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Introduction 
 
Large language models are deep artificial neural networks pretrained on large unla-
beled datasets via self-supervised learning. These models have had a great impact in 
the field of Natural Language Processing (hereafter NLP) for their performance in 
language understanding and generation tasks (e.g., Bommasani et al., 2022). Here, we 
examined the plausibility of these models as distributional learners posited by usage-
based approaches of language acquisition (e.g., Ambridge, 2020; Bybee, 2010). We fo-
cused on child word sense disambiguation (Cabiddu et al., 2022b; Rabagliati et al., 
2013). That is, how children use sense-specific representations (e.g., band = music 
band, elastic band). Specifically, we examined whether the distributional learning 
mechanisms that allow these models to acquire linguistic knowledge at the sentence 
and word level could give rise to word sense disambiguation skills that children ex-
hibit in behavioral tasks. 
 
We tested models based on the Transformer architecture (Vaswani et al., 2017) that 
perform sense disambiguation using sentence context to form contextualized repre-
sentations. Transformers are sensitive to both bottom-up direct word-associations (a 
word co-occurring frequently with another across different sentences) and top-down 
syntactic and semantic sentence structures (e.g., Jawahar et al., 2019; Tenney et al., 
2019) on which sense disambiguation depends. Here, we refer to these high-level sen-
tence structures as top-down cues that a usage-based learner might acquire through 
language experience (Alishahi & Stevenson, 2013; Bybee, 2010). These refer to any 
abstract knowledge that might enable an individual to generalise a certain sentence 
structure to novel language instances (e.g., a child knowing that “pushing a flower-
pot” is more plausible than “pushing a road” even without having heard either expres-
sion before; Andreu et al., 2013). Transformers’ inherent sensitivity to top-down cues 
allow us to apply these models to raw naturalistic language, without having to enrich 
the input with external, explicit resources to provide sensitivity to such structures. 
For example, Alishahi and Stevenson (2013) showed how a computational learner 
could apply familiar verbs to novel object arguments. The model they developed was 
provided with various pieces of knowledge, such as the positions of syntactic argu-
ments within sentences and the semantic characteristics of each argument. From 
this, it was able to generalize the prototypical semantic properties that an argument 
of a verb should possess (i.e., verb-event structures; for instance, “The mechanic 
warned the driver” is more plausible than “The mechanic warned the engine”). This 
finding is significant because it provides in-principle evidence that a structural aspect 
like verb-event structures can be bootstrapped from input. However, providing the 
extensive knowledge presumed to be available to the learner requires several input 
pre-processing steps (e.g., lemmatizing the input, identifying and recoding natural-
istic sentences as verb frames, tagging semantic characteristics of each argument us-
ing an external dictionary). It remains unclear whether the same results could be 
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achieved without such pre-implemented knowledge in the model, relying only on 
bootstrapping verb knowledge directly from the input. Moreover, when one wants to 
apply a model to raw, naturalistic language, it becomes infeasible to pre-process the 
input for several aspects of sentence structure that the model should be sensitive to 
in order to perform certain tasks, such as word sense disambiguation. 
 
Transformers have been used to form adult-like sense representations in natural lan-
guage classification tasks, and the models have been tested on their ability to pick out 
a target sense given the sentence context (Loureiro, et al., 2021). However, such tasks 
may not suitably assess model developmental plausibility as they use coherent test 
sentences (i.e., all cues in the context unambiguously point toward one target sense). 
Relying on these tasks makes it difficult to differentiate whether Transformers exhibit 
rather adult-like or child-like performance, as both adults and children have been 
shown to perform well at disambiguating coherent sentences (e.g., Khanna & Boland, 
2010; Rabagliati et al., 2013). Thus, the goal of the current study is to test models on 
contrastive tasks alongside coherent ones. Contrastive tasks put bottom-up (i.e., word 
associations) and top-down sentence cues in competition. They represent a more suit-
able test of developmental plausibility because differences exist in how children and 
adults behave in such tasks. In fact, in sense disambiguation children rely more on 
bottom-up aspects of sentence context (e.g., word associations) than adults, with less 
reliance on top-down cues likely due to differences in language experience or slow 
cognitive maturation (Khanna & Boland, 2010; Rabagliati et al., 2013).  
 
Previous studies in NLP have computed models’ representations based largely on 
adult language (Loureiro et al., 2021, 2022). These representations are created by us-
ing a technique that computes an average representation of a word sense given a col-
lection of sentences (e.g., a prototypical representation of a music band). Here we  
apply this technique to evaluate how properties of child sense processing could be 
captured using sense representations formed from naturalistic child-directed utter-
ances. This choice is motivated by the fact that differences in how senses are assigned 
to words in children and adults is likely influenced by differences in word use in child 
and adult environments (Meylan et al., 2021). We note that this method does not in-
volve pre-training the models on child-directed language, although we do also include 
a family of models pre-trained on child-directed utterances. We show that computing 
child-directed sense prototypes has different benefits for capturing child perfor-
mance, but we also return to its limitations in the Discussion. 
 
We evaluated Transformers using behavioral studies that tested 4-year-old children’s 
abilities to use bottom-up (word associations) and top-down (sentence global plausi-
bility, verb-event structure) cues to sense disambiguation (Cabiddu et al., 2022b; Ra-
bagliati et al., 2013). We tested a large pool of models (N = 45) from 14 different fami-
lies. This integrative approach (see also Schrimpf et al., 2021) would allow us to study 



Language Development Research 
 
 
 
 
 

Volume 5, Issue 1 
 

38 

how different properties of the models may lead to different behavioral patterns, 
while relying on a single model could be misleading as any conclusion might be in-
fluenced by idiosyncratic aspects of this specific model (architecture, pretraining ob-
jectives, amount/type of pretraining input, etc.). Specifically, we explored how scala-
bility in models’ size (number of parameters) and pretraining data size related to 
sense disambiguation performance. It has been shown that increasing the number of 
model parameters improves models' ability to generalise, enabling them to tackle a 
broad spectrum of language and reasoning tasks without necessitating extensive ex-
amples during training or specific model fine-tuning (e.g., Brown et al., 2020; Chow-
dhery et al., 2022). Essentially, more parameters in language models means a greater 
capacity to store patterns and nuances from the training data. This capacity to capture 
a wider array of linguistic patterns may lead to improved performance in tasks such 
as sense disambiguation, where understanding context and subtle differences in 
meaning is crucial. Based on findings about word age of acquisition norms 
(Laverghetta Jr & Licato, 2021), we expected models with a larger number of parame-
ters to better fit child data, also in line with NLP studies showing how increasing a 
model's parameter count improves its ability to track both bottom-up and top-down 
aspects of sentence structure (Devlin et al., 2019; Hewitt & Manning, 2019; Radford et 
al., 2019). Similarly, better performance and generalisation abilities can be achieved 
by training models on larger and more diverse datasets (e.g., Raffel et al., 2023). Train-
ing models on linguistic contexts that encompass a wide range of topics, styles, and 
structures increases the opportunities to abstract general schemas from the linguistic 
examples observed. Nevertheless, there is also evidence of small (i.e., more realistic) 
pretraining input being enough to align models to adult neural data and reading com-
prehension scores (Hosseini et al., 2022), therefore we might expect a null effect of 
pretraining size when attempting to capture human performance. 
 
In summary, both model size and pre-training size are dimensions that have been 
linked to models' generalisation abilities. This capacity is crucial for learning top-
down sentence structures that can then be generalised to new linguistic instances, 
which is something we focus on in our study. In the following, we first introduce evi-
dence of child sense disambiguation. Secondly, we discuss the theoretical signifi-
cance of Transformers and introduce a recent framework for evaluating models in 
sense disambiguation. 
 
Child Word Sense Disambiguation 
 
Sentence context plays a significant role in sense disambiguation (e.g., Sophia [played 
in / twisted] a band). Children use a similar (though lower) diversity of senses in nat-
uralistic conversations (Meylan et al., 2021), which raises a question about which sen-
tence properties facilitate child word disambiguation (Cabiddu et al., 2022b; Hahn et 
al., 2015; Khanna & Boland, 2010; Rabagliati et al., 2013). Children should access cues 
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at different linguistic levels to successfully disambiguate senses. Here, we focused on 
key studies that showed that 4-year-old children could use both bottom-up and top-
down disambiguation cues, although to different degrees depending on the specific 
cue. Table 1 shows an overview of the three experiments we consider. A general goal 
across experiments was to test children’s sensitivity to sentence context for sense dis-
ambiguation. Further, they tested if top-down cues (global plausibility, verb-event 
structures) played a role beyond bottom-up word associations (when the two types of 
cues are in direct competition). Similarly, here we investigate if Transformers could 
use sentence context for word sense disambiguation like children, and if they would 
demonstrate comparable sensitivity to top-down cues in contrastive conditions. 
 

Table 1. Behavioral experiments. Target words are shown in bold. Underlined text 
indicates cues to the dominant sense “elastic band”, while italicized text refers to 
cues to subordinate “music band”. The Dominant selection column indicates aver-
age dominant sense selections in children, for dominant-plausible (underlined) and 
subordinate-plausible conditions (italicized). 
 
Study Cue type Example Dominant 

selection 
(Rabagliati et al., 
2013) 
Exp 1, Coherent 
cues 

Prior  
Context 

Dora [looked in her drawer / 
heard some music]. The band 
was cool 

79% / 33% 

 Current  
Context 

Dora was in her room. She 
[stretched / listened to] the 
band, which was cool. 

81% / 38% 

(Rabagliati et al., 
2013) 
Exp 2, Contrastive 
cues 

Global  
Plausibility 

Elmo and his class were sing-
ing songs. The teacher could 
play music with [anything / an-
yone], even a band. 

39% / 21% 

(Cabiddu et al., 
2022b) 
Contrastive cues 

Verb-Event 
Structure 

Sophia listened to some music. 
Then she [twisted / played in] a 
band. 

62% / 26% 

 Verb-Lexical 
association 

Sophia listened to some music. 
Then she [got / played in] a 
band. 

60% / 26% 

 
The behavioral studies we considered have not only been used to test children’s dis-
ambiguation skills at a certain point in development but also to examine different hy-
potheses on whether young children can rely on the same cues for sentence parsing 
as adults do, or whether there are limitations in their access to certain cues that re-
quire higher levels of linguistic analysis. One account posits that children rely solely 
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on bottom-up cues in sentence parsing (Snedeker & Yuan, 2008), while another ac-
count emphasizes cue informativity (Trueswell & Gleitman, 2007). In the context of 
sense disambiguation, an informativity account would suggest that children gradually 
refine their estimation of the general reliability of each cue (whether bottom-up or 
top-down) in determining word meaning as they grow. Such gradual fine-tuning could 
account for the differences in how children and adults perform word sense disambig-
uation. 
 
The evidence available so far supports an informativity account, showing that chil-
dren rely on both top-down and bottom-up cues. However, their use of top-down cues 
is contingent on the strength of that cue's influence in the child's early processing. 
For instance, children primarily rely on bottom-up word associations instead of using 
top-down global plausibility at the discourse level, which is the strategy predomi-
nantly used by adults (Rabagliati et al., 2013). This likely occurs because word associ-
ations are a cue that is consistently present in children’s language input, and they can 
use this cue from very early in development. Nonetheless, this does not imply that 
children cannot use top-down cues. In fact, when considering a top-down cue that 
children also consistently use in sentence and word processing from early in devel-
opment, such as verb meaning, they indeed demonstrate the ability to rely on this cue 
in sense disambiguation over bottom-up word associations (Cabiddu et al., 2022b). 
 
In all studies, children heard short stories ending with a target word and saw four 
pictures. Two depicted the target word’s alternative senses: One frequent in child-di-
rected speech (dominant = elastic band) and one less frequent (subordinate = music 
band), with a 3:1 frequency ratio. The other two pictures depicted semantic distrac-
tors (e.g., sock, sport team). After the story, children chose the picture that best 
matched the story’s final word. 
 
In a first experiment, Rabagliati et al. (2013) tested if children could use sentence con-
text to disambiguate dominant and subordinate senses. Disambiguation cues were 
presented in a previous sentence (Prior context), or in the same sentence as the target 
(Current context). Example stimuli are shown in Table 1. Children showed successful 
disambiguation across conditions, selecting more dominant senses (above 50% 
chance) in dominant-plausible conditions, and more subordinate senses in subordi-
nate-plausible conditions (i.e., less than 50% dominant selections). 
 
However, in this experiment, children could have relied solely on bottom-up associ-
ations. For example, in Dora was in her room. She stretched the band, one could track 
the association between stretching and elastic band in naturalistic conversations with-
out processing sentence structures (i.e., using verb-event knowledge to infer that 
stretchable entities are usually objects). In the second experiment from Rabagliati et 
al. (2013) and in the experiment from Cabiddu et al. (2022b), bottom-up and top-down 
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cues were in competition. Stories always began with a prior context containing word 
associates of the target subordinate sense. As shown in Table 1, prior contexts contain 
the words music or songs pointing toward the subordinate music band. Further, in ex-
perimental conditions, stories ended with top-down cues pointing toward the oppo-
site dominant sense elastic band (see underlined cues in Table 1). 
 
In Rabagliati et al. (2013) experiment 2, experimental stories shifted global semantic 
plausibility toward the dominant sense. Children struggled to use global plausibility 
and relied heavily on word associations (39% dominant selections, below chance). In 
other words, children struggled to use real-world knowledge, which facilitates the 
comprehension of causal relations, event sequences, and social norms conveyed by 
the overall discourse. For example, when interpreting a sentence like Elmo and his 
class were singing songs. The teacher could play music with anything, even a band the lis-
tener would need to infer that any object could emit sound and therefore, could po-
tentially be used as a musical instrument. In contrast, children relied mostly on bot-
tom-up word associations (i.e., tracking co-occurrences between words) to perform 
shallow processing of sentence context when interpreting ambiguous words (i.e., 
mostly interpreting band as a music group because of its association with the words 
singing, songs, and music). 
 
Still, a significant difference from a control condition emerged (21% dominant selec-
tions when the story fully supported the subordinate; see italicized cue in Table 1). 
This result indicated residual sensitivity to top-down global plausibility in 4-year-old 
children. 
 
The study by Rabagliati et al. (2013) also highlighted the limitations of capturing adults 
and children’s reliance on top-down cues when using a distributional computational 
learner that is uniquely based on tracking bottom-up word associations. They em-
ployed a bag-of-words Bayesian classifier, trained on child-directed speech, to simu-
late children’s performance in both non-contrastive and contrastive tasks. They found 
that while the classifier could successfully resolve non-contrastive tasks and capture 
variations in child performance (experiment 1), it failed in contrastive tasks (i.e., per-
formance at floor in experiment 2, with 0% dominant senses selected across condi-
tions), likely due to its inability to incorporate sentence-level top-down cues in its 
word representations. Here, we aim to examine whether a distributional learning 
Transformer architecture, which has shown sensitivity to top-down sentence-level 
structure, could instead succeed in capturing child disambiguation performance in 
contrastive tasks. 
 
Cabiddu et al. (2022b) focused on verbs. Verbs are likely to represent a particularly 
valid cue that young children can rely on when processing sentences and words. For 
example, verbs’ syntactic arguments guide 3- to 5-year-old children’s interpretation 
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of ambiguous sentences (e.g., Kidd & Bavin, 2005; Snedeker & Trueswell, 2004; 
Yacovone et al., 2021). Further, the semantic restrictions that verbs impose on their 
arguments (i.e., verb-event structures) guide children’s unambiguous word pro-
cessing (Andreu et al., 2013; Mani et al., 2016). For example, 3-year-olds know that 
pushing a flowerpot is more plausible than pushing a road even if they have never heard 
either expression (Andreu et al., 2013). 
 
As shown in Table 1, in a Verb-Event condition, stories ended with verbs that never 
co-occurred with dominant senses in naturalistic conversations (i.e., children never 
or rarely hear twisting a band, which controls for verb-object associations). However, 
the verbs’ event structure only accepted the dominant senses (i.e., one can only twist 
an elastic band, not a music band), making it the only available cue. 
 
Further, the researchers examined the effect of verb-object associations (see Verb-
Lexical condition in Table 1): Verbs had a neutral verb-event structure (e.g., one could 
get either an elastic or music band), but often co-occurred with dominant senses in 
naturalistic conversations (i.e., children frequently hear getting an elastic band). Given 
the role of verb-object associations in children’s word processing (Mani et al., 2016), 
this condition tested if children would weigh more word associations coming from a 
verb than the rest of the (prior) context. 
 
Children successfully resolved dominant senses using both verb-event structures and 
verb-object associations, beyond bottom-up word associations from prior contexts. 
 
Overall, results from these behavioral experiments show that children can rely on 
different bottom-up and top-down cues for sense disambiguation. However, it re-
mains unclear which learning mechanisms might underlie these competencies. Below, 
we use Transformers as a scientific tool to test the extent to which purely distribu-
tional learning mechanisms account for the acquisition of word sense knowledge that 
is dependent on sentence context. 
 
Word Sense Disambiguation in Transformers 
 
Testing a usage-based learner requires an architecture that forms top-down abstrac-
tions while accounting for effects of bottom-up statistical cues in language develop-
ment (e.g., Ambridge et al., 2015; McCauley & Christiansen, 2019; Saffran et al., 1996). 
Consider the meaning of table in Ambridge (2019). A fixed top-down rule defining a 
table category (e.g., has legs; used for eating; made of wood, metal, or plastic; waist 
height) becomes falsifiable by counterexamples (e.g., an empty barrel used as a table 
at a bar). A solution is to embed specific contexts in the table representation (Am-
bridge, 2020; Srinivasan & Rabagliati, 2021). Bottom-up context-dependent infor-
mation allows the child to estimate the similarity between a new instance barrel table 
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and previously encountered tables. This recursive process of estimation facilitates the 
emergence of a context-independent, fuzzy, and probabilistic category of table (i.e., a 
prototype). In sense disambiguation, context-dependent and context-independent 
representations could gradually lead to multiple sense categories for a single word 
(Srinivasan & Rabagliati, 2021), with clusters of instances sufficiently separated in the 
semantic space (e.g., an object band prototype, a music band prototype). 
 
The way sense representations are conceptualized in these proposals of word sense 
acquisition aligns with the ideas proposed in accounts of word sense processing 
(Duffy et al., 2001; Rodd, 2020). For instance, the recent semantic-settling account 
(Rodd, 2020) assumes that word senses are stored in a lexical-semantic space as high-
dimensional representations. Distinct senses of a word form are represented as dif-
ferent paths embedding a set of dimensions or features that define the mapping be-
tween the word form and each sense. During sentence parsing, a settling process 
guides access to specific word senses by increasing the activation of specific paths in 
the lexical-semantic space. This activation depends on multiple cues at the word and 
contextual levels, helping the system settle on one sense, from bottom-up cues (e.g., 
meaning expectation based on words frequently co-occurring in the sentence con-
text) to top-down cues (e.g., real-world knowledge used for pragmatic inferences). 
Computational evidence supporting this processing account largely comes from adult 
disambiguation studies (e.g., Rodd et al., 2004). However, it is still unclear whether its 
predictions can extend to child processing. 
 
The above ideas of context-dependent sense representations align with Transformers’ 
core self-attention mechanism. For each token, these models construct distinct rep-
resentations that dynamically integrate sentence context. Although children have ac-
cess to referential and social cues beyond sentence context, using Transformers is 
useful to answer the question: How far can a distributional learner that uniquely pro-
cesses naturalistic sentence context go? 
 
After training, Transformers encode generalized (context-independent) knowledge. 
Tokens from different senses organize into separate clusters within model layers, re-
flecting the organization of senses in dictionaries and adult representations (Loureiro 
et al., 2021, 2022). In Loureiro et al. (2021), Transformers were evaluated using a near-
est neighbor approach (e.g., Melamud et al., 2016; Peters et al., 2018). This uses sense-
annotated corpora to create model sense prototypes by averaging the representations 
of a collection of tokens belonging to a specific sense (see Method). Sense prototypes 
are then used to evaluate the model disambiguation at test. Using this method led to 
a Pearson’s correlation of .9 between the best model and adult annotators. This 
method is useful because it investigates knowledge of models that are not pretrained 
on disambiguation, but only on predicting a word given its context (which should be 
more in line with what children do). Further, compared to previous studies (Haber & 
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Poesio, 2020), Loureiro et al. (2021) showed that models’ performance better aligned 
with adults’ when a reference sense-annotated corpus reflected the coarse-grained 
knowledge that adults have (e.g., collapsing senses that adults likely do not distin-
guish, but that are differentiated in a dictionary). This suggests that it is possible to 
tailor the models’ sense prototypes to a specific population. In our work, reference 
sentences were transcribed child-directed utterances, reflecting children’s natural-
istic input and containing senses known to 4-year-olds based on behavioral evidence. 
 

Method 
 
Models 
 
We used 13 Transformer-based language model families with varying training tasks 
and input encoding mechanisms. We also included a bidirectional recurrent neural 
network (ELMo, Peters et al., 2018), which achieved state-of-the-art results in sense 
disambiguation before the introduction of Transformers (e.g., Wiedemann et al., 
2019). Model descriptions can be found in Appendix S1. We also share materials and 
code to reproduce the study results on our GitHub page 
(https://doi.org/10.5281/zenodo.8200803). In various configurations within families, 
we varied model size (number of million parameters, M = 287, range = 8 - 1,630) and 
pretraining size in gigabytes of text (M = 103, range = .005 - 806). In Appendix S3, we 
also include results from models with randomly initialized weights, showing that per-
formance differences were not due to architectural differences in connection pat-
terns among units. 
 
Model Evaluation via Nearest Neighbor 
 
Following Loureiro et al. (2021), we extracted sense prototypes using annotated sen-
tences (see Corpora for details) in which a word occurred in a specific sense (e.g., 
elastic band in “when we put the rubber bands around it then we'll put your name on it so 
we'll know which one belongs to who”). We extracted a model’s contextualized vector for 
each sense occurrence, summing the last four layers. For models that work at the 
subword level, we first averaged representations of subword tokens for the target 
word. Finally, we averaged the word vectors to obtain a centroid representing the elas-
tic band prototype. We repeated the process for the alternative music band. 
 
In Appendix S2, we also repeat the sense prototype extraction with different random 
samples of sentence exemplars to provide evidence that using a Nearest Neighbor ap-
proach is not heavily dependent on the specific set of exemplar sentences we used for 
each target sense. This decreases the concern that results from our simulations might 
be related to the quality of the prototypes rather than the model representations of 
sense usage. 

https://doi.org/10.5281/zenodo.8200803
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To evaluate model performance, we extracted a contextualized vector for each test 
sentence’s target word. We used cosine similarity to compare each vector with the two 
prototypes representing the dominant (e.g., elastic band) and subordinate (e.g., music 
band) senses. The most similar prototype determined the assigned sense for the test 
word. We then transformed this binary measure (Dominant = 1, Subordinate = 0) into 
a continuous measure by computing the percentage of dominant senses assigned in a 
specific condition (matching the child outcome measure in Table 1). 
 
Corpora 
 
We took sentences for computing prototypes from ChiSense-12 (Cabiddu et al., 
2022a), which contains speech directed to children up to age 4 from the English sec-
tion of the CHILDES database (MacWhinney, 2000). Each sentence was tagged for oc-
currences of 12 ambiguous words in dominant or subordinate senses (e.g., chicken 
animal, chicken food). The selection of dominant and subordinate senses within the 
corpus drew from those used in the experiments conducted by Rabagliati et al. (2013). 
This approach guaranteed that the chosen senses are familiar to children, as evi-
denced by their performance in experimental tasks. We used 9 words, excluding hom-
ophones with different spelling (e.g., son/sun) for which no ambiguity exists as the 
models process orthographic input. We also tagged 4 new words to cover more items 
from children’s experiments. The target words used were all concrete nouns: band 
(binding or fastening object / music group); bat (animal / sports equipment); bow 
(knot / weapon); button (device to control electronic operations / fastener on cloth-
ing); chicken (animal / meat); glasses (eyewear / drinking vessels); letter (alphabetical 
symbol / mailed communication); line (geometric line / sequence of people or things 
arranged one behind the other); nail (body part / metal fastener); fish (animal / meat); 
lamb (animal / meat); turkey (animal / meat); card (playing card / greeting card). 
 
Details about items and annotation process are in Appendix S2. The final corpus had 
15,901 sentences for 13 target words, with dominant senses appearing 69% of the time 
on average (3:1 dominant/subordinate ratio). 
 
Comparing Child to Model Performance 
 
We computed an optimal outcome measure comparing child and model perfor-
mance. We examined if the models exhibited a dominant sense bias reflecting the 
dominant/subordinate ratio in the input. For experiment 1 in Rabagliati et al. (2013) 
with non-contrastive cues, we fitted a linear mixed-effects model using the percent-
age of dominant senses selected by each model as the outcome, and model size and 
pretraining size as the predictors. Model family was used as random effect intercept. 
The model output is reported in full in Appendix S4. Only pretraining size negatively 



Language Development Research 
 
 
 
 
 

Volume 5, Issue 1 
 

46 

predicted dominant selection (β = -1.53, 95% CI = [-2.30, -.75], p < .001), but not model 
size (β = -1.47, 95% CI = [-3.01, .08], p = .062). As shown in Figure 1, the models better 
approximated the 69% dominant sense bias as pretraining size decreased. 
 

 
To further confirm that the dominant sense bias was produced by the employment of 
child-directed input, in Appendix S6 we also examined the models’ dominant sense 
preference using sense prototypes computed from adult-directed speech (from utter-
ances included in the British National Corpus; BNC Consortium, 2007). When we used 
adult sense prototypes, the models never approached the 69% dominant sense bias, 
showing equal preference for dominant and subordinate senses (50% dominant sense 
selections). Overall, these preliminary investigations on the effect of input speech on 
sense representations indicate that the use of child-directed input aligns models with 
children’s representations of sense frequencies in naturalistic speech.  
 
Dominant sense bias is one of the variables that can influence word disambiguation. 
It is an important aspect of how children disambiguate words, as well as being crucial 
in a model learner. However, it is not the primary focus of our examination. We aim 
to determine whether models are successful because they resolve the meaning of an 
ambiguous word using the context of the surrounding sentence, rather than from the 

 
Figure 1. Percentage of dominant senses selected by each model in Rabagliati et al. 
(2013) experiment 1, by pretraining size in log GB. The dashed horizontal line indi-
cates dominant sense prevalence in ChiSense-12. 
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frequency of the sense itself. For this reason, the contribution of sentence-level fac-
tors (e.g., verb information) was disentangled, for example, in Cabiddu et al. (2022b), 
from the contribution of word-level information (sense dominance) by statistically 
controlling for the latter. This was done to test whether children were indeed using 
verb information to resolve ambiguities. We adopted a similar approach with Trans-
formers, by effectively separating the contribution of word-level information from 
that of sentence-level information. In other words, differences in dominant sense bias 
pose a confound: A model pretrained on a small corpus might select a similar per-
centage of dominant senses to children not only due to context cue sensitivity, but 
also because it prefers dominant senses more than a model pretrained on a large cor-
pus. We controlled for this confound by examining the relative difference in domi-
nant sense selections between dominant-plausible and subordinate-plausible condi-
tions. In Appendix S5, we also include analyses that examine which models better 
capture children’s performance when all levels (sentence-level and word-level) are 
considered. We return to these additional results in the Discussion. 
 
We use relative differences in performance to control for the effect of dominant sense 
bias. For example, in the first experiment, children selected dominant senses (e.g., 
elastic band) in 81% of trials in the dominant-plausible condition (She stretched the 
band) and 38% in the subordinate-plausible (She listened to the band). For a relative 
difference of 81% - 38% = 43% in children, a model with 60% - 17% difference and one 
with 80% - 37% were considered equally similar to children. Essentially, the relative 
difference focused on a model’s sensitivity to shifts in sentence context and compared 
it to children’s sensitivity. The final outcome measure estimated the distance between 
model and children (e.g., [60% – 17%]) – [81% – 38%]), with values of 0 indicating 
equal sensitivity in the model and children, and values lower and higher than 0 indi-
cating lower and higher sensitivity, respectively. Using this measure of relative dis-
tance as the outcome, we performed model comparison for each experiment between 
multiple nested linear mixed-effects models, which are reported in full in Appendix 
S4. We examined the main and interaction effects of model size and pretraining size, 
and employed model family as a random effect intercept in every statistical model. 
 

Results 
 
Rabagliati et al. (2013) - Experiment 1 
 
Figure 2 shows models’ performance by model size (2a) and pretraining size (2b). 
Some models reached child baseline (y = 0), while others performed worse (y < 0) or 
better (y > 0). The best linear mixed-effects model indicated higher context sensitivity 
as model size increased (β = 5.36, 95% CI = [2.07, 8.64], p = .002) and pretraining size 
increased (β = 3.81, 95% CI = [2.16, 5.47], p < .001). A main effect of condition (β = -
9.98, 95% CI = [-16.18, -3.78], p = .002) showed models performing better in the current-
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context condition, which may not align with child performance. Although the main 
effect of condition was not tested in the child experiment, children’s average scores 
might suggest similar sensitivity to prior and current context (see Table 1). 
 
 

 
Figure 2. Models’ relative distance from children by model size (a) and pretraining 
size (b), in current and prior context conditions. Model families are shown in the 
legend. The black horizontal line indicates child performance. The dashed regres-
sion line with 95% confidence interval shows performance across models. Colored 
regression lines are also shown for each model family, although only when 
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Rabagliati et al. (2013) - Experiment 2 
 
This task used contrastive bottom-up and top-down cues, which most models seemed 
to struggle with: Figure 3 shows a floor effect, which led to null effects of model size 
(β = 3.37, 95% CI = [-.35, 7.09], p = .075) and pretraining size (β = 0.12, 95% CI = [-1.74, 
1.98], p = .895). As confirmed in Appendix S4 (see plots showing raw dominant selec-
tion scores for each model), the floor effect led to only few models showing a differ-
ence in dominant selection between conditions. This aligns with children’s residual 
sensitivity to top-down cues, as they displayed a difference between conditions de-
spite low selection rates. Nevertheless, most models performed worse than children, 
suggesting an overall difficulty in managing contrastive cues. 
 

 
Cabiddu et al. (2022b) 
 
The models better handled contrastive bottom-up and top-down cues in this task, re-
sembling the strong role of verbs in child processing. The models showed higher sen-
sitivity to verbs with a strong event structure (Figure 4a; e.g., She twisted a band), with 

examining model size as there is almost null variation in pretraining size within 
family. Points in panel b are jittered by 2 points in the y axis to facilitate visualiza-
tion of overlapping points. 

 

 
Figure 3. Models’ relative distance from children by model size and pretraining 
size, in Rabagliati et al. (2013) experiment 2. 
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model size being positively related to models’ sensitivity to verb-event cues (β = 7.57, 
95% CI = [3.48, 11.67], p = .001), but not pretraining size (β = -.30, 95% CI = [-2.35, 1.74], 
p = .765). Instead, sensitivity was lower to verbs that were only lexically associated 
with the dominant sense (Figure 4b; e.g., She got a band), with no significant effects of 
model size (β = 1.73, 95% CI = [-0.87, 4.34], p = .186) or pretraining size (β = 0.16, 95% 
CI = [-1.14, 1.45], p = .809). 
 

 

 
Figure 4. Models’ relative distance from children by model and pretraining size, 
when examining performance at the verb-event (a) and verb-lexical conditions (b). 
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Discussion 

 
We examined the capabilities of large Transformer models in capturing child word 
sense disambiguation. Our results support the idea that children, like these models, 
might be usage-based learners who bootstrap word knowledge from the naturalistic 
environment (Bybee, 2010), and that child sense knowledge can, in principle, arise 
from probabilistic representations embedding context-dependent and context-inde-
pendent information (Ambridge, 2020; Rodd, 2020; Srinivasan & Rabagliati, 2021). In 
line with a cue informativity account of child processing (Trueswell & Gleitman, 
2007), Transformers captured the changes in word sense disambiguation perfor-
mance observed across child behavioral experiments. Coherent tasks were resolved 
with greater ease, and performance on contrastive tasks was found to be dependent 
on the type of top-down cue provided (i.e., as observed in children, verbs provided a 
better facilitation for sense disambiguation than global plausibility). 
 
In line with Laverghetta Jr and Licato (2021), larger models were more sensitive to 
both coherent (Figure 2) and contrastive cues (Figure 4a), likely because they form 
more precise representations based on both bottom-up and top-down aspects of sen-
tence structure (Devlin et al., 2019; Hewitt & Manning, 2019; Radford et al., 2019). 
 
Contrary to our prediction, models trained on larger corpora were more sensitive to 
coherent cues (Figure 2), while we found the predicted null effect of pretraining for 
contrastive cues (Figure 3 and 4). In coherent sentences, a model can rely on both 
word associations and top-down cues, with more pretraining likely increasing sensi-
tivity to both. However, more pretraining might not always be as valuable for resolv-
ing contradicting bottom-up and top-down cues in the other conditions. Larger models 
might instead have an advantage in this regard. 
 
Further, a visual inspection of models’ performance at contrastive tasks (see raw plots 
of dominant sense selection for each model in Appendix S4) showed a stronger overall 
preference for subordinate senses across conditions compared to children, which 
might indicate models’ higher sensitivity to prior context word associations (an anal-
ysis of relative differences could not highlight this, as it specifically controls for abso-
lute differences in sense selection). In a follow-up analysis (see Appendix S5), we 
found evidence for this interpretation. We used an alternative outcome measure (Eu-
clidean distance) which, compared to the relative difference, additionally looked at 
how close models got to y = 0 (Figure 2, 3, and 4) and at the exact match between mod-
els and children (i.e., difference in absolute scores): Given 81% - 38% as the children’s 
response difference, a model performing 80% - 37% would be now closer to children 
than one that performs 60% - 17%. This measure might suffer from dominant sense 
bias (Figure 1), which we included as covariate in the statistical models to control for 
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its effect. We replicated the positive effect of pretraining size in experiment 1 (Figure 
2b), and found a negative effect of pretraining size in the verb-event structure condi-
tion of the third experiment (Figure 4a). 
 
This result might indicate that smaller pretraining prevented an extreme sensitivity 
to word associations, allowing models to find the right balance between bottom-up 
and top-down cues. Interestingly, the best models in this condition received pretrain-
ing that was judged as psychologically plausible in previous studies (100 million to-
kens, Hosseini et al., 2022), although for an older population than ours (10-year-olds). 
To gain deeper insights into word association sensitivity, future work should explore 
how pretraining size influences the ability of large language models to track word as-
sociations and whether smaller, more realistic input can better capture children's 
sensitivity to these associations. Ideally, to answer this question, one would need ac-
cess to the original corpora used for pretraining, which is not always possible. This 
would enable an understanding of precisely what types of word associations the mod-
els might have encountered during pretraining. Some recent investigations have re-
vealed that sensitivity to word associations begins to decrease at around 1 billion to-
kens of input (Zhang et al., 2021). This finding might suggest the necessity to scale 
down to a much smaller input to avoid extreme sensitivity to bottom-up cues and to 
better align with child performance. 
 
Only models with small pretraining approximated the dominant sense bias in the 
child input (Figure 1), and only few models (Figure 4b) showed sensitivity to verb-
sense associations (e.g., get-elastic band), which are idiosyncrasies of the child input. 
One way to better align models with the child environment would be pretraining di-
rectly on child input (Hosseini et al., 2022; Warstadt & Bowman, 2022). This would 
also enhance the psychological plausibility of the models, which are currently pre-
trained on vast amounts of input, often sourced from unknown corpora and adult-
directed written language. However, this task is limited by the lack of sufficiently 
large corpora. For example, in our study we included BabyBERTa (Huebner et al., 
2021), which despite being pretrained on child input showed no sensitivity to sentence 
context, likely due to its small pretraining (5 million tokens). To address this gap, 
there is an ongoing effort within the research community to optimize model pretrain-
ing given an input limited in size, aligning more closely with human development 
(Warstadt et al., 2023). Model optimization also means that researchers will be able to 
examine and manipulate more fine-grained model dimensions than those we have 
considered (number of epochs, learning rate, batch size, etc.), allowing researchers 
to work with architectures that are likely to better approximate child learning and 
processing. Manipulating aspects of models’ architecture will also give the oppor-
tunity to causally test their impact on the model's ability to capture child perfor-
mance. For example, ablation analyses (e.g., removing parts of the model such as lay-
ers, attention heads, or specific weights) can be used to uncover necessary language 
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knowledge within the models for successful task performance, generating hypothe-
ses about language representations. Additionally, public release of the datasets used 
for training optimization will enable researchers to directly test the causal effect of 
input characteristics (Frank, 2023). Models can serve in controlled experiments to iso-
late pretraining inputs that enable effective disambiguation, offering insights into 
sentence-level factors that might assist children in developing word sense profi-
ciency.  
 
Models’ performance was impaired in tasks that introduced contrastive cues (Figure 
3 and 4). This suggests that this area requires further investigation, despite previous 
results showing that Transformers approximate adult performance in annotating 
word senses (Loureiro et al., 2021) or judging the semantic relatedness between word 
senses (Nair et al., 2020) when tested on non-contrastive sentences. Sense prototypes 
based on child input might have contributed to the low performance of the models in 
our study. In additional analyses presented in Appendix S6, we replicated all the sim-
ulations in the study using sense prototypes based on sense-tagged utterances from 
adult-directed speech. Specifically, we used utterances from the spoken part of the 
British National Corpus (BNC Consortium, 2007). We found that adult-based and 
child-based models produced similar percentages of correct responses in every ex-
periment. Further, when we related models’ performance to child responses, we 
found that child-based prototypes more closely aligned models with child perfor-
mance in coherent tasks (Rabagliati et al., 2013; Study 1), but no difference was found 
at capturing child responses between models using child and adult sense prototypes 
in contrastive tasks (Rabagliati et al., 2013; Study 2; Cabiddu et al., 2022b). Overall, 
these supplemental results indicate that the low model performance at contrastive 
tasks was not due to a lack of richer linguistic cues that adult utterances might con-
tain. The fact that the models performed poorly in tasks involving contrastive cues, 
even when the sense prototypes were derived from adult-directed speech, stands in 
contrast to the many linguistic feats of large language models (e.g., Gammelgaard et 
al., 2023). 
 
Given that previous studies have not used contrastive tasks, one possibility is that such 
tasks might simply be difficult for models. Few models were sensitive to contrastive 
cues (Figure 3 and 4), indicating that at least some information about top-down struc-
tures might be captured from sentence context via distributional learning. However, 
overall models’ performance was lower than children’s. This occurs even if the task 
proposed to children might be more challenging than what the models faced. In fact, 
the models were only required to disambiguate between two alternative senses of 
each target word. However, other potential senses of a target word exist in dictionar-
ies and may be known to children (e.g., for "band", not just "elastic band" and "music 
band", but also a “band” of bad weather). We would expect the models' ability to dis-
tinguish between word senses to deteriorate when considering a wider array of 
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alternative senses. This is supported by Loureiro et al. (2019), which demonstrated 
that collapsing some of the senses in WordNet, that might not be distinguished by 
adults, improved Transformers’ performance in word sense disambiguation. 
 
Difficulties in approximating child knowledge could be due to the fact that children’s 
representations of top-down structures are not only based on sentence context but 
also include real-world knowledge, which would need to be integrated into neural 
systems and could lead to abstractions more akin to human cognition (e.g., Pavlick, 
2023). Specifically, while language models are capable of forming knowledge about 
direct word associations (bottom-up knowledge) and syntactic and semantic struc-
tures (top-down knowledge), it is crucial to acknowledge that the models’ top-down 
generalisations about language patterns—though reflective of a form of understand-
ing or knowledge—remain purely derived from textual patterns. For example, the 
models may solve experimental tasks (e.g., “Sophia listened to some music. Then, she 
twisted a band”) by leveraging indirect associations between words—such as “twist” 
being associated with “bend” and “pull”—or by linking verbs to various objects (e.g., 
“twist” with “scarf” or “knob”), using these patterns as proxies for top-down infer-
ences. This process enables language models to abstract semantic properties from the 
verbs and apply these properties to new contexts or objects that they have not explic-
itly encountered in their training data. The model's reliance on indirect associations 
to infer word meanings or predict plausible word combinations exemplifies a form of 
semantic generalisation. This simulates top-down processing by using the extensive 
network of associations encoded within their training data, thereby enabling applica-
tion of these patterns to novel linguistic contexts. However, it remains an open ques-
tion whether top-down abstractions based only on language patterns can approxi-
mate the generalisations that emerge from grounded representations (e.g., Pavlick, 
2023, for a discussion on this topic). The challenges faced by large language models 
in word sense disambiguation, as highlighted in our current study, could provide val-
uable insights into whether grounded representations are necessary to accurately 
model human language processing. 
 
For example, when modelling word acquisition trajectories, Transformers are not in-
fluenced by grounded sensorimotor, social, and cognitive factors (e.g., noun con-
creteness), but rely on surface features (e.g., word frequency) to a greater extent than 
children (Chang & Bergen, 2021). We speculate that this lack of grounded knowledge 
might also explain the fact that the models performed worse at disambiguating prior 
contexts than current contexts (Figure 2). Current contexts contained words that 
might appear closer to target words in naturalistic language, becoming easier to track 
by a distributional learner. This difficulty might not exist for children who can use 
their real-world knowledge for semantically-related (but distant) words (e.g., in Dora 
looked in her drawer. The band was cool, a child can infer that entities stored in a drawer 
are usually objects). Indeed, word acquisition trajectories can probably be better 
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captured by neural models that process a richer multimodal signal comprising audi-
tory features, communicative intentions, and perceptual information about word ref-
erents (e.g., Frank et al., 2009; Nikolaus & Fourtassi, 2021; Nyamapfene & Ahmad, 
2007). Future work should focus on modelling child multimodal processing, currently 
limited by the scarcity of naturalistic multimodal corpora (e.g., Nikolaus et al., 2022).  
 
Integrating multimodal input could also be potentially beneficial for investigating the 
models' performance with words varying in concreteness (e.g., concrete nouns vs 
more abstract verbs), which was not considered in our simulations but could be intri-
guing given the role of concreteness in early vocabulary learning (e.g., Braginsky et 
al., 2019). For instance, abstract nouns or verbs might depend more heavily on lin-
guistic context for disambiguation, whereas concrete nouns might rely more on mul-
timodal contexts (e.g., Sakreida et al., 2013). Highlighting this distinction could be 
valuable for future research, suggesting that Transformers trained on text might 
demonstrate superior performance with abstract words. This potential difference 
warrants further investigation to better understand how varying contexts influence 
word disambiguation across different word types. 
 
Moreover, examining the distinction between concrete and abstract word senses 
could further elucidate the implications of basing model sense prototypes on child-
directed or adult-directed sentences. For instance, since child-directed input often 
features more redundancy and a concrete vocabulary (Saxton, 2009) compared to 
adult-directed input, this might result in the formation of sense prototypes that better 
facilitate the disambiguation of concrete nouns like those used in our study. In other 
words, similarly to how child-directed sense prototypes may lead to a dominant sense 
bias typical of child-directed speech (Appendix S6), one should also find that child-
directed sense prototypes lead to a bias toward concrete nouns. 
 
Enriching models’ input would allow researchers to test if acquiring multimodal 
knowledge suffices to capture sensitivity to top-down structures, or whether one 
would need to integrate domain-specific constraints in line with nativist approaches 
(e.g., Pinker, 1989; Thornton, 2012) or more domain-general innate biases (e.g., Per-
fors et al., 2011). For instance, a development of our work might involve investigating 
whether a purely distributional learner that can process visual object referents is able 
to bootstrap certain elements of sentence structure that are posited to be innate by 
alternative theories of language development. For example, when a word typically 
used as a verb (e.g., “eat”) is presented in a noun context (e.g., “an eat”), 20-month-
old infants more readily associate the word with a novel animal. Conversely, when a 
noun is strongly linked to a specific referent (e.g., “dog”), infants struggle to apply it 
to a different novel animal (Dautriche et al., 2018). This phenomenon indicates that 
employing different syntactic categories facilitates the extension of a word's meaning 
to encompass new referents. Given this evidence, one could examine whether a 
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purely distributional learner, trained on input mirroring the quantity and quality 
available to 20-month-old infants exhibits similar facilitation from syntactic catego-
ries on word sense extension. Such empirical evidence would challenge the idea, pro-
posed by universal grammar theories, that syntactic categories are innate rather than 
learned through language interaction (e.g., Valian et al., 2009). 
 
Additionally, our method of assessing word sense disambiguation in large language 
models and humans could be used to evaluate approaches that view learning as an 
embodied and situated phenomenon. Indeed, the formation of semantic representa-
tions of words is not uniquely based on the statistics of word co-occurrences in lan-
guage (the language-based distributional hypothesis). Properties of words related to 
the extralinguistic environment (e.g., physical properties) also play a crucial role in 
shaping semantic representations (the experiential hypothesis). Examining the capa-
bilities of a distributional learner that relies exclusively on language co-occurrence 
statistics to capture word semantic representations can shed light on the importance 
of considering the real-world experiences of children. This approach can help deter-
mine how these two sources of information—linguistic and experiential—contribute 
independently or together to children's learning (e.g., Andrews et al., 2009). To this 
end, research involving language-based large language models can be expanded to 
also consider the combined influence of visual aspects (Lu et al., 2019; Qi et al., 2020; 
Sun et al., 2019; Zhuang et al., 2023). 
 
Finally, the language that children are exposed to is often displaced, meaning care-
givers frequently discuss word referents that are not present in the immediate envi-
ronment (Tomasello & Kruger, 1992). Despite this, children might still leverage ex-
tralinguistic cues, such as iconicity (e.g., a caregiver mimicking the action of swinging 
a bat to clarify its meaning in conversation), in line with the language-as-situated hy-
pothesis (Murgiano et al., 2021). Therefore, exploring the extent to which child se-
mantic representations can be derived from both the linguistic and physical contexts 
in which children learn can reveal whether it is necessary to incorporate additional 
aspects of the communicative context, such as iconic cues, into our understanding of 
child word meaning representation. 
 

Conclusion - What Large Language Models (LLMs) can('t) tell us about child lan-
guage acquisition 

 
We have begun to examine the capabilities and limitations of Transformer models for 
studying early word sense disambiguation. We have demonstrated that, as efficient 
distributional learners processing raw language input, large language models can be 
used to provide proof of principles concerning the extent to which usage-based learn-
ing can contribute to the acquisition of semantic representations at the word level. 
Importantly, it is this proficiency that highlights an interesting contrast: We have 
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found that, although large language models excel at numerous language understand-
ing and production tasks, they show significant limitations in their use of top-down 
cues for sense disambiguation. This results in their performance falling short com-
pared to that of young children under certain disambiguation conditions. This finding 
serves as a crucial hint that an approach centered on providing more distributional 
linguistic cues might not be the most effective solution. Rather, it underscores the 
importance of either making models sensitive to additional multimodal cues or inte-
grating specific constraints or biases into the models. This additional knowledge 
could potentially enable them to bridge the performance gap and align more closely 
to child learners. 
 
Furthermore, in our tasks requiring the use of sentence context for word-level disam-
biguation, large language models have allowed us to avoid having to equip the models 
with syntactic and semantic knowledge at the sentence level (using external resources 
to pre-process the input) to ultimately perform word disambiguation. This would have 
required making assumptions about what knowledge the learner possesses at a cer-
tain point in development, which can come with benefits but also complications stem-
ming from confounding effects caused by the assumptions made by the modeler. 
 
Finally, we showed that an evaluation approach that leverages sense-annotated cor-
pora can sensibly be used to examine the developmental plausibility of sense repre-
sentations in large language models. Currently, limitations concerning model pre-
training do not allow researchers to determine the impact of child language input on 
models’ performance. However, we have seen that even the simple use of sense pro-
totypes based on child input produced a partial alignment to child processing. This 
presents the prospect of combining corpus analyses of models’ input with experi-
mental simulations to elucidate the dynamics between the contribution of input char-
acteristics and the nature of the learner's representational system. 
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Appendix S1: Model Families 
 
We provide a description of the model families included in the study, and details about mod-
els’ configurations varying in model size and pretraining size (Table S1.1). Transformer mod-
els were downloaded using the Huggingface Transformers Python library (Wolf et al. 2020), 
apart from the model BabyBERTa (Huebner et al. 2021) whose pretrained weights were down-
loaded directly from its GitHub project page (https://github.com/phueb/BabyBERTa, October 
2022). The recurrent neural model ELMo (version 3; Peters et al. 2018) was downloaded using 
the TensorFlow Python library (Abadi et al. 2015). 
 
The 13 Transformer model families used were: BERT (Devlin et al. 2019), RoBERTa (Liu et al. 
2019), and GTP (OpenAI GPT, Radford et al. 2018; GPT-2, Radford et al. 2019). For each of these 
three families we included their distilled model versions (DistilBERT, DistilRoBERTa, and Dis-
tilGPT2; Sanh et al. 2020), and the RoBERTa family also included versions pretrained on small 
corpora (MiniBERTa, Warstadt et al. 2020). BabyBERTa (Huebner et al. 2021); ALBERT-v1 and 
ALBERT-v2 (Lan et al. 2020); DeBERTa and DeBERTA-v2 (He, Gao, et al., 2021); DeBERTa-v3 
(He, Liu, et al., 2021); Transformer-XL (Dai et al., 2019); CTRL (Keskar et al., 2019); T5 (Raffel 
et al., 2020); XLNet (Yang et al., 2020). 
 
A first macro distinction between families concerns their unidirectional or bidirectional way 
of predicting a token given its context. Unidirectional Transformers (GPT, Transformer-XL, 
and CTRL) are trained on predicting the next token given the (previous) left sentence context. 
This type of training objective is in line with prediction-based approaches of children’s online 
sentence processing (Mani & Huettig, 2012). The remaining Transformers and ELMo are in-
stead trained on predicting tokens by taking into account both (previous) left and (following) 
right contexts. This type of objective is plausible because children are not only involved in 
predicting upcoming input when hearing speech, but they can also revise their interpretation 
of ambiguous words based on following cues (e.g., Qi et al., 2020). Also, in naturalistic con-
versations there are cases in which children would likely attend to following sentence context 
to disambiguate nouns (e.g., “Look at the bat, it’s flying!”). 
 
A second macro distinction concerns how different models track the position of tokens in a 
text sequence. Most models track tokens’ absolute positions, essentially encoding sentence 
word order which is required for learning syntax (e.g., distinguishing between “The dog chased 
the boy” and “The boy chased the dog”). Additionally, some models implement mechanisms that 
track both absolute and relative positions of tokens (DeBERTa, DeBERTa-v2, DeBERTa-v3) or 
only relative positions (Transformer-XL, T5, XLNet). Tracking relative positions means track-
ing the relative distance between pairs of tokens in a sequence, which translates into 
weighting more the words that appear closer to a target word (e.g., the contribution of “deep” 
for the vector representation of “learning” is higher if the two appear one next to the other, 
compared to when they appear in different sentences). Tracking relative positions can be 
considered a proxy of children’s sentence local parsing (e.g., Gertner & Fisher, 2012).  

https://github.com/phueb/BabyBERTa
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BERT is a bidirectional Transformer trained on predicting tokens that are masked at random 
during the preprocessing of the input, with some sentences seen multiple times with the same 
masked tokens (i.e., static masking). It is also pretrained on predicting whether a sentence 
follows another in the input (next sentence prediction), with the aim of capturing relations 
between sentences that can be useful in Question Answering and Natural Language Inference 
tasks. The model is pretrained on the BookCorpus (Zhu et al., 2015) and English Wikipedia. 
 
RoBERTa is a modification of BERT that is trained without the next sentence prediction ob-
jective, which investigations found to be not effective for improving performance in down-
stream tasks (e.g., Liu et al. 2019; Yang et al., 2020). It is trained by receiving larger batches of 
examples at every weight updating iteration. It is also trained on a larger corpus than BERT, 
additionally including English news articles, web content, and stories. The model also uses 
dynamic masking, which masks different tokens every time the same sentence is fed to the 
model. Its scaled-down version, MiniBERTa, is pretrained on similar input (BookCorpus and 
Wikipedia) but on a much smaller scale (see Table S1.1), with the configuration pretrained on 
the smallest corpus (1M tokens) also reduced in model size.  
 
GPT models are unidirectional Transformers trained on a language modeling objective, 
namely sampling text from the input dataset and asking the model to predict the next token. 
OpenAI GPT was pretrained on the BookCorpus, and subsequently fine-tuned with a series of 
supervised language understanding tasks. GPT-2 was instead pretrained on a larger corpus of 
web content, with no supervised fine-tuning. 
 
Distilled models are compressed and faster versions of the above models, based on the same 
architectures but with reduced number of layers. They undergo training that specifically tries 
to reproduce the behavior of the (parent) larger model. 
 
BabyBERTa is a scaled-down version of RoBERTa with some key differences. It is significantly 
reduced in size (15x fewer parameters). It modifies the masked word prediction objective: In 
BERT and RoBERTa, 10% of the tokens selected for masking are left unmasked; BabyBERTa 
never allows unmasking. It is also pretrained on much smaller (6000x fewer tokens) and qual-
itatively different corpora, either separately on transcribed child-directed speech, written 
child-directed news articles, a small portion of Wikipedia, or a combination of the three. 
 
ALBERT-v1 is a light version of BERT that was created with the main goal of reducing the 
computational costs derived from using a large number of parameters. ALBERT-v1 uses two 
techniques (factorization of parameters, and sharing all parameters across model layers) 
which significantly reduce the number of parameters without significant drops in perfor-
mance in downstream tasks. Additionally, ALBERT-v1 modifies the next sentence prediction 
objective performing sentence order prediction instead. A key difference between the two 
objectives is that in next sentence prediction, the model is provided with positive examples 
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of pairs of consecutive sentences coming from the same document, and negative examples 
with the second sentence of the pair swapped with one coming from a different document. 
The inefficiency of this task comes from the fact that negative examples contain sentences 
coming from different documents, which likely contain text about different topics. This re-
sults in the model being able to easily learn from negative examples by just noticing differ-
ences in word occurrences (i.e., semantically different words are used when sentences refer 
to different topics), focusing less on the more important aspect of discourse coherence be-
tween the two sentences. Therefore, with the new sentence order prediction objective, nega-
tive examples comprise sentence pairs coming from the same document, just swapped in or-
der. This forces the model to focus on the coherence of one sentence following the other. This 
new objective significantly improved performance in downstream tasks compared to BERT. 
ALBERT-v1 is pretrained on the same datasets used for BERT. 
 
ALBERT-v2 is a modification of ALBERT-v1 that improves performance at downstream tasks 
by using a different training regime (higher training steps and time) and by removing drop-
out, which is normally used to avoid that a model overfits the training dataset.  
 
DeBERTa is a modification of RoBERTa which improves performance in downstream tasks 
by using mechanisms of disentangled attention and enhanced mask decoding, which essen-
tially allow the model to integrate both absolute and relative token positions in its vector rep-
resentations. DeBERTa is trained on the same corpora used for RoBERTa but excluding Eng-
lish news articles.  
 
DeBERTa-v2 is an optimized version of DeBERTa, which uses a larger vocabulary, larger pre-
training dataset, and larger model sizes. It shares parameters that track sentence content and 
relative positions to reduce model complexity. It also integrates an additional layer in the 
model to better learn knowledge about subword n-grams, with the aim of more precisely 
tracking sentence local dependences. DeBERTa-v2 is pretrained on the same RoBERTa cor-
pora.  
 
DeBERTa-v3 is a modification of DeBERTa-v2 that replaces the masked word prediction ob-
jective with a replaced token detection objective, which instead of randomly masking tokens 
during training it replaces them with plausible (but incorrect) ones. This changes the objec-
tive of the model from having to generate plausible tokens to having to discriminate between 
two semantically related tokens to decide which is the appropriate one in a sentence. 
DeBERTa-v3 is pretrained on the same RoBERTa corpora.  
 
Transformer-XL is a unidirectional model that uses a language modeling objective as GPT. 
Transformer-XL introduces a recurrence mechanism in the Transformer architecture. Usu-
ally, Transformers process input in the form of text segments of a maximum length, which 
results in the impossibility of modelling dependencies across segments (which are treated 
independently). Transformer-XL uses a mechanism that recycles hidden states of previous 
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segments and uses them as extended context for newly processed ones. Additionally, the 
model introduces a new mechanism that can keep track of the relative position of tokens 
across different segments. Recurrence and relative positional encoding allow Transformer-
XL to track short-range and long-range text dependencies, which can be used to generate very 
long and relatively coherent articles. The model is pretrained on a small dataset of Wikipedia 
articles (Merity et al., 2016). 
 
CTRL is another unidirectional Transformer that uses a language modeling objective. How-
ever, in this model the objective is modified so that the model predicts the next token of a 
sequence also taking into account specific codes present in the structure of the training data. 
These codes give information such as the specific domain of the text being processed (e.g., 
Wikipedia, Books), the specific style used (e.g., Horror, Science), or the specific tasks being 
processed (e.g., question answering, translation). These codes are extracted directly from 
structural components of the training data, and ultimately allow the model to better constrain 
its text generation process. CTRL is pretrained on a large corpus from Wikipedia, web content 
including news articles and Amazon reviews, translation datasets from European parliament 
and United Nations proceedings, and various question-answering datasets. 
 
T5 is a bidirectional Transformer that uses an Encoder and a Decoder architecture similar to 
the original Transformer (Vaswani et al., 2017). It is trained on a masked prediction objective 
similar to BERT, representing both single (as in BERT) and sequences of tokens in the Encoder 
and using learned representations to generate text in the Decoder. In our study, we only used 
the Encoder part of the model. The model also uses a mechanism of relative positional en-
coding. The model is trained on the largest corpus considered in our study, which comprises 
scraped content from the web. 
 
XLNet is a bidirectional Transformer that modifies the BERT training objective using a per-
mutation modeling objective. In BERT, masked tokens within a text sequence are predicted 
independently from one another. In XLNet the prediction also takes into account the relations 
between masked tokens. Additionally, XLNet only uses a mechanism of relative positional 
encoding. The model is trained on the same corpora used for BERT, with the addition of var-
ious corpora of web content and news articles.  
 
ELMo is a bidirectional recurrent neural network model. Its mechanism of recurrence allows 
to link current word representations to previous ones in a text sequence. This is achieved by 
processing input at different timesteps, and feeding the output of previous timesteps to the 
current one. The recurrence mechanism leads to contextualized representations that also en-
code information about word order. In ELMo, the input sequence is fed to the model from 
left to right, and again from right to left. The two output vectors are then combined to obtain 
a bidirectional representation. The model is trained on a corpus of News Crawl data (Chelba 
et al., 2014). 
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Table S1.1. Models included in the study, by pretraining size (gigabytes of text), model size 
(million parameters), and family type. 
 

Model Model size Pretraining size Family 

distilbert-base-uncased 66 16 bert 

bert-base-uncased 110 16 bert 

bert-large-uncased 340 16 bert 

bert-large-uncased-whole-word-masking 340 16 bert 

distilroberta-base 82 40 roberta 

roberta-base 125 160 roberta 

roberta-large 355 160 roberta 

roberta-med-small-1M-2 45 0.005 roberta 

roberta-base-10M-2 125 0.05 roberta 

roberta-base-100M-2 125 0.5 roberta 

roberta-base-1B-3 125 5 roberta 

albert-base-v1 11 16 albert-v1 

albert-large-v1 17 16 albert-v1 

albert-xlarge-v1 58 16 albert-v1 

albert-xxlarge-v1 223 16 albert-v1 

albert-base-v2 11 16 albert-v2 

albert-large-v2 17 16 albert-v2 

albert-xlarge-v2 58 16 albert-v2 

albert-xxlarge-v2 223 16 albert-v2 

deberta-base 140 80 deberta 

deberta-large 400 80 deberta 

deberta-xlarge 750 80 deberta 

deberta-v2-xlarge 900 160 deberta-v2 
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Table S1.1 (continued).    

Model Model size Pretraining size Family 

deberta-v2-xxlarge 1500 160 deberta-v2 

deberta-v3-small 141 160 deberta-v3 

deberta-v3-base 184 160 deberta-v3 

deberta-v3-large 434 160 deberta-v3 

babyberta-ao-childes 8 0.02 babyberta 

babyberta-ao-newsela 8 0.02 babyberta 

babyberta-wikipedia-1 8 0.02 babyberta 

babyberta-ao-childes-ao-newsela-wikipedia-1 8 0.06 babyberta 

distilgpt2 82 40 gpt 

openai-gpt 116 3 gpt 

gpt2 124 40 gpt 

gpt2-medium 355 40 gpt 

gpt2-large 774 40 gpt 

gpt2-xl 1558 40 gpt 

transfo-xl-wt103 284 0.4 transfo-xl 

ctrl 1630 140 ctrl 

t5-small 35 806 t5 

t5-base 110 806 t5 

t5-large 335 806 t5 

xlnet-base-cased 117 126 xlnet 

xlnet-large-cased 360 126 xlnet 

elmo 93 4.2 elmo 
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Appendix S2: Children’s Target Words and Additional Annotations  
 
In this section, we report details about the target ambiguous words used and their corre-
sponding child-directed sentences. We used sentences from ChiSense-12 (Cabiddu et al., 
2022a), a collection 53 sense-tagged corpora of American and British English child-directed 
speech from the CHILDES database (MacWhinney, 2000), involving 958 target children of up 
to 4 years of age (59 months). We selected sentences referring to 9 of the 12 ambiguous words 
present in the corpus, each in their dominant and subordinate sense. The remaining 3 words 
(flower/flour, moose/mousse, sun/son) could not be used because they had different spelling, 
creating no ambiguity for models’ processing. Table S2.1 provides information about the 
number of sentences for each sense. 
 
Some target words in the behavioral experiments were not covered by ChiSense-12. Thus, we 
additionally tagged all not covered words for which 40 sentences per sense were available in 
the same corpora used for ChiSense-12. This resulted in tagging 4 new ambiguous words (fish 
= animal/food; lamb = animal/food; turkey = animal/food; card = playing card/greetings card). 
In total, we covered 13/24 and 4/6 target words in Rabagliati et al. (2013) experiment 1 and 2 
respectively, and 9/12 words from Cabiddu et al. (2022b). The sentence test items for each 
experiment are available in the appendices of the two original papers (Cabiddu et al., 2022b; 
Rabagliati et al., 2013), and in the file test_utterances.csv included in the R project folder of our 
GitHub project. The complete sets of utterances from ChiSense-12 and the new annotated 
words are available in the R folder of our project. 
 
Loureiro et al. (2021) showed that a nearest neighbor approach for computing sense proto-
types is stable even when drastically reducing the number of examples for each target sense. 
Given that we sampled a limited number of examples for each new target sense to keep the 
annotation work manageable (n=40), we verified that Loureiro’s findings were supported in 
our case. We repeated the three modeling experiments using only the 9 target words of 
ChiSense-12, downsampling sentences for each sense before computing sense prototypes. 
The procedure was repeated 10 times, each time sampling a subset (n = 40) of randomly se-
lected sentences for each sense. The results of the three experiments (Figure S2.1, S2.2, and 
S2.3) showed that performance remained stable even when using only 40 random sentences 
per sense, which justified the inclusion of the newly annotated words in our study. 
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Specifically, all three experiments yielded high correlations between the mean performance 
of each model across random samples and the performance using the full set of utterances: 
Experiment 1 (Rabagliati et al., 2013) 𝑟! = .95; Experiment 2 (Rabagliati et al., 2013) 𝑟! = .95; 
Experiment 1 (Cabiddu et al., 2022b) 𝑟! = .94. 
 

 

Figure S2.1.  Percentage of dominant sense selections for experiment 1 of Rabagliati et al. 
(2013), in dominant-plausible and subordinate-plausible conditions (legend), when disam-
biguation cues were included in current or prior context (left and right panel respectively). 
Colored bars indicate performance of the models when the full sample of ChiSense-12 sen-
tences is used to compute sense prototypes (Table S2.1). Red points indicate mean perfor-
mance (across 10 runs) of models for which sense prototypes were computed using 40 ran-
dom sentences for each sense. Error bars indicate standard deviations. 
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Figure S2.2. Percentage of dominant sense selections for experiment 2 of Rabagliati et al. 
(2013), in dominant-plausible and subordinate-plausible conditions (legend). The plot 
shows the comparison between dominant sense selection in models with prototypes com-
puted from the full ChiSense-12 (colored bars), and models for which prototypes were com-
puted by downsampling ChiSense-12 to 40 random sentences per sense (points and error 
bars indicate mean and standard deviations across 10 runs). 
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Figure S2.3. Percentage of dominant sense selections for Cabiddu et al. (2022b), in domi-
nant-plausible (Verb-lexical, Verb-event) and subordinate-plausible conditions (Control). 
The plot shows the comparison between dominant sense selection in models with prototypes 
computed from the full ChiSense-12 (colored bars), and models for which prototypes were 
computed by downsampling ChiSense-12 to 40 random sentences per sense (points and er-
ror bars indicate mean and standard deviations across 10 runs). 
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Appendix S3: Randomly Initialized Models 
 
We modelled the three experiments (Cabiddu et al., 2022; Rabagliati et al., 2013), running 
base model versions 10 times using different random initializations. For a single run, the 

Table S2.1. For each target word, the table shows the raw number of utterances in which 
dominant (D) and subordinate (S) senses appeared, as well as the percentage of utterances 
in which dominant senses appeared (Dominance). 
   
Word (D/S) N (D/S) Dominance 
Band (Object/Music Group) 178/58 75% 
Bat (Animal/Object) 247/130  66% 
Bow (Knot/Weapon) 230/27 89% 
Button (Electronic/Clothing) 568/285 67% 
Chicken (Animal/Food) 1463/937 61% 
Glasses (Eye/Drinking) 683/620 52% 
Letter (Alphabet/Mail) 1446/946 60% 
Line (Geometric/Row) 471/241 66% 
Nail (Finger/Tool) 460/106 81% 
MEAN (SD) - 69% (11%) 

https://aclanthology.org/2022.lrec-1.557
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same initialization was used to create both sense prototypes and vectors of test stimuli. None 
of the models showed sensitivity to sentence context across experiments (Figure S3.1, S3.2, 
and S3.3; i.e., same percentage of dominant sense selections across conditions), suggesting 
that different patterns of connections among units did not influence models’ performance. 
 

 

 

 
Figure S3.1.  Mean percentage of dominant sense selections in randomly initialized models 
for experiment 1 of Rabagliati et al. (2013), in dominant-plausible and subordinate-plau-
sible conditions (legend), when disambiguation cues were included in current or prior con-
text (left and right panel respectively). Error bars indicate standard deviations over 10 
model runs. 

 

 
Figure S3.2.  Mean percentage of dominant sense selections in randomly initialized models 
for experiment 2 of Rabagliati et al. (2013), in dominant-plausible and subordinate-plau-
sible conditions (legend). Error bars indicate standard deviations over 10 model runs. 
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Appendix S4: Relative Difference Outcome Measure 
 
In this section, we present the results concerning the evaluation of dominance sense prefer-
ence in Transformers, using child-based prototypes. This section additionally includes plots 
illustrating the raw performance of each model in each of the three experiments considered. 
Moreover, we report the output of statistical models, where the comparison between children 
and models’ performance is made using a measure of relative difference as the outcome (see 
main manuscript for details about this measure). 
 

 

 
Figure S3.3.  Mean percentage of dominant sense selections in randomly initialized models 
for Cabiddu et al. (2022), in dominant-plausible (Verb-lexical, Verb-event) and subordi-
nate-plausible conditions (Control). Error bars indicate standard deviations over 10 model 
runs. 
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Dominant Bias 
 
Table S4.1. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the percentage of dominant senses selected across conditions of Ra-
bagliati et al. (2013) experiment 1. The predictors are log model size, log pretraining size, 
and their interaction. Model family was used as random effect intercept. The Null model 
only includes main and random effect intercepts. Subsequent models add one predictor at a 
time. The table shows the number of model parameters (npar), Akaike (AIC) and Bayesian 
(BIC) Information criterions, log-likelihood (logLik), deviance, Chi-square statistic (Chisq), 
degrees of freedom (Df), and p value Pr(>Chisq). 

 

 npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

Null model 3 313.52 318.94 -153.76 307.52 - - - 

+ Model size 4 304.41 311.63 -148.20 296.41 11.11 1 0.001 

+ Pretraining 5 293.23 302.26 -141.61 283.23 13.18 1 0.000 

+ Interaction 6 294.46 305.30 -141.23 282.46 0.76 1 0.382 
 

Table S4.2. Output of the best model selected via model comparison in Table S4.1 

  “+ Pretraining” Model 
Dominant sense preference 

Predictors Estimates CI p 

(Intercept) 60.89 53.53 – 68.26 <0.001 

Model size [log] -1.47 -3.01 – 0.08 0.062 

Pretraining size [log] -1.53 -2.30 – -0.75 <0.001 

Random Effects 
σ2 25.86 

τ00 family 12.47 

ICC 0.33 

N family 14 

Observations 45 

Marginal R2 / Conditional R2 0.491 / 0.657 
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Rabagliati et al. (2013) – Experiment 1 
 

 
Figure S4.1. Percentage of dominant sense selections in models and children for experiment 
1 of Rabagliati et al. (2013), in dominant-plausible and subordinate-plausible conditions 
(legend), when disambiguation cues were included in current or prior context (left and 
right panel respectively). 
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Table S4.3. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the relative difference between models and children in Rabagliati et 
al. (2013) experiment 1, see our main paper for more details about this outcome measure. 
The predictors are condition (Prior or Current context), log pretraining size, log model size 
,  and their pairwise interactions. The random effect intercept is Model Family. The Null 
model includes main and random effect intercepts. Subsequent models add one predictor at 
a time. The table shows the number of model parameters (npar), Akaike (AIC) and Bayesian 
(BIC) Information criterions, log-likelihood (logLik), deviance, Chi-square statistic (Chisq), 
degrees of freedom (Df), and p value Pr(>Chisq). 
 

 npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

Null model 3 807.62 815.12 -400.81 801.62 NA NA NA 

+ Condition 4 803.09 813.09 -397.55 795.09 6.53 1 0.011 

+ Pretraining 5 771.98 784.47 -380.99 761.98 33.12 1 0.000 

+ Model size 6 764.64 779.64 -376.32 752.64 9.33 1 0.002 

+ Pretraining*Condition 7 766.34 783.84 -376.17 752.34 0.30 1 0.584 

+ Size*Condition 8 768.04 788.04 -376.02 752.04 0.30 1 0.584 

+ Pretraining*Model size 9 769.64 792.14 -375.82 751.64 0.40 1 0.529 

 
Table S4.4. Output of the best model selected via model comparison in Table S4.3. 
 

  ‘+ Model size’ model 
Rabagliati et al. (2013) - Experiment 1 

Predictors Estimates CI p 
(Intercept) -43.49 -59.94 – -27.04 <0.001 

Model size [log] 5.36 2.07 – 8.64 0.002 

Pretraining size [log] 3.81 2.16 – 5.47 <0.001 

Condition [Prior context] -9.98 -16.18 – -3.78 0.002 

Random Effects 
σ2 218.67 
τ00 family 85.81 
ICC 0.28 
N family 14 
Observations 90 
Marginal R2 / Conditional R2 0.510 / 0.648 
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Rabagliati et al. (2013) – Experiment 2 
 

 
Figure S4.2. Percentage of dominant sense selections in models and children for experiment 
2 of Rabagliati et al. (2013), in dominant-plausible and subordinate-plausible conditions 
(legend). 
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Table S4.5. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the relative difference between models and children in Rabagliati et 
al. (2013) experiment 2, see our main paper for more details about this outcome measure. 
The predictors are log pretraining size, log model size, and their interaction. The random 
effect intercept is Model Family. The Null model includes main and random effect intercepts. 
Subsequent models add one predictor at a time. The table shows the number of model pa-
rameters (npar), Akaike (AIC) and Bayesian (BIC) Information criterions, log-likelihood 
(logLik), deviance, Chi-square statistic (Chisq), degrees of freedom (Df), and p value 
Pr(>Chisq).  
 

 npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

Null model 3 371.50 376.92 -182.75 365.50 - - - 

+ Pretraining 4 372.70 379.93 -182.35 364.70 0.80 1 0.371 

+ Model size 5 372.27 381.30 -181.13 362.27 2.44 1 0.119 

+ Interaction 6 373.79 384.63 -180.89 361.79 0.48 1 0.489 
 

Table S4.6. Although no model surpassed the Null model in Table S4.5, below we show the 
output of the model including both main effects of model size and pretraining size, to ap-
preciate size of the estimates and variance explained. 
 

  ‘+ Model size’ model 
Rabagliati et al. (2013) - Experiment 2 

Predictors Estimates CI p 

(Intercept) -25.51 -43.38 – -7.63 0.006 

Model size [log] 3.37 -0.35 – 7.09 0.075 

Pretraining size [log] 0.12 -1.74 – 1.98 0.895 

Random Effects 
σ2 146.43 
τ00 family 79.91 
ICC 0.35 
N family 14 
Observations 45 
Marginal R2 / Conditional R2 0.105 / 0.421 
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Cabiddu et al. (2022)  
 

 
Figure S4.3. Percentage of dominant sense selections in models for Cabiddu et al. (2022), in 
dominant-plausible (Verb-lexical, Verb-event) and subordinate-plausible conditions (Con-
trol). 
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Table S4.7. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the relative difference between models and children in Cabiddu et al. 
(2022), when considering performance in the Verb-Event structure condition. See our main 
paper for more details about this outcome measure. The predictors are log pretraining size, 
log model size, and their interaction. The random effect intercept is Model Family. The Null 
model includes main and random effect intercepts. Subsequent models add one predictor at 
a time. The table shows the number of model parameters (npar), Akaike (AIC) and Bayesian 
(BIC) Information criterions, log-likelihood (logLik), deviance, Chi-square statistic (Chisq), 
degrees of freedom (Df), and p value Pr(>Chisq). 
 

 npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

Null model 3 390.69 396.11 -192.34 384.69 - - - 

+ Pretraining 4 390.37 397.60 -191.19 382.37 2.32 1 0.128 

+ Model size 5 381.28 390.31 -185.64 371.28 11.09 1 0.001 

+ Interaction 6 382.77 393.61 -185.39 370.77 0.51 1 0.477 
 

Table S4.8. Output of the best model selected via model comparison in Table S4.7. 
 

 
‘+ Model size’ model 

Verb-Event Condition 
Cabiddu et al. (2022) 

Predictors Estimates CI p 

(Intercept) -50.56 -69.91 – -31.20 <0.001 

Model size [log] 7.57 3.48 – 11.67 0.001 

Pretraining size [log] -0.30 -2.35 – 1.74 0.765 

Random Effects 
σ2 188.50 

τ00 family 76.42 

ICC 0.29 

N family 14 

Observations 45 

Marginal R2 / Conditional R2 0.300 / 0.502 
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Table S4.9. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the relative difference between models and children in Cabiddu et al. 
(2022), when considering performance in the Verb-Lexical condition. See our main paper 
for more details about this outcome measure. The predictors are log pretraining size, log 
model size, and their interaction. The random effect intercept is Model Family. The Null 
model includes main and random effect intercepts. Subsequent models add one predictor at 
a time. The table shows the number of model parameters (npar), Akaike (AIC) and Bayesian 
(BIC) Information criterions, log-likelihood (logLik), deviance, Chi-square statistic (Chisq), 
degrees of freedom (Df), and p value Pr(>Chisq). 
 

 npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

Null model 3 340.21 345.63 -167.10 334.21 - - - 

+ Pretraining 4 341.21 348.43 -166.60 333.21 1.00 1 0.317 

+ Model size 5 341.23 350.27 -165.62 331.23 1.97 1 0.160 

+ Interaction 6 342.00 352.84 -165.00 330.00 1.23 1 0.267 
 

Table S4.10. Although no model surpassed the Null model in Table S4.9, below we show the 
output of the model including both main effects of model size and pretraining size, to ap-
preciate size of the estimates and variance explained. 
 

  
‘+Model size’ model 

Verb-Lexical Condition 
Cabiddu et al. (2022) 

Predictors Estimates CI p 

(Intercept) -30.39 -42.47 – -18.31 <0.001 

Model size [log] 1.73 -0.87 – 4.34 0.186 

Pretraining size [log] 0.16 -1.14 – 1.45 0.809 

Random Effects 
σ2 81.87 

τ00 family 22.74 

ICC 0.22 

N family 14 

Observations 45 

Marginal R2 / Conditional R2 0.071 / 0.273 
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Appendix S5: Euclidean Distance Outcome Measure 
 
In this section, we report results of the three experiments using an alternative outcome meas-
ure. See details about this measure in the main manuscript. In Figure S5.1, we show an exam-
ple of how the measure is computed.  
 

 

 
Figure S5.1. Example of calculation of the Euclidean Distance of deberta-xlarge and albert-
large-v2 from children’s scores in the Current Context condition of Rabagliati et al. (2013) 
experiment 1. The measure looks at the exact match between model and children. 

https://escholarship.org/uc/item/9kh29212
https://doi.org/10.1037/a0026918


Language Development Research 
 
 
 
 
 

Volume 5, Issue 1 
 

90 

Rabagliati et al. (2013) – Experiment 1 
 

 

 

 
Figure S5.2.  Models’ Euclidean distance from children by model size (top row) and pre-
training size (bottom row), in current and prior context conditions. Model families are 
shown in the legend. The black horizontal line (y=0) indicates child performance. The 
dashed regression line with 95% confidence interval shows performance across models. 
Colored regression lines are also shown for each model family, although only when exam-
ining model size as there is almost null variation in pretraining size within family. 
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Table S5.1. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the Euclidean Distance between models and children in Rabagliati et 
al. (2013) experiment 1. See our main paper for more details about this outcome measure. 
The predictors are dominant bias, condition (current, prior context), log pretraining size, 
log model size, and the pairwise interactions between model size, pretraining size, and con-
dition. The random effect intercept is Model Family. 
 
 npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

Null model 3 657.12 664.62 -325.56 651.12 - - - 

+ Dominant Bias 4 658.23 668.23 -325.12 650.23 0.88 1 0.347 

+ Condition 5 659.79 672.29 -324.89 649.79 0.44 1 0.505 

+ Pretraining 6 646.98 661.98 -317.49 634.98 14.81 1 0.000 

+ Model size 7 647.70 665.19 -316.85 633.70 1.28 1 0.257 

+ Pretraining*Condition 8 641.30 661.30 -312.65 625.30 8.39 1 0.004 

+ Size*Condition 9 642.39 664.89 -312.19 624.39 0.91 1 0.339 

+ Pretraining*Model size 10 640.70 665.70 -310.35 620.70 3.68 1 0.055 
 

Table S5.2. Output of the best model selected via model comparison in Table S5.1. 
 

  
‘Pretraining * Condition’ model 

Euclidean Distance 
Rabagliati et al. (2013) - experiment 1 

Predictors Estimates CI p 
(Intercept) 60.13 38.98 – 81.28 <0.001 

Model size [log] -0.95 -2.61 – 0.71 0.259 

Pretraining size [log] -1.03 -2.10 – 0.05 0.060 

Condition [Prior context] 2.91 -1.31 – 7.12 0.173 

Dominant bias -0.57 -0.90 – -0.25 0.001 

Pretraining size [log] * condition [Prior context] -1.54 -2.60 – -0.48 0.005 

Random Effects 
σ2 56.96 
τ00 family 13.78 
ICC 0.19 
N family 14 
Observations 90 
Marginal R2 / Conditional R2 0.271 / 0.413 
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Rabagliati et al. (2013) – Experiment 2 
 

 
Table S5.3. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the Euclidean Distance between models and children in Rabagliati et 
al. (2013) experiment 2. The predictors are dominant bias, log pretraining size, log model 
size, and the interaction between model size and pretraining size. The random effect inter-
cept is Model Family. 
 

 npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

Null model 3 359.62 365.04 -176.81 353.62 - - - 

+ Dominant Bias 4 361.55 368.78 -176.78 353.55 0.07 1 0.789 

+ Pretraining 5 362.38 371.42 -176.19 352.38 1.17 1 0.280 

+ Model size 6 363.65 374.49 -175.82 351.65 0.73 1 0.391 

+ Model size * Pretraining 7 365.63 378.28 -175.82 351.63 0.02 1 0.895 

 

 
Figure S5.3. Models’ Euclidean distance from children by model size and pretraining size 
in Rabagliati et al. (2013) experiment 2. Model families are shown in the legend. The black 
horizontal line (y=0) indicates child performance. The dashed regression line with 95% 
confidence interval shows performance across models. Colored regression lines are also 
shown for each model family, although only when examining model size as there is almost 
null variation in pretraining size within family. 
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Table S5.4. Although no model surpassed the Null model in Table S5.3, below we show the 
output of the model including the main effects, to appreciate size of the estimates and vari-
ance explained. 
 

  
‘+ Model size’ model 
Euclidean Distance 

Rabagliati et al. (2013) - Experiment 2 
Predictors Estimates CI p 

(Intercept) 27.14 -16.95 – 71.23 0.221 

Model size [log] 1.41 -2.08 – 4.90 0.418 

Pretraining size [log] -1.26 -3.23 – 0.70 0.202 

Dominant bias -0.05 -0.73 – 0.62 0.876 

Random Effects 
σ2 120.55 
τ00 family 59.86 
ICC 0.33 
N family 14 
Observations 45 
Marginal R2 / Conditional R2 0.049 / 0.365 

 
Cabiddu et al. (2022) 
 

 
Figure S5.4.  Models’ Euclidean distance from children by model size and pretraining size, 
when comparing verb-event vs. control conditions in Cabiddu et al. (2022). 
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Table S5.5. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the Euclidean Distance between models and children in Cabiddu et 
al. (2022) when comparing Verb-Event condition to Control. The predictors are dominant 
bias, log pretraining size, log model size, and the interaction between model size and pre-
training size. The random effect intercept is Model Family. The Null model includes main 
and random effect intercepts. Subsequent models add one predictor at a time. The table 
shows the number of model parameters (npar), Akaike (AIC) and Bayesian (BIC) Infor-
mation criterions, log-likelihood (logLik), deviance, Chi-square statistic (Chisq), degrees of 
freedom (Df), and p value Pr(>Chisq). 
 

 npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

Null model 3 344.69 350.11 -169.34 338.69 NA NA NA 

+ Dominant Bias 4 343.94 351.17 -167.97 335.94 2.75 1 0.097 

+ Pretraining 5 341.72 350.75 -165.86 331.72 4.22 1 0.040 

+ Model size 6 343.04 353.88 -165.52 331.04 0.68 1 0.411 

+ Model size * Pretraining 7 342.91 355.55 -164.45 328.91 2.14 1 0.144 

 
Table S5.6. Output of the best model selected via model comparison in Table S5.5. 

 

  
‘+ Pretraining’ model 
Euclidean Distance 

Verb-Event vs. Control 
Cabiddu et al. (2022) 

Predictors Estimates CI p 
(Intercept) 26.71 -1.86 – 55.28 0.066 

Pretraining size [log] 1.54 0.01 – 3.07 0.048 

Dominant bias -0.02 -0.54 – 0.49 0.929 

Random Effects 
σ2 74.61 
τ00 family 39.70 
ICC 0.35 
N family 14 
Observations 45 
Marginal R2 / Conditional R2 0.167 / 0.456 
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Table S5.7. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the Euclidean Distance between models and children in Cabiddu et 
al. (2022) when comparing Verb-Lexical condition to Control. The predictors are dominant 
bias, log pretraining size, log model size, and the interaction between model size and pre-
training size. The random effect intercept is Model Family. The Null model includes main 
and random effect intercepts. Subsequent models add one predictor at a time. The table 
shows the number of model parameters (npar), Akaike (AIC) and Bayesian (BIC) Infor-
mation criterions, log-likelihood (logLik), deviance, Chi-square statistic (Chisq), degrees of 
freedom (Df), and p value Pr(>Chisq).  
 

 npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

Null model 3 390.83 396.25 -192.42 384.83 NA NA NA 

+ Dominant Bias 4 389.72 396.95 -190.86 381.72 3.11 1 0.078 

+ Pretraining 5 387.82 396.85 -188.91 377.82 3.90 1 0.048 

+ Model size 6 389.03 399.87 -188.51 377.03 0.79 1 0.374 

+ Model size * Pretraining 7 389.61 402.26 -187.81 375.61 1.41 1 0.234 

 

 
Figure S5.5. Models’ Euclidean distance from children by model size and pretraining size, 
when comparing verb-lexical vs. control conditions in Cabiddu et al. (2022). 
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Table S5.8. Output of the best model selected via model comparison in Table S5.7. 
 

  

‘+ Pretraining’ model 
Euclidean Distance 

Verb-Lexical vs. Control 
Cabiddu et al. (2022b) 

Predictors Estimates CI p 

(Intercept) 32.85 -13.44 – 79.14 0.159 

Pretraining size [log] 2.28 -0.13 – 4.69 0.063 

Dominant bias -0.08 -0.91 – 0.76 0.853 

Random Effects 
σ2 242.72 

τ00 family 44.56 

ICC 0.16 

N family 14 

Observations 45 

Marginal R2 / Conditional R2 0.158 / 0.289 
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Appendix S6: Simulations using adult-based sense prototypes 
 
This section presents supplemental results obtained by using adult-directed speech to com-
pute sense prototypes prior to testing the 45 Transformers in the word sense disambiguation 
tasks. 
 
We initially explain how adult-directed speech was sense-tagged. Subsequently, we present 

https://escholarship.org/uc/item/9kh29212
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plots showing the raw performance on the three experimental tasks for each adult-based 
Transformer. 
 
This is followed by comparisons between adult-based models and the previously employed 
child-based models. For these comparisons, a preliminary examination was conducted to de-
termine if adult-based models demonstrated superior performance than child-based models 
at the condition level, specifically looking at the percentage of correct responses given by a 
model in each experimental condition (note that this measure is independent of child perfor-
mance). 
 
Finally, we examined whether the child-based models better fit the children’s data than the 
adult-based models. We begin by demonstrating that adult-based models did not display any 
dominance sense preference, thus highlighting the importance of using child-directed 
speech to derive child-based sense prototypes that reflect sense frequencies in the child in-
put. We then show that child-based models better fit children’s data in coherent tasks but not 
contrastive ones. 
 
Sense Tagging the Spoken BNC 
 
A question left open by previous analyses is whether the suboptimal performance of Trans-
formers in contrastive tasks might be due to the use of sense prototypes computed from 
sense-tagged child-directed speech. Thus, it is possible that the models could perform better 
when their prototypes are based on adult-directed speech. Alternatively, the models may face 
difficulties with contrastive tasks for other reasons, such as a lack of real-world inference 
skills or multimodal data. 
 
To build adult-based prototypes, we sense-tagged 80 utterances for each target word used in 
the study (40 utterances per sense). We extracted these utterances (available in our GitHub 
page) from adult-adult conversations present in the spoken section of the British National 
Corpus (BNC Consortium, 2007). One target word, turkey, had to be discarded because no ut-
terances were available for one of its senses. For an additional four words, the input con-
tained fewer than 40 utterances for one of the senses. Despite this, we used the number of 
utterances available and retained these target words in order to maximize the sample of 
items. In one case, a sense received a very low number of input utterances (n = 3). However, 
this was still retained on the basis that n = 3 is considered the minimum acceptable number 
to make sense prototypes functional in sense disambiguation (e.g., Loureiro et al., 2021). The 
frequencies of each tagged sense in the new adult input are displayed below in Table S6.1. 
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Table S6.1. For each target word's sense, the table displays the number of utterances tagged 
from the Spoken BNC. 

 
Target Word Sense n 

band music_group 40 

band object 40 

bat animal 9 

bat object 35 

bow knot 34 

bow weapon 3 

button clothing 40 

button tech 40 

card note 40 

card playing 40 

chicken animal 34 

chicken food 40 

fish animal 40 

fish food 40 

glasses drinking 40 

glasses eye 40 

lamb animal 24 

lamb food 40 

letter alphabet 40 

letter mail 40 

line geometry 40 

line order 40 

nail body_part 40 

nail object 40 
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Plots of Dominant Sense Selection – Raw Performance of Adult-Based Models 
 

 

 
Figure S6.1. Percentage of dominant sense selections in adult-based models and children 
for experiment 1 of Rabagliati et al. (2013), in dominant-plausible and subordinate-plau-
sible conditions (legend), when disambiguation cues were included in current or prior con-
text (left and right panel respectively). 
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Figure S6.2. Percentage of dominant sense selections in adult-based models and children 
for experiment 2 of Rabagliati et al. (2013), in dominant-plausible and subordinate-plau-
sible conditions (legend). 
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Figure S6.3. Percentage of dominant sense selections in adult-based models for Cabiddu et 
al. (2022), in dominant-plausible (Verb-lexical, Verb-event) and subordinate-plausible 
conditions (Control). 
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Examining Correct Responses in Adult-Based and Child-Based Models 
 
After implementing prototypes based on adult speech and rerunning the Transformers on 
the test stimuli, we examined the performance of the adult-based models in comparison to 
those child-based. As can be observed in Figure S6.4, the percentage of correct responses is 
remarkably similar across both age groups (adult-based models / child-based models) in each 
experiment considered. This reaffirms that the lower performance of Transformers in con-
trastive tasks, as seen in the Rabagliati Experiment 2 and Cabiddu Experiment 1, was not a 
consequence of deriving sense prototypes from child-directed speech. 
 
It is important to note that this preliminary comparison does not take into account how 
closely the adult-based and child-based models approximate child performance. We relate 
the models' performance to child responses in the following section. 
 

 
Relating adult-based and child-based models’ performance to child responses  
 
Dominant Sense Preference 
 
First, we investigated whether the models based on adult speech showed any preference for 
dominant senses (e.g., elastic band) or a subordinate sense (e.g., music band) in the initial ex-
periment, which used coherent sentences (Rabagliati et al., 2013; Study 1). 

 
Figure S6.4. Mean percentage of correct responses (x-axis) in adult-based and child-based 
models (legend) for every condition (y-axis) in the behavioral experiments (panels). Error 
bars represent standard deviations around the mean percentages. Data points indicate per-
formance for individual models in each condition. 
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In the experimental study involving both adults and children (Cabiddu et al., 2022), domi-
nance had a more pronounced effect on child performance compared to adult performance. 
One hypothesis suggested that the distribution of sense frequencies might not be identical in 
adult-directed speech as it is in child-directed speech. If this hypothesis were correct, we 
would anticipate that Transformers would exhibit a weak or null dominance bias when their 
prototypes are derived from adult input. As shown in the figure S6.5, a visual comparison 
between adult-based and child-based dominance preference supports this expectation: The 
models did not display a dominance preference when using prototypes based on adult data. 
Further, we found a significant difference in dominance preference between adult-based and 
child-based models, in interaction with both model size and pretraining size (see Table S6.2 
and S6.3). This finding supports the hypothesis that the dominant bias identified in the mod-
els based on child data was likely a result of employing sense-tagged child-directed speech. 
 
Table S6.2. Model comparison between nested linear mixed-effect models via likelihood ratio 
test. The outcome is the percentage of dominant senses selected across conditions of Ra-
bagliati et al. (2013) experiment 1. The predictors are age group (adult-based model/child-
based model), log pretraining size, log model size, and their interactions. Model family was 
used as random effect intercept. The Null model only includes main and random effect inter-
cepts. Subsequent models add one predictor at a time. The table shows the number of model 
parameters (npar), Akaike (AIC) and Bayesian (BIC) Information criterions, log-likelihood 
(logLik), deviance, Chi-square statistic (Chisq), degrees of freedom (Df), and p value 
Pr(>Chisq). 
 
 npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 
Null model 3 629.94 637.44 -311.97 623.94 NA NA NA 
+ Age group 4 621.44 631.44 -306.72 613.44 10.50 1 0.001 
+ Pretraining 5 613.08 625.58 -301.54 603.08 10.36 1 0.001 
+ Model size 6 614.54 629.54 -301.27 602.54 0.54 1 0.461 
+ Age group x  
Model size 

7 590.41 607.91 -288.21 576.41 26.13 1 0.000 

+ Age group x  
Pretraining 

8 587.07 607.07 -285.53 571.07 5.34 1 0.021 

+ Pretraining x  
Model size 

9 589.05 611.55 -285.52 571.05 0.02 1 0.884 

+ Age group x  
Pretraining x 
 Model size 

10 587.48 612.47 -283.74 567.48 3.57 1 0.059 
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Table S6.3. Output of the best model selected via model comparison in Table S6.2. 

 

  
Dominant Sense Preference  

‘+ Age group * Pretraining’ model 

Predictors Estimates CI p 

(Intercept) 39.67 32.69 – 46.65 <0.001 

Age group [Child-directed speech] 23.82 15.26 – 32.38 <0.001 

Model size [log] 1.29 -0.23 – 2.80 0.096 

Pretraining size [log] -0.35 -1.10 – 0.40 0.354 

Age group [Child-directed speech] × 
Model size [log] 

-3.34 -5.28 – -1.39 0.001 

Age group [Child-directed speech] × 
Pretraining size [log] 

-1.08 -2.03 – -0.14 0.025 

Random Effects 

σ2 31.66 

τ00 family 6.36 

ICC 0.17 

N family 14 

Observations 90 

Marginal R2 / Conditional R2 0.428 / 0.524 
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Euclidean Distance Measure 
 
In this section, we examined whether child-based models fit children's responses better than 
adult-based models in each of the three experiments. We used the measure of Euclidean Dis-
tance that, as presented in Appendix S5, evaluates the exact match between the model and 
the child. 
 
To foresee, the only significant difference between adult-based and child-based models was 
found when examining performance in resolving coherent stories (Rabagliati et al., 2013; 
Study 1). 
 
In Figure S6.6, we show that child-based models performed more closely to child perfor-
mance than the adult models did in the first experiment. This can be observed by examining 
the differences between adult-based dashed regression lines and child-based solid regression 
lines, with child-based models' regression lines being closer to child performance (y = 0). The 
difference in Euclidean distance from children between adult-based models and child-based 
models was significant, as shown in table S6.4 and S6.5. 
 

 
Figure S6.5.  The percentage of dominant sense selections by adult-based models, in Ra-
bagliati et al. (2013; Study 1), is randomly distributed around 50% and never reaches the 
level of child dominance bias (indicated by the dashed horizontal line). Furthermore, the 
selections of dominant senses do not change as a function of either the model size or the 
pretraining size. The solid lines display the dominant sense selection patterns in the child-
based models for a visual comparison. 
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For what concerns the contrastive tasks, instead, tables S6.6 to S6.11 show non-significant 
differences between adult-based models and child-based models at capturing child perfor-
mance. 
 

 

 
Figure S6.6.   Models’ Euclidean distance from children by model size (top row) and pre-
training size (bottom row), in current and prior context conditions of Rabagliati et al. 
(2013), experiment 1. Model families are shown in the legend. The black horizontal line 
(y=0) indicates child performance. The dashed regression line with 95% confidence inter-
val shows performance across adult-based models. The solid regression line with 95% con-
fidence interval shows performance across child-based models. Colored regression lines 
are also shown for each adult-based model family, although only when examining model 
size as there is almost null variation in pretraining size within family. Colored data points 
refer to the adult-based dataset. Data points from child-based dataset are omitted for sim-
plicity. 
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Table S6.4. Model comparison between nested linear mixed-effect models via likelihood ratio 
test. The outcome is the Euclidean Distance between models and children in Rabagliati et al. 
(2013) experiment 1. See our main paper for more details about this outcome measure. The 
predictors are age group (adult-based model/child-based model), condition (current, prior 
context), log pretraining size, log model size, and their two-way and three-way interactions. 
The random effect intercept is Model Family. The Null model includes main and random ef-
fect intercepts. Subsequent models add one predictor at a time. The table shows the number 
of model parameters (npar), Akaike (AIC) and Bayesian (BIC) Information criterions, log-
likelihood (logLik), deviance, Chi-square statistic (Chisq), degrees of freedom (Df), and p 
value Pr(>Chisq). 
 
 npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 
Null model 3 1333.28 1342.86 -663.64 1327.28 NA NA NA 

+ Age group 4 1329.41 1342.19 -660.71 1321.41 5.87 1 0.015 

+ Condition 5 1330.94 1346.90 -660.47 1320.94 0.47 1 0.491 

+ Pretraining 6 1324.41 1343.56 -656.20 1312.41 8.53 1 0.003 

+ Model size 7 1325.45 1347.80 -655.73 1311.45 0.95 1 0.329 

+ Age group x  
Condition 

8 1327.42 1352.97 -655.71 1311.42 0.03 1 0.862 

+ Age group x  
Model size 

9 1324.78 1353.52 -653.39 1306.78 4.64 1 0.031 

+ Age group x  
Pretraining 

10 1326.43 1358.36 -653.22 1306.43 0.35 1 0.556 

+ Condition x  
Pretraining 

11 1317.48 1352.60 -647.74 1295.48 10.95 1 0.001 

+ Condition x  
Model size 

12 1314.56 1352.88 -645.28 1290.56 4.92 1 0.027 

+ Pretraining x 
 Model size 

13 1315.14 1356.65 -644.57 1289.14 1.42 1 0.233 

+ Age group x  
Condition x  
Pretraining 

14 1317.05 1361.75 -644.52 1289.05 0.09 1 0.759 

+ Age group x  
Condition x  
Model size 

15 1317.95 1365.85 -643.98 1287.95 1.09 1 0.296 

+ Age group x  
Pretraining x 
 Model size 

16 1319.94 1371.02 -643.97 1287.94 0.02 1 0.891 
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Table S6.5. Output of the best model selected via model comparison in Table S6.4. 
 

  
‘Condition x Model size’ model 

Euclidean Distance 
Rabagliati et al. (2013) - experiment 1 

Predictors Estimates CI p 

(Intercept) 31.32 21.92 – 40.71 <0.001 

Age group [Child-directed speech] -13.22 -22.68 – -3.77 0.006 

Condition [Prior context] 12.38 2.93 – 21.84 0.011 

Model size [log] -0.67 -2.67 – 1.32 0.506 

Pretraining size [log] -0.30 -1.28 – 0.69 0.554 

Age group [Child-directed speech] ×  
Condition [Prior context] 

-0.46 -5.48 – 4.57 0.858 

Age group [Child-directed speech] ×  
Pretraining size [log] 

-0.31 -1.31 – 0.70 0.548 

Age group [Child-directed speech] ×  
Model size [log] 

2.29 0.22 – 4.37 0.030 

Condition [Prior context] × Pretraining size [log] -0.80 -1.81 – 0.20 0.116 

Condition [Prior context] × Model size [log] -2.29 -4.36 – -0.21 0.031 

Random Effects 
σ2 72.92 

τ00 family 16.61 

ICC 0.19 

N family 14 

Observations 180 

Marginal R2 / Conditional R2 0.195 / 0.345 
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Figure S6.7.   Models’ Euclidean distance from children by model size and pretraining size 
in Rabagliati et al. (2013) experiment 2. Model families are shown in the legend. The black 
horizontal line (y=0) indicates child performance. The dashed regression line with 95% 
confidence interval shows performance across adult-based models. The solid regression 
line with 95% confidence interval shows performance across child-based models. Colored 
regression lines are also shown for each adult-based model family, although only when ex-
amining model size as there is almost null variation in pretraining size within family. Col-
ored data points refer to the adult-based dataset. Data points from child-based dataset are 
omitted for simplicity. 

 

Figure S6.8.   Models’ Euclidean distance from children by model size and pretraining size 
in Cabiddu et al. (2022), Verb-Event condition. Model families are shown in the legend. The 
black horizontal line (y=0) indicates child performance.  The dashed regression line with 
95% confidence interval shows performance across adult-based models. The solid regres-
sion line with 95% confidence interval shows performance across child-based models. Col-
ored regression lines are also shown for each adult-based model family, although only 
when examining model size as there is almost null variation in pretraining size within fam-
ily. Colored data points refer to the adult-based dataset. Data points from child-based da-
taset are omitted for simplicity. 
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Table S6.6. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the Euclidean Distance between models and children in Rabagliati et 
al. (2013) experiment 2. See our main paper for more details about this outcome measure. 
The predictors are age group (adult-based model/child-based model), log pretraining size, 
log model size, and interactions. The random effect intercept is Model Family. Subsequent 
models add one predictor at a time. The table shows the number of model parameters (npar), 
Akaike (AIC) and Bayesian (BIC) Information criterions, log-likelihood (logLik), deviance, 
Chi-square statistic (Chisq), degrees of freedom (Df), and p value Pr(>Chisq). 
 

 npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

Null model 3 693.46 700.96 -343.73 687.46 NA NA NA 

+ Age group 4 695.33 705.33 -343.66 687.33 0.13 1 0.716 

+ Pretraining 5 697.21 709.71 -343.60 687.21 0.12 1 0.728 

+ Model size 6 698.79 713.79 -343.40 686.79 0.41 1 0.520 

+ Age group x Model size 7 700.79 718.29 -343.40 686.79 0.00 1 0.983 

+ Age group x Pretraining 8 702.32 722.31 -343.16 686.32 0.48 1 0.490 

+ Pretraining x Model size 9 703.57 726.07 -342.78 685.57 0.75 1 0.387 

+ Age group x Pretraining x 
Model size 

10 704.57 729.57 -342.29 684.57 0.99 1 0.319 

 
Table S6.7. Although no model surpassed the Null model in Table S6.6, below we show the 
output of the model including the main effects, to appreciate size of the estimates and vari-
ance explained. 

 ‘+ Model size’ model - Euclidean Distance 
Rabagliati et al. (2013) - Experiment 2 

Predictors Estimates CI p 
(Intercept) 24.31 12.79 – 35.83 <0.001 

Age group [Child-directed speech] 0.77 -3.51 – 5.05 0.721 

Model size [log] 0.70 -1.58 – 2.99 0.542 

Pretraining size [log] -0.32 -1.47 – 0.83 0.581 

Random Effects 
σ2 104.19 
τ00 family 44.62 
ICC 0.30 
N family 14 
Observations 90 
Marginal R2 / Conditional R2 0.007 / 0.305 
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Table S6.8. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the Euclidean Distance between models and children in Cabiddu et 
al. (2022) Verb-Event condition. See our main paper for more details about this outcome 
measure. The predictors are age group (adult-based model/child-based model), log pre-
training size, log model size, and interactions. The random effect intercept is Model Family. 
The Null model includes main and random effect intercepts. Subsequent models add one pre-
dictor at a time. The table shows the number of model parameters (npar), Akaike (AIC) and 
Bayesian (BIC) Information criterions, log-likelihood (logLik), deviance, Chi-square statis-
tic (Chisq), degrees of freedom (Df), and p value Pr(>Chisq). 
 

 
npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

Null model 3 678.16 685.66 -336.08 672.16 NA NA NA 

+ Age group 4 680.02 690.02 -336.01 672.02 0.14 1 0.706 

+ Pretraining 5 675.80 688.30 -332.90 665.80 6.22 1 0.013 

+ Model size 6 676.18 691.18 -332.09 664.18 1.62 1 0.203 

+ Age group x 
Model size 

7 675.29 692.79 -330.64 661.29 2.89 1 0.089 

+ Age group x 
Pretraining 

8 675.34 695.34 -329.67 659.34 1.94 1 0.163 

+ Pretraining x 
Model size 

9 673.64 696.14 -327.82 655.64 3.71 1 0.054 

+ Age group x 
Pretraining x 
Model size 

10 675.63 700.63 -327.81 655.63 0.01 1 0.918 
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Table S6.9. Output of the best model selected via model comparison in Table S6.8. 
 

  ‘+ Pretraining’ model -Euclidean Distance 
Verb-Event Condition -Cabiddu et al. (2022) 

Predictors Estimates CI p 
(Intercept) 25.80 20.83 – 30.77 <0.001 

Age group [Child-directed 
speech] 

0.71 -3.08 – 4.51 0.710 

Pretraining size [log] 1.25 0.32 – 2.18 0.009 

Random Effects 
σ2 82.01 
τ00 family 33.36 
ICC 0.29 
N family 14 
Observations 90 
Marginal R2 / Conditional R2 0.110 / 0.367 

 
 

Figure S6.9. Models’ Euclidean distance from children by model size and pretraining size 
in Cabiddu et al. (2022), Verb-Lexical condition. Model families are shown in the legend. 
The black horizontal line (y=0) indicates child performance.  The dashed regression line 
with 95% confidence interval shows performance across adult-based models. The solid re-
gression line with 95% confidence interval shows performance across child-based models. 
Colored regression lines are also shown for each adult-based model family, although only 
when examining model size as there is almost null variation in pretraining size within fam-
ily. Colored data points refer to the adult-based dataset. Data points from child-based da-
taset are omitted for simplicity. 
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Table S6.10. Model comparison between nested linear mixed-effect models via likelihood 
ratio test. The outcome is the Euclidean Distance between models and children in Cabiddu 
et al. (2022) Verb-Lexical condition. See our main paper for more details about this outcome 
measure. The predictors are age group (adult-based model/child-based model), log pre-
training size, log model size, and interactions. The random effect intercept is Model Family. 
The Null model includes main and random effect intercepts. Subsequent models add one pre-
dictor at a time. The table shows the number of model parameters (npar), Akaike (AIC) and 
Bayesian (BIC) Information criterions, log-likelihood (logLik), deviance, Chi-square statis-
tic (Chisq), degrees of freedom (Df), and p value Pr(>Chisq). 
 

 
npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

Null model 3 755.38 762.88 -374.69 749.38 NA NA NA 

+ Age group 4 757.29 767.29 -374.65 749.29 0.09 1 0.760 

+ Pretraining 5 752.51 765.01 -371.26 742.51 6.78 1 0.009 

+ Model size 6 746.59 761.59 -367.29 734.59 7.92 1 0.005 

+ Age group x 
Model size 

7 748.52 766.02 -367.26 734.52 0.06 1 0.800 

+ Age group x 
Pretraining 

8 749.62 769.62 -366.81 733.62 0.90 1 0.343 

+ Pretraining x 
Model size 

9 748.72 771.22 -365.36 730.72 2.90 1 0.088 

+ Age group x 
Pretraining x 
Model size 

10 750.33 775.33 -365.17 730.33 0.39 1 0.534 
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Table S6.11. Output of the best model selected via model comparison in Table S6.10. 
 

  
‘+ Model size’ model -Euclidean Distance 

Verb-Lexical Condition 
Cabiddu et al. (2022) 

Predictors Estimates CI p 

(Intercept) 7.66 -8.10 – 23.42 0.336 

Age group [Child-directed 
speech] 

0.91 -4.54 – 6.36 0.742 

Model size [log] 4.80 1.76 – 7.83 0.002 

Pretraining size [log] 0.86 -0.68 – 2.39 0.270 

Random Effects 
σ2 168.96 

τ00 family 110.41 

ICC 0.40 

N family 14 

Observations 90 

Marginal R2 / Conditional R2 0.214 / 0.524 
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