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Abstract: Many developmentalists have shifted to remote research. This project uses secondary data 
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ticipants; however, higher rates of co-occurring child behaviors were associated with higher rates of 
missing data. Agreement between coders for eye gaze data was comparable to in-lab studies. Results 
affirm the usefulness of remote, experimenter-moderated gaze-based research with autistic and non-
spectrum children. 
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Introduction 
 
With the COVID-19 pandemic, researchers devised new strategies for pursuing their 
work, including remote data collection via videoconferencing platforms (Tsuji et al., 
2022). This approach appeared to yield similar results to in-person paradigms (Bánki 
et al., 2022; Chuey et al., 2021; Steffan et al., 2023) and offered unanticipated enroll-
ment benefits for sample diversity (Shields et al., 2021, Ozernov-Palchik et al., 2022), 
making it likely to persist. These new opportunities are exciting but also pose poten-
tial challenges. When participants are at home, the experimenter has less control 
over the environment (Gijbels et al., 2021), which could lead to poorer quality data. In 
the current study, we used secondary data analysis to examine the quality of eye-gaze 
data collected remotely with young children on the autism spectrum and with non-
spectrum children. Both groups completed an experimenter-moderated language 
learning task using a variant of the preferential looking paradigm (Golinkoff et al., 
1987) on Zoom.1  
 
The measure of interest in the current study is children’s eye gaze as they looked at 
their video screen and heard an auditory prompt directing their attention to a partic-
ular image. Gaze was recorded using a webcam and later coded offline by trained cod-
ers. This paradigm, sometimes referred to as “intermodal preferential looking” or 
“looking while listening” (e.g., Fernald et al., 2008; Golinkoff et al., 1987) has been 
successfully used with autistic children in lab settings (e.g., Bebko et al, 2006; Ellis 
Weismer et al., 2016; Horvath et al., 2018; Venker et al., 2013) and in the home with 
experimenters bringing a portable setup (e.g., Goodwin et al., 2012; Naigles & Tovar, 
2012; Swensen et al., 2007). 
 
The central construct of this investigation—the quality of eye-gaze data collected re-
motely—requires consideration of different metrics of “eye-gaze data quality”. In 
terms of eye-gaze quality, one important metric is missing data; that is, those mo-
ments when direction of gaze cannot be determined or when the child is looking off-
screen. Missing data are inevitable, because blinking results in missing data. How-
ever, it can also occur because, for example, child participants may lean forward to 
look more closely at the screen, leaving their eyes outside the camera’s range, or they 
may turn their heads to look at a caregiver. Some of these behaviors may be influ-
enced by setting (i.e., lab-based vs. remote home-based) and diagnosis. For instance, 
Lapidow and colleagues (2021) noted that caregivers were more inclined to interact 

 
1 The terms autism, autism spectrum and autism spectrum disorder (ASD) will be used interchangea-
bly. Moreover, in light of recent dialogue (e.g., Botha et al., 2021) around diverse preferences for per-
son-first versus identity-first language, the terms “on the autism spectrum” and “autistic” will both be 
used to refer to individuals with a confirmed diagnosis of ASD per the DSM-5 (APA, 2013). Finally, ra-
ther than referring to the comparison sample as “typically developing,” we will use the term “nonspec-
trum”. 
 



 Language Development Research  
 
 
 
 
 

Volume 5, Issue 3 
 

133 

with their children during online (vs. lab-based) administrations. Somewhat surpris-
ingly, then, collecting remote rather than lab-based data from children in manually 
coded gaze-tracking paradigms has not consistently been shown to substantially in-
fluence rates of missing data, at least for nonspectrum children (e.g., Scott & Schulz, 
2017). For example, Morini and Blair (2021) enrolled nonspectrum preschoolers and 
reported that the number of analyzable trials was comparable across face-to-face and 
virtual settings (ranging from a mean difference of .1 to 1.6 trials across ages and trial 
types). Similarly, Bacon and colleagues (2021) used a looking-while-listening virtual 
platform with nonspectrum toddlers; they reported that data integrity was robust 
against internet quality and that the percentage of includable trials (88%) was compa-
rable to previous lab-based rates (e.g., 66% to 78% in Venker et al., 2020). 
 
We might expect that missing data might be more common in remote paradigms for 
autistic (vs. nonspectrum) children, however. Consider the fact, for instance, that 
missing data can result from movement, and autistic children may be particularly 
prone to movement-related data loss (e.g., Venker et al., 2020). Moreover, given sug-
gestions that autistic children may, on one hand, find gaze-tracking paradigms par-
ticularly challenging due to the need to remain relatively still (Venker & Kover, 2015) 
but, on the other hand, may participate more easily in the predictable environment 
of a home-based study (Gijbels et al., 2021), it is particularly important to see if re-
motely collected data quality differs for autistic and nonspectrum children. Most pre-
vious studies with autistic children using preferential looking paradigms in the home 
have had experimenters physically present with the child during the study; this al-
lowed study staff to ensure a consistent setup, monitor the environment for distrac-
tions, and support the child and caregiver in following directions (e.g., Jyotishi et al., 
2017; Potrzeba et al., 2015; Tovar et al., 2015; but see Arunachalam et al., 2024 for a 
recent example of a study with fully remote task administration). With the fully re-
mote task administration required during the pandemic, the experimenter has less 
knowledge of what is occurring in the home environment, including the details of the 
setup as well as what unrelated stimuli might be co-present. Thus, a new look at data 
quality with this population is warranted; in this study, we explore the rate of missing 
data in our remote paradigm, as well as whether this differs by diagnostic group (au-
tistic vs. nonspectrum). 
 
Another important consideration in evaluating the quality of eye-gaze data is inter-
rater reliability. Manual coding of gaze from video generally yields lower track-loss 
rates compared to automatic eye-tracking, including for children on the autism spec-
trum (Haviland et al., 1996; Venker & Kover, 2015; Venker et al., 2020). When using 
manual coding, it is important to have multiple coders and to quantify their agree-
ment (e.g., Fernald et al., 2008). In the home setting, where we have limited control 
over the precise visual angle between the child and the screen, as well as (in the cur-
rent study) over the exact dimensions of the screen being used, it is likely that coders 
will have more difficulty determining whether a child is looking, for example, to the 
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right side of the screen or to an object to the right of the device. Prior findings suggest 
that remote data may present specific difficulties for agreement: Morini and Blair 
(2021) reported that inter-rater reliability was lower for remote data vs. a face-to-face 
setting. We therefore expect that remote data collection may result in lower agree-
ment than lab-based paradigms or in-home studies where the experimenter is present 
and brings their own setup. Inter-rater reliability can be quantified by measuring the 
percent of frames on which coders agree on a particular code for direction of gaze, as 
well as by Cohen’s kappa; Cohen (1960) suggested that kappa values of .81 or higher 
indicate excellent agreement. In our lab’s training process, we require coders to 
achieve a kappa of >.9 with the training standard before they can code independently. 
Nevertheless, because percent agreement is more commonly reported in studies us-
ing this paradigm, we report here on percent agreement. 
 
Therefore, in this study we use secondary data analysis to examine the quality of man-
ually coded gaze data gathered from autistic and nonspectrum preschool-aged chil-
dren via a remote platform by reporting on (1) missing data and (2) percent agreement 
among gaze coders. Additionally, we reviewed the videos to determine the frequency 
of co-occurring events that might affect the quality of the gaze data and asked whether 
these were associated with missing data or percent agreement among coders. 
 

Method 
 
All recruitment and testing procedures were approved by the Biomedical Research 
Alliance of New York (BRANY), which provides IRB services for multi-site studies. 
 
Participants 
 
Participants contributing data to this secondary data analysis are a subset of those in 
a larger study. A US national sample of families was recruited for a remote study fo-
cusing on language learning in children on the autism spectrum. Families of autistic 
children were recruited through online advertisements, a specialized recruitment 
service, and the SPARK national autism research registry (Feliciano et al., 2018). Fam-
ilies of nonspectrum children were recruited through online advertisements, parent 
organization emails, and our own research participant databases.  
 
Children on the autism spectrum were eligible to participate in the larger study if they 
were 36.0 to 71.9 months old, had a previous medical or educational diagnosis of au-
tism spectrum disorder (ASD), and scored 12 points or higher on the Social Commu-
nication Questionnaire (SCQ; Rutter et al., 2003), originally published as the Autism 
Screening Questionnaire (ASQ, Berument et al., 1999). Nonspectrum children were 
eligible if they were aged 24 to 48 months (younger than the autistic group in order to 
match groups on language, see below), had no previous diagnoses that would affect 
language or cognition, had no immediate family members diagnosed with autism, 
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and if they scored less than 12 points on the SCQ. Across both groups, children were 
not eligible to participate if their caregiver reported they (a) were born before 37 
weeks of pregnancy, (b) had uncorrected vision or hearing impairments, (c) were 
colorblind or (d) heard English less than 70% of the time. With regards to the latter 
requirement, parents reported on their child’s language exposure. The 70% cutoff is 
based on Cattani et al. (2014), who found that bilingual preschoolers perform as well 
as monolingual English-learning preschoolers on standardized language assessments 
if they have at least 60% exposure to English; here, a stricter criterion of 70% is used 
because the word learning tasks tap into processing abilities that go beyond the of-
fline performance measured in standardized assessments. 
 
Participant diagnostic status was confirmed using a multi-step process that was de-
veloped to be suitable for remote data collection. As mentioned above, SCQ scores 
were used as a screening tool for eligibility. SCQ validity studies indicate an optimum 
cutoff score of 15 for children 4 years and older (Berument et al., 1999; Rutter et al., 
2003), however, subsequent research has identified a lower cutoff score of ≥12 to yield 
best sensitivity and specificity for children younger than age 4 years (Allen et al., 2007; 
Corsello et al., 2007; Wiggins et al., 2007). Thus, because of the younger age of many 
of the children in the present sample, the current study utilized a cutoff score of 12, 
requiring that children in the autistic group score 12 or higher and that nonspectrum 
children score below 12. This SCQ cutoff score also allowed the researchers to cast a 
wider net for recruitment of autistic children (given that we also had a licensed clini-
cal psychologist, the fourth author, confirm diagnosis using all available data, as 
noted below). 
 
Next, we gathered caregiver report information about intervention and diagnostic 
history using a questionnaire, including services provided in the school and the com-
munity (see data on OSF). Caregivers reported on their child’s current autism-related 
symptoms using the Gilliam Autism Rating Scale–Third Edition (Gilliam, 2014). Care-
givers also completed the Vineland Adaptive Behavior Scales, Third Edition (Vine-
land-3; Sparrow et al., 2016) to provide information about adaptive functioning skills; 
because autism is commonly associated with impairments in adaptive functioning, 
results of the Vineland-3 were reviewed to determine whether the Communication, 
Daily Living, and Socialization scales were consistent with autism. Finally, caregivers 
and children completed a 15-minute guided, semi-structured and video recorded in-
teraction based on an adaptation of the Childhood Autism Rating Scale–Second edi-
tion (CARS-2; Schopler et al., 2010). Previous research published near the onset of the 
COVID-19 global pandemic demonstrated that the CARS-2 can be effectively adapted 
to a brief observation entitled “CARS-2-obs”, with the examiner providing prompts to 
the caregiver while observing their interaction to identify child behaviors indicative 
of autism (Sanchez & Constantino, 2020). A licensed psychologist with advanced train-
ing and expertise in autism diagnosis (spanning research and clinical settings) re-
viewed all available clinical materials to confirm diagnostic status. Nine participants 
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from the larger study (out of 156) were recruited for the autistic group but did not 
receive diagnostic confirmation of autism based on clinical judgment after review of 
all available data. 
 
Participant Matching 
 
For the present analyses, we identified two subgroups of children (drawn from the 
larger study) who were matched by gender and language ability. To ensure compara-
bility with similar in-lab studies, we selected a sample size based on previous re-
search, which typically used groups of 30 or fewer participants per group (e.g., Good-
win et al., 2012; Venker, 2019; Venker et al., 2013). Our two goals in identifying sub-
groups for the present analyses were to include children with a wide range of lan-
guage abilities, given a previous finding that children with lower language abilities 
were more likely to look away from the screen in a similar paradigm (Bebko et al., 
2006), and within that, to match children on gender and expressive vocabulary.  
 
Therefore, we first aimed to identify—from the 147 participants with confirmed au-
tism diagnoses in the larger study—a subset of 30 children on the autism spectrum to 
include for the present analyses. To ensure a wide range of language abilities, we first 
binned all children in the larger study based on total number of words produced on 
the MacArthur Bates Communicative Development Inventory (MCDI) Words and Sen-
tences Long Form (which contains 680 vocabulary words; Fenson et al., 2006). Six bins 
were used: fewer than 100 words, 100-199 words, 200-299 words, 300-399 words, 400-
499 words and 500 or more. From each bin, we selected at least one child (when more 
than one child was available, we used random selection) while maintaining the same 
approximate MCDI distribution in the subsample that we had in the larger sample. 
This process yielded a subgroup of 30 children on the autism spectrum (18 males, 12 
females) aged 36 to 67 months (M = 48.73, SD = 8.93), all of whom had their diagnosis 
confirmed by the licensed psychologist according to the process outlined earlier.   
 
Next, we matched each autistic participant to a nonspectrum participant from the 
larger study based on gender and vocabulary scores from the MCDI (within +/- 20 
words). Although +/- 20 on the MCDI is a relatively large spread, it has been previously 
used for language-based matching (e.g., Naigles et al., 2016) and allows the inclusion 
of children with lower vocabulary scores. A stricter matching protocol would have 
excluded autistic children with lower vocabulary scores due to difficulty in finding 
exact matches. When more than one nonspectrum child who was a vocabulary- and 
gender-match was available, a single one was selected at random. This process was 
successful for all autistic participants except for two, for whom a vocabulary matched 
participant within 20 words could not be identified; we therefore selected the closest 
available same-gender nonspectrum match for these children (one pair was matched 
within 21 words and the other was matched within 44 words; see similar approach in 
Luyster & Lord, 2009). This matching process resulted in our second subgroup, 
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comprising 30 nonspectrum children (18 males, 12 females) aged 24 to 34 months (M 
= 27.37, SD = 3.10).  
 
As is common when using language-matched sampling for young autistic and nonau-
tistic children (see Charman, 2004 for a discussion), the autistic and nonspectrum 
groups differed significantly on age (t = 12.38, p < .001) and SCQ (t = 12.31, p < .001) but 
not on MCDI (t = .094, p = .93). See Table 1. Caregivers reported on children’s race and 
ethnicity using NIH categories as follows: 3 Black/African-American, 3 Asian, 43 
White, 3 More than one race, 2 Prefer not to answer; 8 Hispanic or Latine, 52 Not 
Hispanic or Latine. We did not explicitly ask for information pertaining to socioeco-
nomic status, but we note that to participate, families had to have a sufficiently strong 
internet connection to engage in a Zoom call and watch streaming videos on an ap-
propriate device.2   
 
On the day of the study, the caregiver and child logged onto a Zoom meeting with the 
experimenter. Children sat in front of a desktop, laptop, or tablet with a screen at least 
5.5 inches by 8.5 inches. The child usually sat independently, but some children sat 
in their caregiver’s lap. Parents were coached on an appropriate distance to have the 
child sit from the screen, but we did not require them to measure it. We discouraged 
parents from having the child hold anything during the study, but if the parent be-
lieved the child would be better able to sit still and participate while holding a toy or 
eating we allowed it. The experimenter conducted a warm-up, followed by a word-
learning experiment (described below), and then a 15-minute guided play-based ob-
servation between the child and caregiver. The session lasted about 45 minutes and 
was recorded using Zoom. For this paper, we only report details of the procedure rel-
evant to the current analyses of eye-gaze data quality during the word-learning exper-
iment. 
 
Word-Learning Experiment 

 
The experiment comprised two word-learning trials on which the child was intro-
duced to a new word (e.g., “modi”) and then tested on the novel word’s meaning. For 
the current paper, we focus on the “test phase” of each of the two trials, which were 
structured identically. Test phases consisted of 8-second videos. The 8-second video 
comprised three phases: Baseline (3 seconds), during which children viewed the im-
ages on the screen (as depicted in Figure 1) and heard a prompt designed to direct 
their attention to the screen (“Whoa, look!”), Query (2 seconds), during which the im-
ages disappeared, replaced by a large central fixation image, and children heard an 
auditory prompt to find the target (e.g., “Where’s the modi?”), and Response (3 sec-
onds) during which the images reappeared in the same locations as during Baseline 

 
2 From the larger study, there were 24 families who attended an orientation call but did not show up 
for the study visit. 
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and children heard an additional prompt (e.g., “Find the modi!”). We analyzed their 
gaze during Baseline and Response, as would typically be done in word learning ex-
periments; Baseline provides a measure of children’s a priori preference for the im-
ages and Response provides a measure of their preferences after being asked to find 
the referent. We did not analyze gaze during the Query phase for two reasons. First, 
this phase did not have images in the target locations, and second, in our experience, 
this phase is often when children are likely to look away from the screen (e.g., to share 
attention with their parent). 

 
Coding 
 
We coded two types of variables: (1) co-occurring events, including both child behav-
iors and external household events, that might be expected to disrupt performance in 
an experimental task. (2) children’s gaze behavior as the videos played, to assess both 
rates of missing data and inter-rater agreement.  
 
Co-occurring events 
 
We coded for child behaviors and external, household events (see Table 2 for defini-
tions and guidelines used by coders). With respect to child behaviors, we coded for 
child vocalization or physically interacting with an object, and additionally, given 
Venker and Kover’s (2015) suggestion that child behaviors associated with autism 

 

Figure 1. Example of visual stimuli during Baseline and Response phases 
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might lower the quality of eye-gaze data, we also coded for repetitive child sensorimo-
tor movements that are characteristic of autism, such as rocking or hand flapping 
(e.g., Rutter, Le Couteur, & Lord, 2003). 
 
Table 2. Coding definitions for co-occurring events 

Event Category Coding Definition 

Child sensorimo-
tor movements 

Includes whole body, torso, or arm/hand/finger movements. For 
example: rocking, hand flapping, peering through hands/fingers. 
These movements must include voluntary repetitive movements. 
Nail biting, hair twisting, thumb sucking and the like are all ex-
cluded. Chewing and drinking will not be coded; oral motor 
movements (e.g., popping lips, sticking out tongue, sucking 
thumb) in isolation (i.e., in the absence of other sensorimotor 
movements as listed) will not be coded. If this co-occurs with an-
other category, code both. 

Child vocaliza-
tions 

Nonword vocalizations (e.g., laughter, jargoning) or speech (e.g., 
talking to caregiver, repeating audio from experimental stimuli). 
Making noises while chewing and drinking or breathing will not 
be coded. Do not count yawning, grunting (unless communica-
tive), lip popping, sighing, raspberries. If this co-occurs with an-
other category, code both.  

Child physical 
distractions 

Resulted from something the child was doing. Active involve-
ment of/with physical object or agent resulting from child’s be-
havior; for instance, child playing with a toy in hand or touching 
a computer keyboard. If the child is holding something or has 
something in their lap but they are not actively involved with it 
(meaning, they are not playing with it, looking with it, moving it 
around etc.), do not code. If this co-occurs with another cate-
gory, code both.  

External physical 
distractions 

Sudden appearance/interruption by agent/physical object that (1) 
enters the child’s visual field (e.g., sibling running in front of 
child) or (2) makes physical contact with the child (e.g., cat jump-
ing on child’s lap). These are not due to the child’s behavior and 
do not include ongoing physical contact from the parent, who 
may be holding the child during the session. If this co-occurs 
with another category, code both.  
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With respect to external, household events, we coded for intrusions (e.g., from care-
givers, pets or siblings) that entered the child’s field of view or made physical contact 
with the child; this final category was only observed for one child in the data set, and 
so we did not analyze it quantitatively. We initially intended to include auditory dis-
tractions such as caregiver vocalizations or external noises (e.g., phone ringing, baby 
crying) in this last category, but Zoom recordings varied in how much of this external 
noise was filtered out by the software, and so we could not reliably determine whether 
these noises were present in the home for all videos.  
 
Coding was done in 1-second bins for each of the 3 seconds in the Baseline period and 
3 seconds in the Response period; each second was binary coded (i.e., presence or 
absence) for each of the four categories of co-occurring events. Videos were played 
in Adobe Premiere Pro and codes were recorded on a spreadsheet. All videos were 
coded for co-occurring events by two research assistants; inter-rater reliability was 
calculated for a randomly selected 20% of the sample. Percent agreement between 
the two raters was high for all four event categories: child sensorimotor movements 
(100%), child vocalizations (97.2%), child physical distractions (100%), external phys-
ical distractions (100%). After calculating inter-rater reliability metrics, disagree-
ments were resolved via consensus between the same two coders.  
 
Gaze Coding 
 
Using standard procedures (e.g., Fernald et al., 2008), three trained research assis-
tants who were naive to diagnosis independently coded the direction of children’s 
gaze on the screen (top left, top right, center) from video recordings of the test phase 
at a rate of 30 frames/second.3 The coders had to be able to hear the audio to deter-
mine the onset of Baseline and Response phases, but they did not know which object 
was the intended target or where it was located on the screen, both of which were 
counterbalanced across participants. Each video was coded by two of the three cod-
ers, who viewed videos using Adobe Premiere Pro software and recorded gaze codes 
on a spreadsheet. (Note that while most studies involve multiple coders on only a sub-
set of trials to check reliability, we enlisted two coders for coding gaze on all videos 
because we were specifically interested in evaluating inter-rater agreement.) Missing 
data consisted of frames on which the eyes were closed (blinks), the child was looking 
outside of the areas of interest (e.g., looking off-screen, turning to look at a caregiver), 
or the child’s eyes were not visible to the coder (e.g., blurry video, child was out of 
frame). The proportion of codes for these events, out of all of the 90 coded frames 

 
3 As in our prior work using this remote data collection (Arunachalam et al., 2024), we coded the vid-
eos using audio cues indicating the start of each phase within each trial to minimize any lag that 
might have accumulated during video playback. None of the included videos had an accumulated lag 
of more than 2 frames (66 ms) using this approach. 
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during each of the Baseline and Response phases of each test video, was calculated. 
Percent agreement to determine inter-rater reliability between the two coders were 
calculated for each trial using the “irr” package (Gamer, Lemon, Fellows, & Singh, 
2019) in R version 4.1.2 (R Core Team, 2020).  

 
Results 

 
Co-occurring events 
 
As described above, co-occurring events were categorized as child sensorimotor 
movements, child vocalizations, child physical distractions, or external physical dis-
tractions (see Figure 2).  
 

 
Figure 2. Proportion of 1-second time bins during which child behaviors or external 
physical distractions were observed across groups (autistic children, nonspectrum 
children) during the two coded phases of the trial (Baseline, Response). Note: The y-
axis range is only depicted from 0 to 0.5 for readability. These events were coded 
across 6 seconds per trial (3 seconds of the Baseline phase, 3 seconds of the Re-
sponse phase) over 60 trials per group (2 trials per child, 30 children per group). 

 
Child vocalizations were the most common behaviors in both groups, followed by 
child physical distractions. Child sensorimotor movements were rare in both groups: 
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For 10 children in the autistic group and 9 children in the nonspectrum group, there 
were no child sensorimotor movements at all. As mentioned above, there was only 
one child who experienced an external event in the dataset, and so we did not analyze 
this category quantitatively. On half of the trials (n = 29 for the autistic group, n = 31 
for the nonspectrum group), no events were coded at all. Given the small numbers of 
event occurrences, we used non-parametric two-tailed Mann-Whitney U tests for 
group differences; we found none (child sensorimotor movements: Mann-Whitney U 
= 450.5, n1 = n2 = 30, p = 1.00; child vocalizations: Mann-Whitney U = 530.5, n1 = n2 = 30, 
p = 0.22; child physical distractions: Mann-Whitney U = 406.0, n1 = n2 = 30, p = 0.25).  
 
Missing Data 
 
The mean proportion of frames with missing data during the Baseline phase was 0.097 
(SD = 0.22, range 0-1) for the autistic group and 0.082 (SD = 0.20, range 0-1) for the 
nonspectrum group, and during the Response phase, it was 0.096 (SD = 0.20, range 0-
1) for the autistic group and 0.059 (SD= 0.19, range 0-1) for the nonspectrum group. 
Missing data rates were severely right-skewed, and standard approaches to transform 
the data did not address this non-linearity; therefore, nonparametric approaches are 
more appropriate. We used quasibinomial nonparametric regression, or generalized 
additive models, with the “mgcv” package in R version 4.1.2 (R Core Team, 2020). 
(Note that the same results were obtained with parametric regression for all analyses, 
which are reported in our data repository.) We ran two generalized additive models, 
one for the Baseline phase and one for the Response phase, with missing data as the 
dependent variable and a fixed effect of diagnostic group (sum coded with the autistic 
group as +1 and the nonspectrum group as -1). For this and other regressions, we only 
report significant parameters of interest; full models are available at the OSF reposi-
tory (https://osf.io/w9vmk/?view_only=dd1288d5ca014a0cbd0d472455c81c77). These 
analyses yielded no significant effects of diagnostic group (Baseline: ß = 0.094, p = 0.70, 
deviance explained = 0.20%; Response: ß = 0.26, p = 0.32, deviance explained = 
1.49%).We then added age and MCDI scores (centered around their means); these 
were not highly correlated (R = 0.24) because of the heterogeneity of language abilities 
among the (chronologically older) autistic group. These analyses also yielded no sig-
nificant effects for either the Baseline phase (Diagnostic group: ß = -0.12, p = 0.82; Age: 
ß = 0.019, p = 0.63; MCDI: ß = -0.00094, p = 0.49; deviance explained = 0.85%) or the 
Response phase (Diagnostic group: ß = 0.51, p = 0.31; Age: ß = -0.026, p = 0.57; MCDI: ß 
= -0.0016, p = 0.25; deviance explained = 5.66%), and we did not include these factors 
in subsequent missing data analyses. 
 
To see if missing data rates were predicted by co-occurring child behaviors, we added 
to the simple models a fixed effect of the sum of the number of seconds (out of 3 sec-
onds) during each phase (Baseline, Response) of each trial on which each of these 
behaviors were present (because 3 types of behaviors were measured during each of 
the 3 seconds, the range of values was 0-9), and its interaction with diagnostic group. 
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In the Baseline phase, this analysis yielded a significant simple effect of child behav-
iors (ß = 0.67, p = 0.00014), with a greater number of behaviors associated with higher 
rates of missing data, but no significant effect of group (ß = 0.85, p = 0.17) and no sig-
nificant interaction (ß = -0.51, p = 0.13) (deviance explained = 18.3%). The same pat-
tern obtained for the Response phase: a significant simple effect of child behaviors 
indicating that more behaviors was associated with higher rates of missing data (ß = 
0.45, p = 0.0072), but no significant effect of group (ß = 0.22, p = 0.73) and no significant 
interaction (ß = 0.28, p = 0.40) (deviance explained = 10.4%). 
 
Percent agreement among coders for gaze coding 
 
We calculated percent agreement for gaze coding for each phase of each trial and 
participant separately and included those in similar analyses as for missing data. The 
mean percent agreement between gaze coders for the Baseline phase was 96.6% (SD 
= 8.1%) for the autistic group and 98.1% (SD = 8.1%) for the nonspectrum group; for 
the Response phase, it was slightly lower: 93.5% (SD = 16.0%) for the autistic group 
and 96.9% (SD = 8.3%) for the nonspectrum group. Percent agreement was left-
skewed, so we used generalized additive models as above.  
 
For both phases, this analysis did not yield a significant main effect of diagnostic 
group (Baseline: ß = -0.61, p = 0.33, deviance explained = 2.08%; Response: ß = -0.76, p 
= .14, deviance explained = 3.28%). We then added age and MCDI scores (centered 
around their means). For Baseline, this analysis yielded no significant main effects 
(group ß = 0.38, p = 0.76; age ß = -0.044, p = 0.34; MCDI ß = 0.00046, p = 0.79; deviance 
explained = 4.08%). For Response, there was still no significant main effect of group 
(ß = 0.84, p = 0.37), but there were significant effects of age (ß = -0.074, p = 0.035) and 
MCDI (ß = 0.0036, p = 0.0042) (deviance explained = 13.8%), indicating that there was 
higher agreement for younger children and children with higher MCDI scores.   
 
Finally, we asked whether percent agreement was predicted by co-occurring child 
behaviors; we added to the simple model a fixed effect of the sum of the total number 
of seconds on each trial (out of 3 seconds) on which each of these behaviors was pre-
sent for each trial (because three types of behaviors were measured during each of 
the 3 seconds, the range of values was 0-9), and its interaction with diagnostic group. 
This analysis yielded no significant simple effects and no significant interaction dur-
ing either Baseline (behaviors ß = 0.089, p = 0.80; group ß = -0.49, p = 0.48; interaction 
ß = -0.27, p = 0.71; deviance explained = 2.43%) or Response (behaviors ß = -0.099, p = 
0.63; group ß = -0.78, p = 0.21; interaction ß = 0.032, p = 0.94; deviance explained = 
3.61%).  
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Discussion 
 
The goal of this study was to explore the quality of remotely-collected eye-gaze data 
gathered from autistic and nonspectrum preschoolers. We quantified co-occurring 
events (both child and external/household) during brief Baseline and Responses 
phases of a word-learning task, and we tested the associations of co-occurring events 
with two common quality metrics (missing data and inter-rater reliability).  
 
In our sample, sporadic co-occurring events—both child and external—were observed 
for many participants. As in lab-based settings, interruptions are inevitable during 
experimental sessions. However, these events were relatively infrequent and for half 
of the trials, these events did not occur at all. Moreover, children on the autism spec-
trum and nonspectrum children did not differ in rates of either child or external 
events. This is somewhat unexpected given that autistic children might be more 
prone to distraction and movement, and that the sensorimotor movements we coded 
for are characteristic of autism (Venker & Kover, 2015). It suggests that in a home-
based remote testing condition, autistic children are not more likely to experience 
these interruptions compared to their nonspectrum peers. Moreover, our tallies indi-
cated that external/household distractions were extremely rare, occurring for only 
one child (and affecting roughly .01 of time bins for nonspectrum children). This find-
ing does not support previous suggestions that remote research may be particularly 
vulnerable to family interruptions and child attrition (Lapidow et al. 2021; Steffan et 
al., 2023). In our study, we believe that the pre-visit orientation video call that we pro-
vided may have helped caregivers create a focused environment for their child (Gi-
jbels et al., 2021). Overall, then, these results attest to the suitability of curated remote-
testing conditions. 
 
Next, we explored missing data. We found that rates of missing data were relatively 
low and did not differ for children on the autism spectrum and nonspectrum chil-
dren; this is in contrast to previous findings that autistic children look away from 
stimuli significantly more often than nonspectrum children (e.g., Tenenbaum et al., 
2017). Moreover, given that many studies with autistic children of this age apply a 
criterion of >50% missing data when deciding whether to exclude children (e.g., 
Horvath et al., 2018; Venker et al., 2013; Venker, 2019; Venker et al., 2020), our exclu-
sion rate on this basis would be just 4%—which is comparable to those studies for 
which exclusion rates range from approximately 5% (Horvath et al., 2018) to 16% 
(Venker et al., 2020). For subsequent analyses, we included even those children with 
high rates of missing data; these children would typically be excluded from analyses, 
but our reports of data quality are contingent on understanding how missing data is 
related to co-occurring events. Indeed, there was a significant association between 
co-occurring events and missing data across both the Baseline and Response phases. 
Therefore, even though overall rates of co-occurring events were quite low across 
groups, the frequency with which they occurred was associated with data loss. There 



 Language Development Research  
 
 
 
 
 

Volume 5, Issue 3 
 

145 

was, however, no main or interaction effect of group, age or language level. This find-
ing affirms the importance of the quality control measures that many researchers 
take in order to minimize distractions, whether in laboratory or remote settings. Our 
finding indicates that by minimizing both child-based or environmental artifacts, we 
can reduce data loss. 
 
The percent agreement between coders who manually coded children’s eye gaze (au-
tistic = 94-97%; nonspectrum = 97-98%) was slightly lower than but similar to what has 
been reported for children on the spectrum or with other developmental conditions 
or language delays in lab-based settings or at-home studies in which the experimenter 
brings a portable setup: e.g., 98% in Venker et al. (2013) and Venker et al. (2021); 97% 
in Ellis Weismer et al. (2016); 93-99% for pre-term and full-term toddlers in Loi et al. 
(2017); 98% in Naigles et al. (2011). This was a somewhat surprising outcome for us 
given that we had substantially less control over factors that would influence coders’ 
judgments, such as distance from the screen (which affects visual angle) and dimen-
sions of the device’s screen. Moreover, the agreement between raters was not detri-
mentally affected by child behaviors or household events.  
 
We did find, however, that gaze coding agreement was higher for younger children 
and those with higher MCDI scores during the Response phase. In other words, raters 
were less reliable when coding the children who were older and/or had more pro-
nounced developmental (or at least language) delays. This finding is particularly in-
triguing in light of the fact that—due to the language-matched nature of our sample—
the autistic group was older than the nonautistic group. We are not certain of an ex-
planation for this variability in reliability. Our results suggest that agreement was not 
related to child behaviors, so it is unlikely to be caused by differences in regulation or 
externalizing behaviors. An alternative explanation might be that—perhaps related to 
language delay—these children had less clearly defined gaze patterns when asked to 
identify an object, perhaps doing more exploratory scanning than directed gaze, lead-
ing to lower coder agreement. This interpretation is consistent with the fact that we 
found an effect of age and MCDI only in the Response phase, and not during the Base-
line period. Although analyses addressing whether or not these children successfully 
learned the word, as measured by gaze during the Response phase, is beyond the 
scope of this paper, future analyses might help to support or disprove our hypothe-
sized interpretation. 
 
There are certainly benefits to remote research including increased familiarity (and 
perhaps comfort) of the home environment, reduced barriers for study visits, and 
broader inclusion of diverse samples, and our work here suggest that there are rela-
tively few disruptions arising from co-occurring events in remote research designs. 
Nevertheless, there are other disadvantages of at-home studies that researchers 
should consider. One notable difference from lab-based studies is that in the lab, we 
can keep the surrounding environment free from material and visual distractions. In 
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the home, we did ask caregivers to try to identify a space without a lot of clutter, but 
there were likely other objects nearby that could have attracted children’s attention. 
In coding eye gaze, coders may have inferred that the child’s gaze was directed to one 
side of the screen when in fact it was directed to something just beside the screen. 
This lack of precision in coding is a disadvantage of at-home studies, although the 
relatively high percent agreement among coders somewhat mitigates this concern. 
Another potential challenge is the difficulty of verifying that the child is viewing the 
stimuli as intended (Tompkins, 2022). While we believe we substantially minimized 
this concern by (1) offering a pre-visit orientation video call, (2) having the experi-
menter present during data collection, (3) checking in frequently with the caregiver 
during transitions from one part of the procedure to the next and (4) asking caregivers 
to turn on the “do not disturb” function on their devices, it is certainly possible that 
for example, colors appeared differently than we intended or that distracting notifi-
cations popped up on participants’ screens. 
 
Several important limitations of our work should be noted. First, in recruiting for this 
study, we explained to caregivers that children would be asked to sit in front of their 
home computer for the duration of the task; families who agreed to enroll were likely 
self-selected based on the likelihood that their child could meet the study demands. 
Therefore, the children (both on and off the spectrum) enrolled do not necessarily 
exhibit the full range of developmental heterogeneity observed at these ages. Second, 
our word-learning task was conducted synchronously; before and after the task, the 
child was interacting directly with an experimenter. These results may not generalize 
to other types of experimental paradigms that are less interactive or are asynchro-
nous/unattended (e.g., Scott & Schulz, 2017). Third, because Zoom software filtered 
out background noise, we were not able to assess the frequency of household auditory 
distractions such as a phone ringing or baby crying. Fourth, this study was limited to 
families who had access to computer/tablet with Zoom software and a stable internet 
connection.  Although upwards of 90% of American families have access to these re-
sources as of 2021 (US Census Bureau, 2024), it is certainly possible that the patterns 
reported here might differ in the remaining 10% of families and/or in families who 
feel distrust for technology use, particularly in a research context (Beaton et al., 2017). 
Finally, due to the COVID-19 pandemic and the cessation of in-person data collection 
in our labs, we did not compare these results to an in-person version of this same task. 
Instead, we drew inferences from published in-lab studies, and—in doing so—we also 
want to recognize some differences between our paradigm and those in-lab studies; 
for example, our task was modeled after an in-person study that presented three test 
objects, while eye-tracking tasks often present only two. We do not expect this choice 
to substantially affect our conclusions about overall quality of remotely collected data 
because our primary questions of interest in the current paper did not concern 
whether children looked at a target or distractor but rather how easy it was to assess 
whether and where they were looking. However, it may explain the slightly decreased 
percent agreement statistics as compared to in-lab studies because there were more 
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possible codes to choose from. Our study also included a relatively small number of 
trials; while word learning studies commonly present only one trial (e.g., Dautriche 
et al., 2014; Yuan et al., 2012) or 2-4 trials (e.g., Horvath et al., 2018; Gliga et al., 2012; 
Naigles et al., 2011), other studies using similar paradigms with familiar/known words 
often have many more trials, including some of the studies we cite above as reference 
points (e.g., Venker et al., 2013; Venker, 2019; Venker et al., 2020). Our results are 
most straightforwardly relevant for other studies with similar task demands and may 
not generalize to other paradigms.  
 
In sum, our findings suggest that—for both autistic and nonspectrum children—the 
data gathered from a remote gaze-data paradigm are characterized by minimal miss-
ing data and adequate agreement between coders. Child and household factors were 
noted (and the former were more frequent than the latter), and although the quality 
of gaze data was reduced by co-occurring events during the session, these events were 
generally infrequent. In a broader sense, the current study allowed us to test whether 
autistic and nonspectrum children differ from each other in remote gaze-based stud-
ies, which fills a crucial gap missing from prior work. We conclude that experi-
menter-moderated remote data collection offers a promising alternative to lab-based 
settings for manually-coded gaze paradigms for both autistic and nonspectrum chil-
dren. 
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