annotated speech acts (Figures 6 and 7), we
only needed the ranking of AoA, not necessarily absolute values of ages. So, one simple way to test the
robustness of these correlations is the following: Instead of estimating the AoA using logistic regressions,
we can estimate the ranking without �tting any model and directly from the data. More speci�cally, we
computed the proportion of children that produced (or understood) a given speech act (averaged over
the three-time points) and ranked the speech acts according to these proportions as a proxy for their
order of acquisition. The resulting rank-order correlations obtained using this model-free method were
very close to the correlations found using the regression method, thus corroborating these �ndings.

14When using the alternative coding scheme with collapsed speech act categories (see Section "Error
analysis"), this di�erence increases to 9.61 months (p < 0.01).
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Figure 7. Correlation of age of acquisition in terms of comprehension as calculated using
data from Snow et al. (1996) and automatically annotated data for the New England cor-
pus and CHILDES. Note that some speech acts are not displayed because the axes limits
were set to 60/40 months for better visibility of early development. However, the correla-
tion was calculated for all values.

Development of Speech Acts Beyond 32 Months

Since CHILDES contains data for children beyond the age range studied in Snow et al.
(1996), we could also make predictions about the age of acquisition of some speech
acts that could not be calculated using the New England corpus because they were
not yet acquired by children by 32 months. To this end, we use all transcripts up to
54 months (data become sparse beyond that age). Using this larger set of annotations,
we can for example estimate the age at which children produce speech acts such as
prohibitions (PF, at 84.9 months), give reason (GR, at 87.0 months), polite requests (RQ,
at 66.2 months), and make promises (PD, at 130.7 months)). These predictions are
consistent with the developmental literature showing a late acquisition of some of these
speech acts (Matthews, 2014). A table of all results can be found in the Appendix.

Discussion

Theway childrenmaster languageuse in social interaction is an important frontier in the
study of language development (Bloom & Lahey, 1978; Casillas & Hilbrink, 2020; Clark,
2018; Matthews, 2014; Snow et al., 1996). Answering this question has also the potential
for impact in clinical applications (e.g., early and automatic detection of communicative
di�culties). However, the investigation of this phenomenon in ecological valid settings
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Figure 8. The distribution of the speech acts’ age of emergence in comprehension and
production.

requires complex, large-scale data annotation which is prohibitively expensive to do by
hand only.

In the current work, we introduced a simple model that allows for reliable automatic
labeling of major speech act categories in the context of child-caregiver social inter-
actions. We trained the model on a dataset that was previously hand-annotated using
INCA-A, a comprehensive coding scheme for speech acts in early childhood (Ninio et al.,
1994; Snow et al., 1996). When tested on parts of the data it had not seen in the training,
the model predicted speech acts that captured quite well the major �ndings reported
in this earlier work such as the average trajectory of speech act development and the
patterns of variations between children.

Besides providing a valuable tool that we make available to the community, a major
theoretical contribution of the paper was testing how earlier �ndings — obtained using
hand annotation of a small number of children — generalize to a larger and di�erent
sample. We tested this generality by automatically labeling the entire American English
section of CHILDES for speech acts. We found that, across all major analyses, children
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show, overall, patterns that were very similar to the ones reported by (Snow et al., 1996).
The main di�erence was that older children in the larger dataset produced noticeably
more speech act types than children of similar age in the original study (Figure 3,
bottom). This di�erence could be due to the fact that the larger dataset contains a richer
set of conversational contexts, giving children the opportunity to performmore distinct
speech act types.15

Anther contribution of this work is the introduction of twomeasures to quantify the age
of emergence of speech acts in children’s production and comprehension. We found that
these two measures (i.e., comprehension and production) did not correlate, indicating
that they provide non-redundant information about development and suggesting that
speech acts may develop di�erently in production and comprehension. In particular,
factors that would be relevant for learning in production may not necessarily be the
same in comprehension, especially in the rather asymmetrical context of child-caregiver
interactions.

To illustrate, take the case of “Yes/no requests” (RQ) vs. “yes/no questions for infor-
mation.” (YQ). In production, we replicated Snow et al. (1996)’s �nding that children
produce yes/no questions as requests later than yes/no questions for information (very
few children produced the �rst act and only at 32 months). This fact is also in line with
the literature on politeness which suggests that children produce polite requests quite
late (Axia & Baroni, 1985). Interestingly however, in comprehension we found that on
average children responded contingently to the yes/no requests at about the same age
as they do to yes/no questions for information.

When using automatically annotated data fromourmodel, we found that their predicted
measures of age of acquisition correlated to a high degree with the ages of acquisition
predicted frommanually labelled data, especially in production. In a direct application,
the model allowed us to estimate the age of acquisition of some late emerging speech
acts (e.g., “promise” and “give reason”) thanks to automatic labeling of newdata children
that were older in CHILDES than in the original New England corpus.

While the automatic labelling model provides a high average accuracy score, the per-
label scores showed high variability. While, as we argued above, some of this variability
can be explained by the frequency of occurrence in the training data and by ambiguities
in the de�nition of some categories in the coding scheme, we speculate that other
factors could be in play as well, especially the linguistic variability with which a speech

15Another observation was that the proportion of children producing no speech acts (i.e., 0 in Figure
3) at 14 months is noticeably higher in the automatically annotated data than in the original data. This
means that our model classi�ed more utterances as unintelligible or utterance without function than the
human annotators. We hypothesize that the highly skewed distribution of speech acts in the dataset for
children at this age, with many (but not all) utterances actually being without clear function, leads the
model to over�t to this case and miss some actually meaningful utterances.
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act can be expressed.16

For example, there is a variety of ways one can express the act of “giving reasons” (GR) in
linguistic terms, whichmakes it relatively hard to recognize based only on the linguistic
features of its instances (F-score = 0.3). In comparison, the set of linguistic terms
typically used to express, say, the act of “requesting repetition” (RR) or “eliciting question”
(EQ) is much more constrained, making their recognition easier (F-scores are 0.53 and
0.81, respectively), although all three categories have roughly similar (low) frequency
of occurrence in the data. Take also the case of “stating intent” (SI) and “prohibiting”
(PF). Both of these speech acts are similarly frequent (around 300 occurrences), but
the F-score for PF is much higher than the one for SI (0.76 and 0.43, respectively). This
di�erence could also be due to the fact that “prohibiting” is much more constrained
linguistically than “stating intent.”

Researchers have made a similar argument about the role that linguistic variability can
have on their learnability by children (e.g. Bloom & Lahey, 1978). This analogy is to be
takenwith a grain of salt though. More generally, it is not warranted tomake a direct link
between the learnability of speech act categories by our model and their learnability by
children: In the �rst case, the model was aimed at optimizing prediction accuracy and
had been trained on labeled data. In the second case, children learn without having
access to the true labels of the utterances. Models that aim at “discovering” categories
in an unsupervised fashion are more likely to be insightful about the learnability of
speech act categories by children (e.g. Bergey et al., 2021).

Limitations and FutureWork

Our model learns how to recognize speech acts from their linguistic instances only.
While the scores were quite good and allowed us to replicate major �ndings that were
obtained using human annotations, future work should seek to build more comprehen-
sive models that integrate multimodal cues — besides verbal language — that likely play
a role in signaling communicative intents including vocal and visual cues (e.g. Fernald,
1989; Senju & Csibra, 2008; Tomasello et al., 1997; Trujillo et al., 2018). This e�ort will
involve collecting multimodal data of spontaneous child-caregiver conversations (e.g.
Bodur et al., 2021) as well as the development of machine learning methods for the
automatic annotation of speech acts using linguistic, acoustic, and visual features.

Another limitation concerns the measures we used to quantify the age of acquisition.
While it is easier to quantify acquisition throughproduction, it is trickier tohave aperfect
measure of comprehension in a natural, uncontrolled context. Here, we provided a
contingency-based measure. Such an operationalization has allowed us to uncover new

16Indeed, the higher the variability within a given category, the more examples the model needs to
learn it.
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interesting phenomena (namely that children understand some speech act before they
produce them).

However, measuring contingency is a notoriously di�cult task, especially in a naturalis-
tic setting and with verbal data only. First, responses can be contingent in various ways:
For example, asking a yes-no question like "Do you want a banana?" can be followed by
many speech acts that can all be contingent such as "Yes!", "I just ate one", or "now?".
Other speech acts such as declarative statements do not necessarily require a response,
so the listener might understand the communicative intent without necessarily giving a
response. In this work, we partly avoided these di�culties by using a broad binary anno-
tation that judged whether a response was possibly contingent or totally inappropriate
(e.g., a "greeting" a�er a "yes-no question").

In addition to these theoretical di�culties, there are practical di�culties related to
the fact that children (especially the younger ones) may respond contingently but in
a non-verbal fashion (a case that is not captured by the current model). Besides, they
sometimes respond in an unintelligible fashion (a case which we had to classify as
non-contingent). Another case is when they do not respond at all (leading to more data
exclusion). However, when children do not respond (e.g., a�er being asked a question),
it does not necessarily mean that they did not understand the speech act. For example,
children may lack the appropriate vocabulary to formulate an adequate response or
they may just not be interested in following up.

Finally, we did not take into account the timing of responses (as several CHILDES
corpora lack timestamps in the transcripts). This is important, because if a child’s
response only follows a caregiver’s utterance a�er a long temporal delay, it may not be
an actually response, but a new initiation. Thus, it would not be appropriate to judge the
contingency of this “response” with respect to the caregiver’s utterance that preceded
it.

All these reasons may contribute to making our contingency measure under-estimate
children’s early age of comprehension. That is, it is very likely that children understand
many speech acts at amuch earlier age thanwhatwe report in thiswork. That said, some
results using this measure, especially the fact that comprehension precedes production
in some categories, would still hold. In fact, if anything, a more accurate measure of
comprehension would just make such conclusions stronger.

Finally, we found several limitations the INCA-A coding scheme when automatically
labeling utterances, including overlapping aswell as hierarchically related categories (cf.
the error analyses section as well as Cameron-Faulkner (2014) for similar observations).
In the future, the coding scheme should be updated in order to make it less ambiguous
for automatic annotation.
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To conclude, this work has introduced both novel research tools and measures that we
hope will pave the way to a more quantitative approach to the study of children’s speech
act development in the wild.
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Appendix

INCA-A Tagset

Speech acts of the INCA-A coding scheme (Ninio et al., 1994) are listed in Table 4.

Table 4: Speech acts of the INCA-A tagset.

Speech Act Description

AA Answer in the a�rmative to yes/no question.
AB Approve of appropriate behavior.
AC Answer calls/ show attentiveness to communications.
AD Agree to carry out an act requested or proposed by other.
AL Agree to do something for the last time.
AN Answer in the negative to yes/no question
AP Agree with proposition or proposal expressed by previous speaker
AQ Aggravated question expression of disapproval by restating a question
CL Call attention to hearer by name or by substitute exclamations
CM Commiserate express sympathy for hearer’s distress.
CN Count.
CR Criticize or point out error in nonverbal act.
CS Counter-suggestion/ an indirect refusal.
CT Correct provide correct verbal form in place of erroneous one.
CX Complete text if so demanded.
DC Create a new state of a�airs by declaration
DP Declare make-believe reality.
DR Dare or challenge hearer to perform an action.
DS Disapprove scold protest disruptive behavior.
DW Disagree with proposition expressed by previous speaker.
EA Elicit onomatopoeic or animal sounds.
EC Elicit completion of word or sentence.
ED Exclaim in disapproval.
EI Elicit imitation of word or sentence by modelling or by explicit command
EM Exclaim in distress pain.
EN Express positive emotion.
EQ Eliciting question (e.g. hmm?).
ES Express surprise.
ET Express enthusiasm for hearer’s performance.
EX Elicit completion of rote-learned text.
FP Ask for permission to carry out act.
GI Give in/ accept other’s insistence or refusal.
GR Give reason/ justify a request for an action refusal or prohibition
MK Mark occurrence of event (thank greet apologize congratulate etc.).
NA Intentionally nonsatisfying answer to question
ND Disagree with a declaration.
OO Unintelligible vocalization.
PA Permit hearer to perform act.
PD Promise.
PF Prohibit/forbid/protest hearer’s performance of an act
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PM Praise for motor acts i.e for nonverbal behavior.
PR Perform verbal move in game.
QA Answer a question with a wh-question.
QN Ask a product-question (wh-question)
RA Refuse to answer.
RD Refuse to carry out an act requested or proposed by other.
RP Request propose or suggest an action for hearer or for hearer and speaker.
RQ Yes/no question or suggestion about hearer’s wishes and intentions
RR Request to repeat utterance.
RT Repeat or imitate other’s utterance.
SA Answer a wh-question with a statement.
SC Complete statement or other utterance in compliance with request.
SI State intent to carry out act by speaker.
SS Signal to start performing an act such as running or rolling a ball
ST Make a declarative statement.
TA Answer a limited-alternative question.
TD Threaten to do.
TO Mark transfer of object to hearer
TQ Ask a limited-alternative yes/no question.
TX Read or recite written text aloud.
WD Warn of danger.
WS Express a wish.
XA Exhibit attentiveness to hearer.
YA Answer a question with a yes/no question.
YD Agree to a declaration.
YQ Ask a yes/no question.
YY Make a word-like utterance without clear function.

Model Details

Hyperparameters

The models were trained until convergence on a held-out dev set (10% of the training
data). A small set of hyperparameter con�gurations based on best practices were
evaluated in preliminary experiments. The con�guration listed in Table 5 led to the
best results.

The learning rate for training the BERT-based model is substantially lower than for the
other model as this model is already pre-trained and we are only �ne-tuning it on the
task.
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Table 5: Model hyperparameters

Hierarchical LSTM + CRF

vocabulary size 1000
word embeddings size 200
word-level LSTM hidden layer size 200
utterance-level LSTM hidden layer size 100
dropout 0.2
optimizer Adam
initial learning rate 0.0001

+ BERT

same as above, except for:
initial learning rate 0.00001

Architecture

A high-level overview of the architecture of the hierarchical LSTM+CRF model can be
found in Figure 9.

Figure 9. Architecture of the Hierarchical LSTM + CRF model.
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Error Analysis

Table 6 contains per-label precision, recall, and F1-scores for a model trained on 80%
of the New England corpus and tested on the remaining 20%.

Table 6: Error analysis

precision recall f1-score support

AA 0.628 0.628 0.628 148
AB 0.690 0.454 0.547 108
AC 0.603 0.527 0.562 245
AD 0.674 0.651 0.662 229
AL 0.000 0.000 0.000 1
AN 0.625 0.571 0.597 35
AP 0.658 0.603 0.629 239
CL 0.800 0.875 0.836 160
CM 0.375 0.231 0.286 13
CN 0.200 0.500 0.286 4
CR 0.000 0.000 0.000 13
CS 0.273 0.086 0.130 35
CT 0.529 0.138 0.220 65
DC 0.750 0.316 0.444 19
DP 0.000 0.000 0.000 8
DS 0.375 0.273 0.316 11
DW 0.633 0.404 0.494 47
EA 0.974 0.884 0.927 43
EC 0.857 0.429 0.571 14
ED 1.000 0.333 0.500 15
EI 0.632 0.800 0.706 15
EM 0.000 0.000 0.000 1
EQ 0.750 0.849 0.796 53
ET 0.739 0.459 0.567 37
EX 0.000 0.000 0.000 1
FP 0.833 0.694 0.758 36
GI 0.375 0.158 0.222 19
GR 0.350 0.226 0.275 31
MK 0.733 0.814 0.772 996
NA 0.000 0.000 0.000 30
ND 0.000 0.000 0.000 1
PA 0.600 0.409 0.486 22
PD 0.800 0.211 0.333 19
PF 0.830 0.702 0.761 272
PM 0.518 0.345 0.414 84
PR 0.769 0.652 0.706 296
QN 0.940 0.958 0.949 1104
RD 0.679 0.494 0.571 77
RP 0.797 0.786 0.791 1689
RQ 0.830 0.848 0.839 506
RR 0.448 0.714 0.550 42
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RT 0.467 0.340 0.394 144
SA 0.782 0.662 0.717 417
SC 1.000 0.455 0.625 11
SI 0.551 0.405 0.466 309
SS 0.811 0.664 0.730 116
ST 0.690 0.791 0.737 1620
TA 0.000 0.000 0.000 3
TO 0.333 0.222 0.267 72
TQ 1.000 0.200 0.333 10
TX 0.818 0.863 0.840 73
WD 0.875 0.700 0.778 10
XA 0.671 0.464 0.548 110
YA 0.769 0.408 0.533 49
YD 0.000 0.000 0.000 5
YQ 0.715 0.772 0.742 705

macro avg 0.567 0.446 0.479 10437
weighted avg 0.738 0.725 0.726 10437
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Ages of Acquisition

Regression Plots

The regression plots in Figure 10 and 11 illustrate the proportion of children producing a
given speech act (in the case of comprehension, the proportion of contingent responses
made by children) across time as well as the best logistic �ts used to predict the speech
acts’ precise age of acquisition. We depict only 6 exemplary speech acts for better
readability. The data to create these plots was the original annotation data from Snow
et al. (1996).

Figure 10. Regression plot for production.
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Figure 11. Regression plot for comprehension.
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Predicted Ages of Acquisition

The following tables show the age of acquisition (in months) for speech acts calculated
using di�erent data sources ("-" indicates that no age of acquisition could be calcu-
lated, i.e. at no observed time the proportion of children producing the speech act
surpassed 0.5). We calculated the ages of acquisition in terms of production (Table 7)
and comprehension (Table 8).

Table 7: Predicted ages of acquisition for production.

Speech act Snow CRF CHILDES

AA 20.4 20.4 16.2
AC 30.8 32.9 32.9
AD 20.4 22.5 22.5
AN 35.0 30.8 26.6
AP 39.1 47.5 30.8
CL 41.2 45.4 70.3
CS 99.5 - 39.1
DC 45.4 45.4 53.7
DW 41.2 64.1 35.0
FP 51.6 - 37.1
MK 20.4 18.3 16.2
PA 45.4 45.4 45.4
PF - 43.3 35.0
PR 28.7 - -
QN 26.6 24.6 24.6
RD 26.6 24.6 22.5
RP 18.3 20.4 18.3
RR 43.3 39.1 41.2
RT 20.4 20.4 16.2
SA 18.3 16.2 10.0
SC 43.3 53.7 -
SI 22.5 26.6 22.5
ST 16.2 16.2 14.2
TO - 35.0 37.1
YQ 30.8 28.7 22.5

Table 8: Predicted ages of acquisition for comprehension.

Speech act Snow CRF CHILDES

AA 26.6 24.6 22.5
AB 24.6 35.0 24.6
AC 24.6 26.6 22.5
AD 20.4 24.6 22.5
AN - - -
AP 14.2 20.4 20.4
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AQ - - -
CL 30.8 35.0 30.8
CM 20.4 - 43.3
CN - - -
CR - - -
CS 28.7 30.8 10.0
CT 16.2 16.2 10.0
DC 10.0 - 24.6
DS - - -
DW 30.8 10.0 22.5
EA 10.0 12.1 10.0
EC - - -
EI 10.0 22.5 10.0
EQ 20.4 22.5 18.3
ET 20.4 24.6 26.6
FP 14.2 28.7 10.0
GI 32.9 32.9 49.5
GR 10.0 26.6 20.4
MK 22.5 22.5 20.4
PA 22.5 28.7 30.8
PD 10.0 59.9 10.0
PF 32.9 26.6 30.8
PM 20.4 26.6 26.6
PR 22.5 24.6 24.6
QN 22.5 22.5 10.0
RD 10.0 - -
RP 32.9 35.0 37.1
RQ 22.5 26.6 28.7
RR 35.0 39.1 99.5
RT 22.5 10.0 10.0
SA 20.4 18.3 22.5
SI 24.6 26.6 16.2
SS 30.8 22.5 30.8
ST 24.6 24.6 18.3
TO 26.6 35.0 24.6
TQ 20.4 12.1 10.0
TX 30.8 28.7 24.6
WD 24.6 - 87.0
XA 24.6 24.6 26.6
YA 26.6 28.7 26.6
YQ 24.6 24.6 26.6
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Predicted Ages of Acquisition Including Data of Older Children

Table 9 presents the ages of acquisition in terms of production including data from older
children (up to 54 months). We show only speech acts for which the age of acquisition
could be calculated, i.e. for which at some age the proportion of children producing
the speech act surpassed 0.5 .

Table 9: Predicted ages of acquisition including older children

Speech act Age of acquisition

AA 18.3
AC 45.4
AD 32.9
AN 41.2
AP 101.6
AQ 155.7
CL 136.9
CN 95.3
CR 141.1
CS 149.4
DP 107.8
DW 76.6
EA 91.2
EI 164.0
EM 180.6
EQ 93.2
FP 78.7
GR 87.0
MK 16.2
PA 139.0
PD 130.7
PF 84.9
QN 35.0
RD 39.1
RP 10.0
RQ 66.2
RR 66.2
RT 10.0
SA 10.0
SI 20.4
ST 10.0
TA 95.3
TQ 62.0
YA 188.9
YQ 26.6
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