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Abstract: Some theories of language development propose that children learn more effectively when 
exposed to speech that is directed to them (target child directed speech, tCDS) than when exposed to 
speech that is directed to others (other-directed speech, ODS). During naturalistic daylong recordings, 
it is useful to identify periods of tCDS and ODS, as well as periods when the child is awake and able to 
make use of that speech. To do so, researchers typically rely on the laborious work of human listeners 
who consider numerous features when making judgments. In this paper, we detail our efforts to auto-
mate these processes. We analyzed over 1,000 hours of audio from daylong recordings of 153 English- 
and Spanish-speaking families in the U.S. with 17- to 28-month-old children that had been previously 
coded by human listeners for periods of sleep, tCDS, and ODS. We first explored patterns of features 
that characterized periods of sleep, tCDS, and ODS. Then, we evaluated two classifiers that were trained 
using automated measures generated from LENATM, including frequency (AWC, CTC, CVC) and dura-
tion (meaningful speech, distant speech, TV, noise, silence) measures. Results revealed high sensitiv-
ity and specificity in our sleep classifier, and moderate sensitivity and specificity in our tCDS/ODS clas-
sifier. Moreover, model-derived predictions replicated previously-published findings showing signifi-
cant and positive links between tCDS, but not ODS, and children’s later vocabularies (Weisleder & Fer-
nald, 2013). This work offers promising tools for streamlining work with daylong recordings, facilitat-
ing research that aims to better understand how children learn from everyday speech environments. 
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Introduction 
 
Speech environments vary across children in numerous ways. The ability to docu-
ment variation in children’s naturally-occurring speech environments has been 
greatly assisted by technology that can capture, store, and process large amounts of 
audio data (e.g., an entire day). One notable example is the LENA digital language 
processor and software system (Gilkerson et al., 2017; Gilkerson & Richards, 2020). 
The recorder is worn inside a child’s front shirt pocket and records the audio environ-
ment around the child, with each recording storing up to 16 hours of audio. The LENA 
software applies machine-learning algorithms to identify speech from children and 
adults that is “meaningful” or “near and clear” to the child (Cristia et al., 2021; Gilker-
son & Richards, 2020). Summary reports provide estimates of the number of adult 
words (Adult Word Count, AWC), child vocalizations (Child Vocalization Count, CVC), 
and conversational turns (Conversational Turn Count, CTC), as well as the duration 
of time with meaningful speech, distant speech, TV/electronic media, non-speech 
noise (e.g., fan), and silence. A number of studies in different languages have com-
pared these estimates to counts derived from human transcription and have reported 
mixed findings for the validity of LENA measures, with AWC, CTC, CVC among the 
most widely studied (Busch et al., 2018; Canault et al., 2016; Ferjan Ramirez et al., 
2023; Gilkerson et al., 2015; Lehet et al., 2021; Soderstrom & Wittebolle, 2013; VanDam 
& Silbert, 2016; for a systematic review and meta-analyses of validation studies see 
Cristia et al., 2020). 
 
Studies with LENA have been conducted in numerous languages and sociocultural 
settings. Most of these studies use LENA’s estimates of AWC, CTC, and CVC to inves-
tigate how young children’s language environments might support their language de-
velopment, particularly by examining the amount and types of speech that are avail-
able to the child. Although the automated speech counts provided by LENA are useful, 
they are not sufficient to characterize many aspects of children’s speech environ-
ments that are thought to be relevant for language learning. For example, segments 
with relatively high AWC values may indicate interactions when an adult is engaging 
verbally with their child (i.e., target-child-directed speech, tCDS). But these segments 
could also reflect periods in which multiple adults are talking to each other near the 
child, without any of the adults speaking directly to the child (i.e., other-directed 
speech, ODS). Similarly, some portions of the day may be characterized by high val-
ues for silence. These long periods of silence could reflect times when no speech is 
addressed to the child even though the child is awake and available to experience that 
speech (e.g., the caregiver is not interacting with the child or they are engaging non-
verbally). Or, these periods could reflect times when the child is sleeping and no 
adults are present. These different scenarios have been proposed to play different 
roles in language learning and are of theoretical interest to many researchers. Yet, 
the LENA algorithms/measures do not currently distinguish between them.  
 
Deriving estimates of the child-directed vs. other-directed nature of the speech that 
children hear is particularly important for our understanding of how children learn 
language from their speech environment (Dailey & Bergelson, 2022). A growing body 
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of work has proposed that target-child-directed speech, more so than other-directed 
speech, supports language development (Goldstein & Schwade, 2008; Shneidman & 
Goldin-Meadow, 2012; Weisleder & Fernald, 2013). Relatedly, when caregivers engage 
verbally with young children, the extent to which they use a child-directed register, 
i.e., speech characterized by certain acoustic, prosodic, lexical, and morphosyntactic 
properties, has been proposed to be particularly conducive for learning (Fernald et 
al., 1989; Quigley et al., 2019; Singh et al., 2009; Soderstrom, 2007; Stärk et al., 2022). 
These studies exemplify the rapidly growing interest in identifying and characterizing 
periods of target-child-directed speech within daylong recordings. 
 
Child-directed Versus Other-directed Speech 
 
The construct of child-directed speech is central to theories that aim to explain how 
children learn language from social interactions (Csibra & Gergely, 2009; Tomasello, 
1995). However, communities vary widely in how much speech is directed to children 
and how much speech is spoken around the child but not directed to them (Casillas et 
al., 2019; Ochs & Schieffelin, 1984; Shneidman & Goldin-Meadow, 2012). Despite this 
variability, cross-cultural work finds that key language milestones (e.g., onset of first 
words and multi-word utterances) emerge around the same age in a variety of com-
munities (Casillas et al., 2019; Crago et al., 1997). Such findings raise questions regard-
ing whether any speech in children’s environments, whether it is addressed to them 
or not, can support their language acquisition.  
 
Indeed, lab-based experimental studies have demonstrated that children can learn 
new words from speech that is not explicitly directed to them. For example, Akhtar 
and colleagues (2001) found that 1- to 2-year-old children were able to learn novel 
nouns and verbs when observing two adults play a game. Other studies varied the 
degree of joint attention between speaker and learner, such as having speakers turn 
their backs to infants during a word learning episode, replicating the finding that chil-
dren can learn new words even in such contexts (Gampe et al., 2012). In contrast, 
some research examining speech in natural environments reports that target-child-
directed speech, more so than other-directed speech, is associated with children’s vo-
cabulary development (Shneidman & Goldin-Meadow, 2012; Weisleder & Fernald, 
2013). For example, using LENA recordings with 29 Spanish-speaking families in the 
U.S., Weisleder and Fernald (2013) coded for periods of target-child-directed speech, 
i.e., speech directed to the target child in one-on-one interactions or with others, ver-
sus overheard speech1, i.e., speech directed to other adults or children other than the 
target child. Using AWCs from LENA when the child was 19 months, they found that 
the number of adult words in periods with target-child-directed speech was related to 
children’s vocabulary size at 25 months, while the number of adult words in periods 

 
1 Weisleder & Fernald (2013) and Shneidman & Goldin-Meadow (2012) used the term “overheard” 
speech. We use ‘other-directed speech’ as a more conservative term (Casillas et al., 2019), since it is 
unclear whether children do or do not hear speech when it is directed to others. 
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with other-directed speech was not. Similar findings were observed in Shneidman 
and Goldin-Meadow (2012), where the amount of target-child-directed, but not over-
heard, speech was associated with child vocabulary in Yucatec-Mayan-speaking fam-
ilies in subsistence farming communities in Mexico. Collectively, these studies reveal 
mixed findings about the differential roles of target-child-directed and other-directed 
speech in young children’s language learning.  
 
When caregivers engage with young children, they sometimes change their speech 
register, producing a type of speech colloquially referred to as “baby talk”, “paren-
tese”, and which researchers refer to as “infant-directed speech (IDS).” Numerous 
acoustic, prosodic, phonological, lexical, grammatical, and pragmatic features have 
been noted to differentiate this child-directed register from adult-directed registers 
(Hilton et al., 2020; Soderstrom, 2007). Moreover, speech that is characterized by fea-
tures of IDS has been suggested to be especially supportive of children’s speech and 
language acquisition (Byers-Heinlein et al., 2021; Fernald et al., 1989; Singh et al., 
2009; Snow, 1977). For example, a recent multi-continent collaboration demonstrated 
that speech characterized by the acoustic and phonological features of North Ameri-
can English IDS was preferred over speech spoken in an adult-directed register by 
both mono- and bilingually-exposed infants (Byers-Heinlein et al., 2021). These re-
sults were interpreted to suggest that acoustic features associated with IDS may be 
more effective at attracting infants’ attention and thereby, can better support learn-
ing, particularly when young children are developing their early language skills. 
However, there is continued debate about the relative role of child- and adult-directed 
speech registers in children’s language learning across linguistic and cultural con-
texts (Solomon, 2011; Cox et al., 2022). 
 
LENA’s View of the Auditory Environment 

 
The main goal of the LENA system is to identify vocalizations from the child wearing 
the recorder and nearby adults, while excluding all other sounds (Gilkerson & Rich-
ards, 2020). The software uses various acoustic features to segment the audio record-
ing and label the sounds into one of eight main categories: key child (the child wear-
ing the recorder), adult female, adult male, electronic media (e.g., TV), other child, 
distant or overlapping speech, noise, and silence. The result of this process is an “In-
terpreted Time Segments” (ITS) file, which is in essence a diarization file (Xu et al., 
2009). The ITS file is written in standard XML format and can be exported from the 
LENA software for each recording. The ITS file contains all the segmentation/diariza-
tion information, including the duration of each sound and its intensity (loudness). 
 
In addition to segmenting and labeling the audio, LENA also estimates the frequency 
of adult words (AWC), adult-child conversational turns (CTC) and child vocalizations 
(CVC). To do this, LENA does not attempt to recognize actual words; instead, the al-
gorithm estimates the number of words based on information in the speech signal, 
such as segment duration, syllable count, and consonant distribution (Gilkerson & 
Richards, 2020). These word and vocalization frequencies are estimated only from 
LENA’s three primary speaker labels (adult female, adult male, and key child), or 
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what LENA calls “meaningful speech.” No word/vocalization counts are estimated for 
other children or for distant/overlapping speech. All vocalization counts include 
speech-like vocalizations separated by a 300 ms break, but exclude respiratory (e.g., 
breathing) and digestive sounds (e.g., burping). These frequencies are exported as 
part of the ITS file. In addition, users can export summary-level reports from LENA, 
which provide word and vocalization counts (AWC, CTC, CVC) over a particular unit 
of time (e.g., 5 minutes, or 1 hour), as well as time-based measures of the amount of 
time (minutes) within that unit that contain meaningful speech (i.e., speech that is 
‘near and clear’), distant/overlapping speech, TV/electronic media, non-speech noise 
(e.g., fan), and silence. These summary reports are used by most LENA users to char-
acterize the child’s speech environment, as they provide useful information about the 
amount of adult speech the child hears throughout the day, the child’s own vocaliza-
tions, and the number of conversational exchanges between the child and adult(s). 
The AWC measure is the most-widely used, as well as the most reliable/accurate of 
these measures. However, this measure does not distinguish whether the adult 
speech is directed to the child or just spoken in the child’s vicinity. Additionally, LENA 
does not identify whether the speech is characterized by prosodic and acoustic fea-
tures of child-directed register, e.g., exaggerated intonation. Thus, to date, research-
ers interested in these distinctions have had to rely on manual annotation. 
 
Identifying periods of sleep, target- and other-directed speech in daylong record-
ings 

 
Manual annotation of LENA recordings requires that human listeners identify periods 
of sleep, target-child-directed, and other-directed speech by attending to numerous 
cues that are available on the audio recording (Weisleder & Fernald, 2013). However, 
these efforts are highly labor and time intensive. Though there are emerging tools to 
support the rigor and efficiency of this type of manual coding (Cychosz et al., 2021; 
Mendoza & Fausey, 2021), efforts to automate steps in this process are also in critical 
need. Additionally, in some cases, ethical considerations prevent researchers from 
listening to the recordings (Cychosz et al., 2020).  
 
Recent work has demonstrated progress in automating speech classifications as in-
fant/child- vs. adult-directed registers from daylong recordings (De Palma & VanDam, 
2017; Schuller et al., 2017) or laboratory stimuli (Räsänen et al., 2018; Schuster et al., 
2014), mainly by focusing on the acoustic and phonetic features of speech. However, 
no studies to our knowledge have demonstrated the extent to which we can reliably 
classify whether speech was directed to the target child or not from daylong record-
ings, regardless of register. Thus, tools that enable classification of periods of target-
child-directed and other-directed speech from features that are automatically ex-
tracted from the recordings could expand the range of cases in which such features 
can be examined. 
 
Figure 1 depicts examples from three children’s daylong recordings (from Weisleder 
& Fernald, 2013), illustrating the automated AWC estimates (adult females and adult 
males) per 5-min audio segment across the day. Not surprisingly, the AWC values in 
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each segment for a given child vary considerably across the day, and the mean AWC 
values that are averaged across the day also vary across the three children. To deter-
mine which AWC values reflect tCDS rather than other-directed speech, human lis-
teners judged each 5-minute segment first as whether the child was sleeping and, if 
not, whether the adult speech during the segment was more than 50% tCDS or ODS. 
Notably, removing ODS segments changed the estimates of overall speech to the child 
across the day substantially for some children, but less so for others. 
 

 

 

Figure 1. Example profiles of three children’s AWC counts per 5-minute segment 
across their daylong recordings. Note: Green dots represent segments judged by 
human listeners to be more than 50% target-child-directed speech; Light pink dots 
represent segments judged to be more than 50% other-directed speech; White dots 
represent segments when the child was sleeping as judged by human listeners. 
Horizontal lines depict the average tCDS (green) or ODS (pink) counts computed 
over the entire recording. 
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As this figure shows, periods of tCDS or ODS were not easily differentiated by AWC 
(i.e., segments that were identified as tCDS and ODS had a range of both high and low 
AWC values). Thus, to differentiate periods of tCDS and ODS, it may be more produc-
tive to examine multiple measures in combination. For example, a given 5-minute 
segment may be more likely to be tCDS when that segment’s AWC value is interpreted 
in conjunction with relatively high values of CTC or CVC. Similarly, one could predict 
that periods of children sleeping would be characterized by both low values of AWC 
and low values of CVC or CTC. By combining across measures, we can gain insights 
into which features conspire to reflect periods of sleep or of tCDS versus ODS and how 
best to identify them automatically. 
 
Current Study 

 
This study examined ways to facilitate the identification of periods of target-child-di-
rected vs. other-directed speech in daylong LENA recordings, as well as periods when 
children are awake versus sleeping, using only the automated measures provided in 
the standard LENA summary reports. By focusing on the automatically-generated 
LENA measures, we seek to develop classification tools that require minimal addi-
tional processing of the data and that can be easily integrated into a workflow. 
 
Figure 2 provides our conceptualization of target-child-directed vs. other-directed 
speech. Looking only at the speech that is “near and clear,” i.e., potentially audible 
by the target child, we defined tCDS as all speech that is directed to the target child, 
either individually or part of a group. In contrast, ODS is defined as all “near and 
clear” speech that is addressed to others. Note that other features cross-cut these cat-
egories. For example, while tCDS is more likely to be characterized by short utter-
ances and child–directed prosody, there are times when speech that is clearly di-
rected to a child does not fit that characterization. Analogously, while ODS may be 
more likely to be spoken in adult-directed prosody, there are also times and contexts 
when ODS might share many of the features, e.g. exaggerated prosody, characteristic 
of child-directed speech. Our goal was to develop a tool that could effectively identify 
periods of all speech directed to the target child, some of which may use a CDS regis-
ter and some which may not. By focusing more generally on the function, rather than 
the features of speech, we align our research questions with the more general theo-
retical proposal that children learn language through interactions with others, and 
that they may learn best from language input that is contingent on or relevant to their 
vocalizations, actions, and/or attentional focus (Goldstein & Schwade, 2008; McGillion 
et al., 2013; Tamis-LeMonda et al., 2014; Tomasello, 1995; Yurovsky, 2018). 
 
Our approach is as follows. We first conducted preliminary analyses to explore how 
the core frequency count measures, i.e., AWC, CTC, and CVC, worked in combination 
to predict periods of target-child-directed vs. other-directed speech. Using data from 
recordings of 29 Spanish-speaking families in the U.S. (from Weisleder & Fernald, 
2013), we conducted logistic regressions to assess the degree to which variation in 
these measures was associated with whether a particular 5-minute segment was clas-
sified as tCDS or ODS by human coders. Next, we compiled data across several studies 
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of English- and Spanish-speaking families in the U.S. (n = 153), applying more com-
plex machine-learning classifiers that combined the frequency (AWC, CTC, CVC) and 
time-based measures (meaningful speech, distant speech, TV, noise, and silence) to 

identify periods of sleep, tCDS, and ODS that had been previously identified by human 
coders. We first used cluster analyses to examine how these multiple LENA features 
hung together and then developed two classifiers, one for distinguishing periods 
when the target child was asleep versus awake and another for distinguishing periods 
of primarily tCDS versus ODS. 
 

 
Performance of both the sleep and tCDS/ODS classifier were evaluated based on the 
concordance with the human coders, defined in terms of both the sensitivity and 
specificity of the model predictions in comparison to human coders (ground truth). 
These estimates provide a standard measure of classification ability reflecting the de-
gree to which the classifiers can distinguish both negative and positive values of each 
category. For the tCDS/ODS classifier, we also evaluated its performance in terms of 
its ability to replicate previously published links between variation in adult word 
counts and children’s later vocabulary outcomes. In particular, Weisleder & Fernald 
(2013) reported stronger correlations between parent-reported vocabulary size and 
AWC values derived from 5-minute segments categorized as primarily tCDS, com-
pared to those based on 5-minute segments identified as being primarily ODS. If a 
similar pattern of correlations is found with classifier-based values, this would pro-
vide some assurance that the classifier is capturing dimensions of children’s language 

Figure 2. Conceptualization of tCDS and ODS in our study. Note: “Near and clear” 
describes the audible speech from the perspective of the child wearing the recorder 
(Cristia et al., 2021; Gilkerson & Richards, 2020), which we define as the target 
child. 
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input that are analogous to those identified by human coders. 
 

Methods 
 
Participants 
 
Participants were families and their 17- to 28-month-old children from 79 English- and 
74 Spanish-speaking households in the U.S. In total, families contributed over 1,000 
recorded hours of LENA recordings (12,936 5-min segments). Descriptives are shown 
in Table 1. Data analyzed were collected between 2008-2015. Recruitment information 
is reported elsewhere (Fernald et al., 2013; Marchman et al., 2020; Weisleder & Fer-
nald, 2013).  
 
Table 1. Descriptive statistics of participants and recordings in the five different 
samples.  
 

 
Note: *n = 22 from Sample 2 are also included in Sample 3 at a second time point, thus 
the total sample results in 153 unique families; En = English, Sp = Spanish. **10-mi-
nute segments rated by human coders were split into 5-minute segments for the pur-
pose of our analyses. 
 
Data collection and Coding 
 
Across all studies, research staff obtained informed consent from caregivers and pro-
vided instructions of how to use LENA. Caregivers were asked to record on a “typical 
day.” To respect families’ privacy, caregivers were told that they could pause the re-
cording at their convenience. Recording instructions varied slightly across samples, 
but in all cases, families were given a single LENA recorder to use on a single day or 
across multiple days. All families were encouraged to record during all parts of the 
day. All recordings were cleaned following a standard lab protocol to exclude portions 

Sample n Lang. Age 
range 
(mo) 

Mat. Ed  
range 

(y) 

Total 
recording 

length 
in hours 

Mean (SD) 

Seg. dur 
(min) 

Num 
seg. 
incl. 

1 27 En 18 - 19 12 - 18 10.62 (2.29) 5 3491 

2 29* En 17 - 19 10 - 18 9.32 (2.52) 5 3275 

3 45 En 23 - 26 10 - 18 11.05 (3.22) 5** 1891 

4 29 Sp 18 - 20 4 - 16 10.67 (3.13) 5 2758 

5 45 Sp 25 - 28 6 - 18 13.44 (3.68) 5** 1521 
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of the recording when the LENA was not being used as recommended (e.g., the child 
was not wearing the vest, or the caregiver asked us not to listen to a period of the day.) 
Details about cleaned versus uncleaned recordings can be seen in Bang et al. (2022) 
and Weisleder & Fernald (2013). 
 
Next, native speakers of each language coded segments of the audio-recording. For 
all samples, coders classified each segment as tCDS or ODS based on the most preva-
lent type of speech in that segment. For samples 1, 2, and 4 (see Table 1), human lis-
teners listened to the entire recording and coded each 5 min segment as consisting of: 
sleep, primarily tCDS, primarily ODS, or a 50/50 split between tCDS or ODS. Segments 
of sleep were confirmed by environmental sounds (e.g., deep breathing). Segments 
identified as tCDS were those in which the majority (> 50%) of the surrounding adult 
speech (i.e., represented by the AWC value) was directed to the target child wearing 
the recorder, either addressed exclusively to the target child or inclusive of the target 
child (e.g., a speaker addressed a group that included the target child). Coders based 
their judgments on numerous features including the content of the speech, as well as 
exaggerated prosody, slower speech tempo, affect, perceived distance of the speaker 
relative to the child, environmental sounds, who responded to the speaker, and the 
activity of the interaction. Segments identified as ODS were those in which the major-
ity of the speech was not directed to the target child nor inclusive of the target child. 
Split segments were those judged to have equal amounts of tCDS and ODS. For all 
preliminary analyses and the classifiers, we treated all ‘split’ segments as ODS, so that 
all segments coded as tCDS reflected segments with more than 50% target-child-di-
rected speech. 
 
For samples 3 and 5, a slightly revised protocol was followed. Here, coders first lis-
tened to potential periods of sleep based on information in a log book, targeting seg-
ments with consecutive low AWC values (AWC values = 0 for a minimum of 2 consec-
utive segments). If the child was confirmed to be sleeping, coders continued listening 
to segments prior to and after these segments to determine the beginning and end of 
periods of sleep. Next, families’ highest AWC values were sorted in descending order 
based on 10-min segments, and coders rated each segment as primarily tCDS or ODS 
if approximately 70% of speech was either tCDS or ODS until six segments of primarily 
tCDS were identified per family (Bang et al., 2022). These 10-min segments were split 
into 5-min segments for the purpose of the current analyses, attributing the assigned 
code to each of the 5-min segments. 
 
Reliability 
 
To assess reliability of human coding, we determined the degree to which judgments 
of tCDS or ODS were consistent between two human raters. For each sample, we ran-
domly selected 5 families (approximately 10 - 20% per sample, depending on the sam-
ple size) to be double-coded. For samples 1, 2, and 4, each family’s recording was split 
into thirds and we randomly sampled five continuous 5-min segments from each 
block. Continuous segments were selected for double-coding in order to create coding 
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conditions that were analogous to those of the original coders who listened to the en-
tire recording. For samples 3 and 5, we randomly selected ~eight 10-min segments for 
two families per sample, splitting the 10-min segments into 5-min segments, for a to-
tal of ~16 5-min segments coded by second raters. For purposes of reliability calcula-
tions, we excluded segments identified as splits during initial coding (n = 37, 9.7% for 
samples 1, 2, and 4) and other segments that were previously removed from analysis 
(n = 15, 3.9%). Judgments were compared between two raters (with different combi-
nations of first and second raters), using K = 2 codes (tCDS or ODS), and raters coded 
independently (i.e., second raters had no knowledge of codes by first raters). Our cod-
ing protocol can be seen here: https://osf.io/qcj6r/. 
 
For all samples, first raters were treated as the gold standard. Human raters judged 
each 5-min segment as having (a) no caregiver speech, (b) <less than 50% tCDS, (c) 50 
- 70% tCDS, or (d) >70% tCDS. Segments rated as (a) or (b) were considered ODS; seg-
ments rated as (c) or (d) were considered tCDS. We evaluated our interrater reliability 
using Cohen’s kappa and estimated rater accuracy (Bakeman, 2022). The value of “es-
timated rater accuracy” is determined from a simulation using the KappaAcc program 
(Bakeman, 2022), and reflects how accurate simulated observers would need to be to 
obtain the same observed kappa given the specifics of the data. Estimated rater accu-
racy provides a metric to judge “accurate enough” standards given the conditions of a 
dataset (e.g., number of raters and codes, frequency of different codes), rather than 
categorical cutoff points for Cohen’s kappa. Table 2 reports that our Cohen’s kappa 
for the total sample was .54 (80% agreement, uncorrected for chance). To produce a 
kappa of this value, the estimated rater accuracy suggests that simulated observers 
under similar circumstances (2 codes, 2 raters) would need to be 87% accurate (range 
across five samples = 77 - 90%). 
 
 
Table 2. Reliability between first raters and second raters per sample and in total 
 
 

Sample Language n Percent agreement 
(uncorrected) 

Estimated 
rater accuracy 

Cohen’s 
kappa 

1 En 5 85% 87% .38 

2 En 5 80% 89% .61 

3 En 5 79% 88% .58 

4 Sp 5 83% 90% .65 

5 Sp 5 73% 77% .24 

Total En and Sp 25 80% 87% .54 
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Results 
 
Preliminary Analyses 
 
Figure 3 illustrates the distributions of raw AWC, CTC, and CVC values per 5-min seg-
ment for tCDS or ODS segments using only data from Sample 4 (Weisleder & Fernald, 
2013). To examine the degree to which the frequency measures of AWC, CTC, and 
CVC predicted the human-coded classifications of tCDS or ODS, we conducted hierar-
chical mixed effects logistic regression models. Models included a random intercept 
per participant and importantly, all frequency measures were converted to rates per 
minute and mean-centered within each family to allow interpretation of values as rel-
ative to each family’s mean rates. 
 

 

We found that each frequency measure, AWC/min, CTC/min, and CVC/min, inde-
pendently contributed to the probability of a segment being classified as tCDS versus 
ODS. As seen in Figure 4, lower AWC rates (B = -.59, 95% CI = [-.72, -.46]) were associ-
ated with a higher probability of tCDS, indicating that segments that have higher than 
average AWC for a given family have a lower probability of being coded as tCDS by 
human coders. In contrast, higher rates of CTC (B = .36, 95% CI = [.21, .52]) and CVC 
(B = .39, 95% CI = [.26, .52]) were associated with a higher probability of tCDS, such 
that segments that were higher than average in CTC or CVC for a given family were 
more likely to be coded as tCDS. These findings indicate that each of the LENA fre-
quency measures predicted the probability of tCDS, but did so in different directions. 
Moreover, because these measures are interrelated, it is likely that relations were 
more complex than these techniques could capture. Thus, we next recruited machine 

Figure 3. Boxplots of raw AWC, CTC, and CVC values by 5-min segments human-
coded as tCDS or ODS using data from Sample 4. Note: Split segments were treated 
as ODS; segments identified as sleep were excluded. 
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learning techniques to explore the extent to which multiple LENA features, including 
both frequency- (AWC, CTC, and CVC) and time-based (e.g., minutes in meaningful 
speech, noise), could be used jointly to classify periods of sleep, tCDS or ODS. 
 
Cluster Analyses 
 
We next examined whether segments could be meaningfully clustered, which might 
suggest that a classifier based on thresholding multiple feature values (e.g., a decision 
tree) might work better than techniques that looked at predictors individually. We 
include speech frequency measures (AWC, CTC, and CVC) and time-based measures 
provided by LENA summary outputs (minutes in meaningful speech, distant speech, 
TV, noise, and silence), and examined how these measures clustered to predict hu-
man coding of the 5-min segment as periods of sleep, >50% tCDS, or > 50% ODS. Using 
an unsupervised clustering algorithm (k-means), we clustered all 12,936 segments ac-
cording to their raw LENA values, considering k = {2,..,15} clusters. Table 3 shows the 
selected k = 7 clusters along with the proportion of each type of segment in the cluster 
and the mean values of LENA features for segments in that cluster. As shown in bold, 
Clusters 4 and 5 capture mostly sleep (64% and 53%) with low AWC, CTC, and CVC, 
but both clusters also include a moderate number of tCDS segments (22% and 30%). 
Note that Cluster 5 is also associated with high levels of noise (italicized), whereas 
Cluster 4 is associated with high levels of silence. The next two clusters in bold, Clus-
ters 6 and 1, are both predominantly tCDS (73% and 60%) and cover 36.4% of the da-
taset, however, one has somewhat higher mean AWC, CTC, and CVC values than the 
other. Note also that these two clusters also contain many ODS segments. Next, we 
can note that Clusters 7 and 2 are comprised mostly of ODS segments. While both 
clusters are associated with low values of CTC and CVC, Cluster 7 is associated with 
high values of AWC, while Cluster 2 is not. Finally, Cluster 3, which looks much like 
the sleep clusters (4 and 5) in terms of low AWC, CTC, and CVC, is also associated with 
a higher level of TV than other clusters. 
 

 
Figure 4. Predicted probabilities and confidence intervals (shaded region) of tCDS 
from AWC, CTC, and CVC, when holding each other measure at families’ mean value 
(vertical line at 0). 
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Overall, these cluster analyses showed that: 1) multiple LENA features captured 
meaningful variation between the clusters, as some features clustered together to cor-
respond primarily to sleep, tCDS, or ODS, and yet 2) the clusters have significant over-
lap in tCDS and ODS, and to a lesser extent, sleep. 
 
Table 3. Means of LENA features by cluster, annotated with proportion of sleep, 
tCDS, and ODS segments. 

 
Note: Bolded numbers correspond to clusters that included the highest proportion of 
segments classified most frequently as sleep, tCDS, and ODS, respectively. Italicized 
values indicate maximum cluster means of each LENA feature. AWC, CTC, CVC are 
automated counts per 5-minute segment, normalized to be rates (counts per mi-
nute). Values for noise, silence, distant, TV, and meaningful are proportions of each 
per 5-minute segment. 
 
Classifying Sleep Segments 
 
We attempted to build a classifier to automatically distinguish sleep from awake seg-
ments using only automatically-generated LENA features. All counts and durations of 
time were normalized to per-minute values (i.e., divided by segment duration). Alt-
hough we experimented with simpler classification algorithms (e.g., decision trees 
and random forests; Bang et al., 2022), ultimately the best performance was achieved 
with XGBoost (eXtreme Gradient-Boosted trees; (Chen & Guestrin, 2016), a state-of-
the-art algorithm that trains a cascade of decision trees successively on subsets of the 
data, upweighting the segments that were misclassified by earlier decision trees.2 It 

 
2 XGBoost takes an MxN matrix of M training samples (5-minute segments, in our case) of N numeric 
features (scaled LENA metrics, here), and iteratively constructs a set of decision trees that aim to pre-
dict the given binary classes (e.g., sleep / not-sleep; or CDS / non-CDS), where each new tree focuses 
more on the data points that were misclassified by prior trees. 
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should be noted that XGBoost does not work well in some domains (e.g., it does not 
appear to work well for object recognition in images, Ohn-Bar & Trivedi, 2016), and 
tree-based methods in general do not extrapolate well beyond the range of feature 
values in the training set. Thus, it is important to thoroughly test via cross-validation, 
and to have a large and diverse training set to improve generalizability. An XGBoost 
classifier was trained using the xgboost R package (v1.7.5.1; Chen & He, 2023) to dis-
tinguish segments when the target child was asleep from those when they were 
awake, mirroring the first step that researchers could take when manually cleaning a 
LENA dataset. We trained the model using 5-fold cross-validation on 90% of the da-
taset (11,642 of 12,936 segments) and then tested the model on the remaining 10% 
held-out data (1,294 segments).  
 
Results for the held-out data of the cross-validated classifier are shown in Figure 5. 
We illustrate the Receiver Operating Characteristic (ROC) curve, which depicts the 
performance of the classifier on sensitivity vs. specificity given all discrimination 
threshold values. On the left, the ROC curve reflects an overall ratio of sensitivity (y-
axis) to specificity (x-axis) that was quite high, an Area Under the Curve (AUC) > .95, 
on the held-out test segments, with an accuracy of 0.945.3 One limitation of XGBoost 
is that it does not enable simple visualizations, e.g., a decision tree, of how classifica-
tions are made. However, the feature importance measure can be used to assess 
which features were most informative in the ensemble of boosted trees. Shown in the 
right-hand panel of Figure 5, the amount of meaningful speech was the most im-
portant feature for classifying sleep segments, followed by the amount of silence, the 
number of child vocalizations, and distant speech.  
 
A final sleep classifier was trained using all of the data (12,936 segments; 1,879 sleep 
segments, 11,057 awake), resulting in a classifier with superior performance to the 
cross-validated classifier (AUC = 0.985; see Appendix A for additional details). This 
sleep classifier has been made accessible for other researchers in a web app.4 
 
Classifying tCDS vs. ODS Segments 
 
We turn now to the more challenging task of building a classifier to automatically 
distinguish tCDS from ODS segments. We trained an XGBoost classifier on LENA fea-
tures to distinguish tCDS segments from all other segments (ODS and split segments). 
First, we removed the 1,879 human-coded segments during which children were 
asleep (assuming they would be removed manually or by the sleep classifier). We then 
reclassified the 1,012 “split” segments which human coders judged to be 50% ODS and 
50% tCDS as ODS, resulting in a total of 5,239 ODS segments and 5,818 tCDS segments 

 
3 To test whether the classifier was overfitting to characteristics of particular segments, we trained a 
5-fold cross-validated version on 80% of the children, leaving out data from 20% of the children 
(n=30) in each fold. This classifier achieved very similar performance (AUC = 0.95; average test accu-
racy = 0.95), suggesting that the classifier will generalize to new children from similar samples. ROC 
curves for this analysis are shown in Appendix F. 
4 https://kachergis.shinyapps.io/classify_cds_ods/ 
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(58% tCDS) when children were awake. The purpose of the classifier is thus to distin-
guish periods with >50% tCDS from segments that were at least 50% ODS, after remov-
ing periods of sleep. A random 90% of the awake data (9,951 out of 11,057 segments) 
was used to train the classifier, and the remaining 10% served as the held-out test set 
(1,106 segments) for evaluation.  
 
 

 
Figure 5. (left) The ROC curve for the sleep classifier for the 10% held-out test set. 
(right) Relative importance of the LENA features in the XGBoost sleep classifier 
trained on 90% of the data. 
 
The results are presented in Figure 6. As shown in the left-hand panel, when trained 
on 90% of the segments, the XGBoost classifier achieved moderate overall classifica-
tion performance (AUC = 0.719), with an overall accuracy of 0.674 on the held-out 
data.5 As shown in Figure 6 (right), the four most important features were the duration 
of silence, CTC, AWC, and meaningful speech. 
 
A final XGboost classifier was trained with all 11,057 segments in order to offer the 
best chance for generalization to new data with similar samples, though there is no 
guarantee of similar performance for families and settings dissimilar to the present 
dataset. This final classifier’s performance is shown in the Appendix Figure B1 and in  

 
5 To ensure that the classifier was not overfitting to these segments, we also trained a cross-validated 
version on 80% of the children, leaving out data from 20% of the children (n = 30) in each fold. This 
classifier achieved approximately the same performance (AUC = 0.73; average test accuracy = 0.66), 
suggesting that the classifier will generalize similarly well to data from additional children (see Ap-
pendix F for ROC curves). We also investigated including demographic and time of day features in 
the classifier, but found that inclusion of these features resulted in overfitting (i.e., poorer perfor-
mance on held-out data). 
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Figure 6. (left) ROC curve of the tCDS/ODS classifier for the 10% held-out test set and 
(right) relative importance of the LENA features in XGboost classifier trained on 
90% of the data. 
 
the confusion matrices in Table 4. The AUC for this final classifier is much improved 
(AUC = 0.83), but performance on new data may be expected to be in-between the 
90%-trained classifier and this higher value. This tCDS/ODS classifier is available for 
other researchers to use via a web app.6 
 
Reliability Between the tCDS/ODS Classifier and a Human Rater 
 
How does our classifier compare against human raters? Table 4a shows the confusion 
matrix for agreements (diagonal) and disagreements (off-diagonal) between the hu-
man raters (row) and the classifier’s (columns) final binary predictions. The classifier 
correctly identified 80% of segments that humans rated as tCDS, as well as 70% of 
segments that humans rated as ODS. For comparison, Table 4b shows the confusion 
matrix for agreements (diagonal) and disagreements (off-diagonal) between two hu-
man raters. On average, human raters had 87% agreement for tCDS and 65% agree-
ment for ODS. Thus, while tCDS agreements were slightly higher between two human 
raters and ODS agreements were slightly stronger between a classifier and a human 
rater, both confusion matrices indicate that ratings were similar whether comparing 
the classifier against a human rater or between two human raters. Sample-specific 
results can be seen in Appendix C. 
 
 
 
 

 
6 https://kachergis.shinyapps.io/classify_cds_ods/ 
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Table 4. Confusion matrices. 
 

a) Human rater 1 (Gold Standard) vs. tCDS/ODS classifier 
 

  
Classifier 

 

  
tCDS ODS Total 

Human 
rater 

 
(Gold 

Standard) 

tCDS 4641 
(80% agreement) 

1177 5818 

ODS 1554 3685 
(70% agreement) 

5239 

 
Total 6195 4862 11,057 

 
Note: a) The diagonal (gray shading) indicates agreement between a human rater 
and the final XGboost classifier. b) The diagonal indicates agreement between two 
human raters. There were multiple individuals who served as first and second 
raters. For both tables, the percent agreement is calculated by dividing the number 
of agreements by the gold standard’s total codes of the respective category. 
 
 
 
b) Human rater 1 (Gold Standard) vs. Human rater 2 
 

 
  

  
Human rater 2 

 

  
tCDS ODS Total 

Human 
rater 1 
 
(Gold 
Standard) 

tCDS 190 
(87% agreement) 

28 218 

ODS 39 74 
(65% agreement) 

113 

 
Total 229 102 331 
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Links Between tCDS and Child Language Outcomes 

 
One critical question is whether the tCDS/ODS classifier works sufficiently well to rep-
licate results from studies with human-coded data. To test this, we used the Weisleder 
& Fernald (2013) dataset of 29 Spanish-speaking children whose caregivers completed 
the MacArthur-Bates Mexican Spanish CDI (Jackson-Maldonado et al., 2003) to assess 
vocabulary size when the children were 24 months. As illustrated in the left-hand 
panel of Figure 7, in this human-coded dataset, children who heard more tCDS at 19 
months had significantly larger vocabularies at 24 months (r = .52, 95% CI = [.19, .75], 
p = .004). However, there was no significant association between the amount of ODS 
at 19 months and vocabulary size at 24 months (r = .25, p = .199). 
 

Figure 7. Scatterplots between human-coded or model-predicted tCDS or ODS at 19 
months and children’s later vocabulary sizes at 24 months. Note: Associations be-
tween vocabulary size and tCDS tokens are significantly positive, and of similar 
magnitude, whether human-coded (top, left) or model-predicted (top, right). Associ-
ations between vocabulary size and ODS tokens are not significant, but are of simi-
lar size, both for human-coded (bottom, left) and model-predicted (bottom, right) 
segments. 
 
We investigated these same correlations using the classifier’s predictions of which 
segments were classified as tCDS vs. ODS. As shown in the right-hand panel of Figure 
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7, as with the original manual annotations, children who heard more tCDS at 19 
months had significantly larger vocabularies at 24 months (r = .48, 95% CI = [.14, .72], 
p = .008), while the relation between the amount of ODS and vocabulary size was 
smaller, and did not achieve statistical significance by standard conventions (r = .32, 
95% CI = [-.06, .61], p = .094). Notably, the pattern of the strength of the correlations 
are similar between the human-coded and model-predicted classifications, suggest-
ing that the classifier is an effective tool for this purpose. To test whether this result 
was due to the inclusion of the Weisleder & Fernald dataset in the classifier’s training 
set, we trained a classifier excluding this dataset, and found similar a pattern of re-
sults (tCDS vs. vocabulary r = .44, 95% CI = [.08,.69], p = .018; ODS vs. vocabulary r 
= .33, 95% CI = [−.04,.62], p = .082). 
 
Leveraging Classifier Confidence 
 
Although the classifier’s binary performance is significantly above chance, there is 
substantial room for improvement, and thus we explored a more fine-grained meas-
ure of performance to determine whether some segments should be further exam-
ined by human coders. The source of XGboost’s binary distinction between tCDS and 
ODS is actually a probability of tCDS in the range of [0,1], thresholded at 0.5 (i.e., if 
Pr(tCDS) > 0.5, a segment is classified as tCDS; otherwise it is classified as ODS). Figure 
8 shows a histogram of classifier ratings (Pr(tCDS)) for all 11,057 awake segments in 
our full sample, color-coded by the classifications given by human listeners, with a 
dashed line indicating the threshold used for binary classification. Notably, there is 
significant overlap of the two distributions: there are many tCDS segments that (to the 
classifier) resemble and are thus confusable with ODS segments, and vice-versa. Of 
the 3,136 segments that were classified as tCDS with what could be considered to be 
low-confidence (0.4 < Pr(tCDS) < 0.6), 49% of them were judged by human coders to 
be tCDS. In contrast, a larger fraction of the segments classified with high confidence 
by the classifier agree with the human coder classification: for example, 89% of the 
2,884 segments rated as Pr(tCDS) > 0.7 were judged to be tCDS by human coders, and 
88% of the 2,196 segments rated as Pr(tCDS) < 0.3 were judged to be ODS by human 
coders. Thus, the probability of a segment being classified as tCDS could be used by 
researchers to make decisions about future coding or analysis, a point we return to in 
the discussion. 
 

General Discussion 
 
Our study suggests that a combination of automatically-generated measures of chil-
dren’s speech environments from LENA can be used to identify periods of sleep, tCDS, 
and ODS in daylong audio recordings, thus facilitating investigation of potentially 
meaningful sources of variation in young children’s speech environments. We dis-
cuss our five main insights in turn. 
 
First, we found differences in how the commonly-used, core frequency measures 
from LENA (AWC, CTC, and CVC) predicted the probability of a 5-minute segment 
being classified as containing primarily target-child-directed versus other-directed 
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speech. Our preliminary analyses indicated that segments with higher AWC relative 
to a family’s mean were more likely to be judged by humans as having primarily other-
directed speech. Frequency measures of CTC and CVC resulted in the opposite pre-
diction, where segments with higher values relative to a family’s mean were more 
likely to be judged as having predominantly target-child-directed speech. These find-
ings suggest that periods of speech directed to a target child are defined by relatively 
lower rates of adult words and relatively higher rates of conversational turns and 
child vocalizations. This is consistent with the finding that adults often use a slower 
speech-rate when talking with children and that target-child-directed speech is more 
likely to elicit vocalizations from the child than other-directed speech. This finding 
also suggests that one reason some studies have found LENA’s CTC measure to be a 
better predictor of child language outcomes than AWC (Gilkerson et al., 2018; Romeo 
et al., 2018) may be that high CTC is a better indicator of periods with target-child-
directed speech than is AWC.  
 

 
Figure 8. Histogram of classifier Pr(tCDS) for each segment, colored by human-
coded segment type. Note: Dashed line indicates the threshold for binary classifica-
tion: segments to the right were human-coded as tCDS (blue), while those to the left 
were human-coded as ODS (pink). Note that ‘split’ segments (green), which human 
coders found to be a mixture of both tCDS and ODS, were also given less decisive rat-
ings of Pr(tCDS) by the classifier. The purple area indicates the overlap between 
tCDS and ODS regions. 
 
Second, a much more complex picture arose when including both LENA frequency 
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and duration measures in cluster analyses. While some distinct features character-
ized different audio environments, there was also a high degree of overlap across 
clusters. For example, as expected, clusters with more sleep segments were charac-
terized by the lowest rates of AWC, CTC, and CVC. However, one sleep cluster was 
characterized by more silence, while the other was characterized by more noise. This 
aligns with anecdotal reports by human coders that periods of sleep sometimes in-
volved what appeared to be fans or sound machines, sounds which were likely cate-
gorized as “noise” by LENA. Baby snores, which also sometimes occurred during pe-
riods of sleep, could also have been categorized as “noise” by LENA. In contrast, those 
clusters that were likely to be tCDS were characterized by the highest averages of CTC 
and CVC, but were more mixed with regards to AWC. Of clusters likely to be ODS, one 
cluster consisted of the highest average AWC, while the others had lower CTC and 
CVC rates, or longer durations of distant speech and TV. Thus, we observed multiple 
ways in which features were combined in clusters of predominantly sleep, tCDS, and 
ODS. Moreover, in no cases were sleep, tCDS, or ODS associated with only one cluster 
or configuration of features. Future work might fruitfully examine in more detail the 
potential differences between segments in different cluster types. For example, are 
segments in some clusters associated with different types of language interactions 
and/or activities than other segments? 
 
Third, we found a high degree of success in training a classifier to identify periods of 
sleep in our dataset. Consistent with the multifaceted nature of clusters defined by 
more sleep, the classification was not simply due to periods of silence. The classifier 
mostly relied on the duration of ‘meaningful’ speech, followed by the duration of si-
lence, and the number of vocalizations by the target child. This suggests that, at least 
among English- and Spanish-speaking families in the U.S., periods in which the target 
child is asleep vs. awake could be reliably identified from characteristics of the audio 
environment and shows advantages of considering multiple features of those envi-
ronments.  
 
Fourth, we found moderate success in training an XGBoost classifier to distinguish 
periods of tCDS versus ODS in our dataset. We found moderate sensitivity and speci-
ficity on the full dataset and a slightly smaller AUC on the held-out test segments. The 
feature importance list illustrated the average gain in our prediction of tCDS versus 
ODS, highlighting many features (meaningful speech, AWC, CTC, and silence) that 
also emerged in our cluster analysis. Reliability between two trained human raters 
suggests that even when individuals undergo training and interpret all available in-
formation in the auditory environment, there is variability across samples and there 
may be a ceiling of ‘good enough’ reliability. The moderate success of the classifier in 
terms of sensitivity and specificity, as well as performance seen in the confusion ma-
trices, were similar to that of two human raters. This suggests that the level of accu-
racy achieved by the classifier may be a reasonable goal given the complexities of the 
speech environment. The superior performance of the classifier relative to analyses 
that were limited to individual predictors (i.e., the logistic regressions presented in 
our first analysis) suggests that human classifications of target-child-directed and 
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other-directed speech rely on nuanced distinctions that take into account combina-
tions of features in the audio environment (e.g., low silence with high CTC and mod-
erate AWC), as well as features of the environment not captured by these measures 
(e.g., semantic content). 
 
Finally, we demonstrated that we could use model-derived predictions of tCDS and 
ODS to replicate associations between caregiver speech at 19 months and children’s 
vocabularies at 24 months that were observed in previously published work in Span-
ish-speaking families in the U.S. (Weisleder & Fernald, 2013). We examined these cor-
relations to test the performance of the classifier and not as an extension of the orig-
inal study. The model-predicted classifications revealed, as observed with human-
coding, that variability in speech to target children was positively and significantly 
correlated with children’s later vocabularies, whereas this link was not statistically 
significant when using model-derived predictions of adult speech was directed to oth-
ers. 
 
Suggested Uses of the Classifier 
 
We constructed a web app (https://kachergis.shinyapps.io/classify_cds_ods/) deploy-
ing the final XGboost classifiers for both sleep and tCDS/ODS, so that other research-
ers with daylong LENA recordings can easily use it on their datasets. However, it is 
important to note that this app has only been trained with data from U.S. families; 
thus, for researchers with populations dissimilar to those studied here, we recom-
mend checks for the reliability of the classifier against human listeners (see Limita-
tions below). Additionally, research on the generalizability of the classifier to new 
samples deserves separate attention, especially when considering which variables are 
theoretically motivated and logistically possible under different circumstances. 
 
For those with LENA data, use of this web app may facilitate specifying the amount of 
speech directed to target children and speech directed to others. First, the sleep clas-
sifier can automate one laborious step of ‘cleaning’ daylong LENA recordings with a 
reasonably high degree of reliability. Second, the tCDS/ODS classifier could also be 
used to reduce the significant hours of manual labor required for coding periods of 
target-child-directed or other-directed speech. We have found that the classifier’s per-
segment probability of tCDS matches well with the uncertainty of human coders (e.g., 
the 50/50 “split” segments were classified as ~50% probability of being tCDS). 
 
We suggest three potential workflows for using the classifier (Figure 9). Option 1 is to 
first run the sleep classifier to exclude periods when the child is sleeping and thus 
less likely to learn from the available speech, then running the tCDS/ODS classifier to 
identify binary judgements of segments considered as tCDS or ODS. Given that the 
classifier has been tested with a limited number of samples, we recommend reliabil-
ity checks on a sub-sample of data with human listeners (if approved by ethics com-
mittees). To facilitate this, we provide our interrater reliability protocol for training 
human listeners, as well as the coding protocols from the original studies 
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(https://osf.io/qcj6r/). These protocols could also help guide reliability checks to com-
pare human vs. classifier judgements.  
 
Option 2 could be to follow the same steps, but rather than use a binary tCDS or ODS 
judgment, use the probabilities of tCDS or ODS to identify ‘high confidence’ tCDS or 
ODS segments versus ‘low confidence’ tCDS or ODS segments; ‘low confidence’ seg-
ments could then be listened to and judged by human coders. Whichever values are 
chosen, it is recommended to choose values that are symmetric (e.g., Pr(tCDS) < 0.3 
(i.e., ODS) and Pr(tCDS) > 0.7 (i.e., tCDS)), to limit the introduction of bias.  
 
Option 3 is to use the classifier probabilities to estimate the number of AWC tokens of 
tCDS and ODS in each segment by computing expected values (see Appendix D for 
more explanation). For example, a segment with an AWC of 200 and a .7 probability 
of being tCDS would result in 140 adult words counted as tCDS and 60 words counted 
as ODS for that segment. Rather than binning segments based on a binary probability 
of the entire segment falling into the tCDS versus ODS category, each 5-minute seg-
ment would contribute some of its counts to both. See Appendix D for an application 
of this method to the Weisleder & Fernald (2013) data, which yielded similar associa-
tions with outcomes. It is important to note that higher tCDS probabilities may reflect 
more of a certain type of verbal interaction (e.g., one-on-one interactions in a quiet 
indoor setting) than other types of caregiver-child interactions (e.g., playing outside 
where speakers may be further away from each other). Therefore, how probabilities 
are used should be considered with caution and transparently documented to better 
understand their utility and significance. 
 
Figure 9. Potential workflows with the classifier. 
 

 



 Language Development Research  
 

Volume 3, Issue 1, 31 December 2023 
 

235 

Limitations 
 
While we included over 1,000 hours of data from 153 English- and Spanish-speaking 
families from varied socioeconomic backgrounds, our sample nevertheless repre-
sents a small subset of the variability that exists within English- and Spanish-speaking 
families in the U.S. and a tiny subset of the linguistic (e.g., different languages, mul-
tilingualism, signed vs. spoken language), cultural, and ecological variability in child-
rearing environments around the world. For example, given the wide variability in 
infant sleep routines seen across families and countries throughout the world (Min-
dell et al., 2010), most of which are not represented in our training data, it is possible 
that the LENA features that characterize periods of sleep in our recordings will not 
generalize to recordings collected in very different contexts. In particular, all of the 
families in our studies lived in urban settings, and it is likely that the LENA features 
that characterize periods of sleep would differ for families in different settings (e.g., 
subsistence farming communities; Casillas et al., 2019, 2021). Similarly, given the 
wide variability in ways of interacting with children observed across sociocultural set-
tings, it is possible that the features that differentiated tCDS from ODS in our sample 
of English- and Spanish-speaking families in California will not generalize to other 
contexts. Further validation studies are critical to understand whether our classifiers 
can generalize to new languages and communities (Cristia et al., 2021). Other studies 
that have coded tCDS vs. ODS in various other languages and contexts (Tseltal in a 
Mayan village: Casillas et al., 2019; Yélî Dnye in a Papuan community: Casillas et al., 
2021; Spanish in Argentina: Rosemberg et al., 2020; Sesotho in South Africa and 
French in France: Loukatou et al., 2022) have done this in different ways (e.g., utter-
ance-level coding vs. global binary judgements of tCDS or ODS). Thus, at the moment, 
our classifier cannot be applied to these data. Additionally, while our classifier is 
open-source, LENA software is not; thus, the ability to use this classifier requires a 
substantial cost to purchase the LENA recorders and software. Future work should 
compare whether our classifiers can be used with open-source speech algorithms 
(e.g., ALICE; Räsänen et al., 2021) to achieve similar performance. Finally, while the 
classifier can facilitate identification of periods of sleep, tCDS, and ODS in daylong 
audio recordings, this automated method does not reveal the specific acoustic, lin-
guistic, or interactional features that differentiate between these speech contexts. 
Thus, it is far from replacing the need for human annotation and transcription and 
more research is needed to better explain how children learn from the language(s) to 
which they are exposed.  
 
Conclusion 
 
These findings suggest exciting opportunities for advancing our understanding of 
how children learn from the available speech in their environment. We were able to 
train and validate two automated classifiers using LENA-based measures to identify 
periods of sleep and to distinguish between periods of tCDS versus ODS. This work 
has the potential to significantly reduce the time-consuming process of identifying 
periods of directed speech to target children from the rich and naturalistic infor-
mation collected with daylong recordings. In this way, the progress that we have 
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made here can facilitate future research seeking to illuminate questions about the re-
lations between target-child-directed and other-directed speech on child outcomes 
and/or about the features of child-directed speech across linguistically- and cultur-
ally-diverse communities. We hope this adds to existing methods to explore shared 
and different features of target-child- and other-directed speech so we can better un-
derstand how different children across diverse communities acquire and develop 
their language skills. 
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Appendices 
 
Appendix A. Final Sleep Classifier 
 

 
Figure A1. The final XGBoost sleep classifier, trained on the entire dataset, has a 
slightly higher AUC than the cross-validated classifier had on held-out data (Figure 
5). The relative feature importances are quite similar to the held-out data classifier, 
although TV became slightly more important than AWC in the final classifier. 
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Appendix B. Final tCDS/ODS Classifier 
 
A final XGboost classifier was trained on the entire set of tCDS and ODS segments, 
and the results of this classifier are shown in Figure B1. The feature importances are 
similar to those in the classifier trained on 90% of the data, except that there is more 
reliance on AWC and slightly less on CTC in the final classifier. The AUC is also 
much improved. 
 

 
Figure B1. (left) ROC curve of the tCDS/ODS classifier and (right) relative im-
portance of the LENA features in the final XGboost classifier trained on all 11,057 
segments. 
 
Appendix C. Confusion Matrices Between Two Human Raters When Examining In-
terrater Reliability per Sample 
 
Note that the diagonal (gray shading) indicates agreement between two human 
raters. For all tables, the percent agreement is calculated by dividing the number of 
agreements by the gold standard’s total codes of the respective category. 
 
Table C1. Sample 1 
  

Human rater 2 
 

  
tCDS ODS Total 

Human Rater 1 
 
(Gold Standard) 

tCDS (rater 1) 46 
(92% agreements) 

4 50 

ODS (rater 1) 5 4 9 
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(44% agreements) 

Total 51 8 59 

Table C2. Sample 2 

  
 

Human rater 2 
 

  
tCDS ODS Total 

Human rater 1 
 
(Gold Stand-
ard) 

tCDS (rater 1) 28 
(100% agreements) 

0 28 

ODS (rater 1) 11 17 
(61% agreements) 

28 

Total 39 17 56 

 
Table C3. Sample 3 
  

Human rater 2 
 

  
tCDS ODS Total 

Human rater 1 
 
(Gold Standard) 

tCDS (rater 1) 37 
(84% agreements) 

7 44 

ODS (rater 1) 9 25 
(74% agreements) 34 

Total 46 32 78 

 
Table C4. Sample 4 

 
  

  
Human rater 2 

 

  
tCDS ODS Total 

Human rater 1 
 
(Gold Standard) 

tCDS (rater 1) 32 
(76% agreements) 

10 42 

ODS (rater 1) 1 21 
(95% agreements) 

22 

Total 33 31 64 
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Table C5. Sample 5 
  

Human rater 2 
 

  
tCDS ODS Total 

Human rater 1 
 
(Gold Standard) 

tCDS (rater 1) 47 
(87% agreements) 

7 54 

ODS (rater 1) 13 7 
(35% agreements) 

20 

Total 60 14 74 

 
 
Appendix D. Using Classifier Probabilities to Estimate tCDS and ODS Tokens 
 
Future research may benefit from using the classifier-estimated probability of each 
segment being tCDS in two ways: 1) to reduce the amount of human coding (e.g, by 
only listening to the low-confidence segments), and 2) to estimate the number of tCDS 
and ODS tokens in each segment. First, given the high accuracy of the classifier for 
high-confidence classifications (~92% for Pr(tCDS) > 0.7 (i.e., tCDS), and 77% Pr(tCDS) 
< 0.3 (i.e., ODS)), one could use the classifier predictions for these segments, while 
potentially choosing to code the remaining low-confidence segments by hand. For the 
present dataset, this would have reduced the time needed to code the segments by 
46%. For researchers primarily interested in segments that are likely to be primarily 
tCDS, it may be justified to disregard the likely ODS segments (e.g., Pr(tCDS) < 0.3; 
~20% of our dataset). Determining what criterion to use requires careful considera-
tion of the goals of the research, but there may be additional utility in leveraging the 
classifier’s immediate, fine-grained judgments to support human rating for more dif-
ficult segments.  
 
Moreover, the classifier’s probability rating for each segment could be interpreted as 
an estimated proportion of the segment’s tCDS (vs. ODS) content, and researchers 
could use the estimated tokens of tCDS and ODS AWC to calculate an expected value 
of both tCDS and ODS tokens for each child. That is, if a given 5-minute segment with 
100 adult words receives a rating of Pr(tCDS) = 0.75, then the expected number of tCDS 
tokens in that segment is Exp(tCDS) = 100*0.75 = 75, and Exp(ODS) = 100*(1-Pr(tCDS)) 
= 25 tokens. Using this more fine-grained measure of each segment’s contents may 
provide a better signal, as compared to the binarized classification, which assigns 
each segment’s AWC tokens to either tCDS or ODS. Whether a segment with a higher 
probability of tCDS actually contains more tCDS (and less ODS) is an empirical ques-
tion, which we will indirectly address here by examining the relation between chil-
dren’s classifier-rated amount of experienced tCDS and ODS and their later vocabu-
lary size using the data from Weisleder & Fernald (2013), as before. The correlation 
for Exp(tCDS) and vocabulary size at 24 months was r = .56 (t(27) = 3.53, 95% CI = 
[.25, .77], p = .001), which is somewhat higher than when using the binary tCDS/ODS 
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judgments, from either the classifier or the human raters. The correlation for 
Exp(ODS) and vocabulary size at 24 months was r = .35 (t(27 = 1.94, 95% CI = [-.02, .64], 
p = .06), roughly similar to what was found using the binary judgments. Another hint 
that the classifier’s Pr(tCDS) rating may correspond to humans’ confidence is that the 
majority (74%) of the ‘split’ segments identified by human raters had great uncertainty 
for the classifier: only 26% of these segments were given high-confidence ratings in 
the model (Pr(tCDS) < 0.3 or Pr(tCDS) > 0.7). 
 
Appendix E. Testing Classifiers Using Sample-Level Cross-Validation 
 
Given that these samples were collected over many years, with potential variation in 
populations and training of research assistants, we chose to test whether leaving con-
temporaneously collected samples out of the training set unduly influenced the per-
formance of the sleep or tCDS/ODS classifiers. Table E1 shows the accuracy and AUC 
for sleep classifiers trained without each sample, showing that performance was 
fairly consistent (accuracy range: [0.945,0.970]; AUC range: [0.948,0.985]). Table E2 
shows the results for tCDS/ODS classifiers trained without each sample, showing 
broadly similar performance (accuracy range: [0.628,0.708]; AUC range: 
[0.690,0.786]). It is worth noting that leaving out Sample 1 does somewhat decrease 
performance, and leaving out Sample 4 somewhat increases performance. Nonethe-
less, on balance we believe that including the full dataset gives the greatest chance of 
generalizing to new datasets. 
 
Table E1. Sleep classifier results when respective samples are left out 

 
Table E2. tCDS/ODS classifier results when respective samples are left out 

Sample-left-out Accuracy of classifier 
without sample 

Area Under Curve (AUC) 
without sample 

Sample 1 0.970 0.985 

Sample 2 0.945 0.955 

Sample 4 0.948 0.966 

Samples 3 and 5* 0.967 0.948 

Sample-left-out Accuracy of classifier 
without sample 

Area Under Curve (AUC) 
without sample 

Sample 1 0.628 0.690 

Sample 2 0.666 0.721 

Sample 4 0.708 0.786 

Samples 3 and 5* 0.683 0.723 
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Note: *Samples 3 and 5 were both coded at the 10-min level, and then split into 5-min 
segments to include in the classifier. We group them here to cross-validate the clas-
sifier.  
 
Appendix F. Testing Classifiers Using Child-Level Cross-Validation 

 

Figure F1. ROC curves for classifiers that exclude 20% of children (n = 30) in each 
training set, for sleep (left) and tCDS/ODS (right). 
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