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Introduction

Using neural language models for language development research dates back to Elman
(1993) simulating language acquisition with recurrent neural networks and conceiving
the theory of “the importance of starting small”. Similarly, Harris (1954)’s distribu-
tional structure has motivated word embeddings – a seminal work showing that the
semantic relationship between words can be learned without supervision from text
data alone (Goth, 2016; Mikolov et al., 2013). These are just some examples of where
machine learning has already influenced the development and testing of linguistic
theories, showcasing a thriving relationship between the two disciplines (Baroni, 2021;
Contreras Kallens et al., 2023; De Seyssel et al., 2023; Dupoux, 2018). The unprecedented
success of language models in recent years (Bahdanau et al., 2015; Brown et al., 2020;
Devlin et al., 2019; Raffel et al., 2020; Vaswani et al., 2017) provides many opportunities
to further advance our understanding of human language learning.

A growing body of work has found similarities between large language models and
humans (Dasgupta et al., 2022; Schrimpf et al., 2021; Srikant et al., 2022; Webb et al.,
2023; Wei et al., 2022), showing that approximate representations of the outside world
can be learned from statistical patterns found in linguistic input alone (Abdou et al.,
2021; B. Z. Li et al., 2021; K. Li et al., 2023; Patel & Pavlick, 2022), and manifesting the
usefulness of large language models for other disciplines such as psychology (Demszky
et al., 2023). However, a so far open issue is the fact that language models are exposed
to different input modalities (i.e., mainly text) and have much more data available for
training than humans (De Seyssel et al., 2023; Warstadt & Bowman, 2022). Resolving
the discrepancy by which language models require much more data than a human
child is of high interest to both cognitive science (with the goal of more representative
models) and natural language processing researchers (with the goal of more efficient
models). Notably, there are ongoing efforts to train language models from similar input
as available to a human child, e. g., as in BabyBERTa (Huebner et al., 2021), and the
BabyLM challenge1 (Warstadt et al., 2023).

To promote a deeper understanding of how large language models may be useful for
language development research, we suggest to take inspiration from the field of emer-
gent machine-to-machine communication – where two or more neural network agents
without exposure to an existing language need to engage in a communication game
with the goal of successfully understanding each other (Foerster et al., 2016; Kottur
et al., 2017; Lazaridou & Baroni, 2020; Lazaridou et al., 2017). Specifically, emergent
communication simulations explore what happens when artificial neural networks
(on which also large language models are based) need to create their own languages
from scratch, i.e., without first being pre-trained on natural language corpora: do they
create human-like languages by-default, or are there specific biases and constraints that

1https://babylm.github.io
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need to be introduced in order to replicate human behavior? By attempting to simulate
phenomena previously observed in humans, research on emergent communication has
provided valuable insights into the processes and pressures that shape the evolution of
human language, and has allowed researchers to effectively scrutinize, identify, and
tease apart the relevant learning biases and conditions that underlie the communica-
tive behaviors of artificial neural networks when they are made to communicate by
themselves.

Although the setting of emergent communication is typically motivated for studying
the evolution of language (see Lazaridou & Baroni, 2020; Lian et al., 2023, inter alia),
language learning and language evolution are intrinsically linked: As languages are
passed from generation to generation in a repeated cycle of transmission, imitation,
and use, their structure is continuously shaped by the pressures and biases introduced
by learners during the process of language acquisition – with such learning biases effec-
tively shaping the evolution of languages on a longer timescale (Chater & Christiansen,
2010; Kirby et al., 2014; Smith, 2022). As such, constraints and pressures associated with
learning can causally affect (and, in fact, create) the universal properties of languages,
including their most fundamental structural features (Kirby, 2002, 2017; Kirby et al.,
2004). As such, we believe that the field of emergent communication provides an ideal
testbed for exploring the learning pressures neural networks are exposed to in the
process of language learning and use, and can help shed light on (some of) the criticial
inductive biases needed for replicating human linguistic behavior.

Since the theoretical usefulness of amodel is dependent on its resemblance to the target
entity (Zeigler et al., 2000), identifying the relevant learning pressures and biases that
govern language creation in neural network models can in turn make neural language
models more behaviorally plausible, and consequentially a more robust scientific tool
for the language sciences. Here, we review the emergent communication literature
and identify underlying learning pressures, while contrasting those with the learning
pressures at play when training large language models. Thereby we shed new light on
the learning dynamics of neural language models and contribute to the development of
more behaviorally plausible language models for language acquisition research.

In the following, we offer a comparative perspective on humans, large language models,
and deep learning agents engaging in communication games by reviewing similarities
and differences in observed phenomena, discussing howmismatches in the behavior
of humans and neural agents can be resolved through appropriate inductive biases, and
determining the underlying learning pressures at play. We first provide a brief overview
of the emergent communication literature, and then showcase initial mismatches be-
tween neural agents and humans with respect to multiple linguistic phenomena: Zipf’s
law of abbreviation, the benefits of compositional structure, and social factors shaping
linguistic diversity (e.g., population size effects). For each of these phenomena, we de-
scribe how the initial mismatch between humans and neural network models has been
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resolved, and identify the underlying learning pressures giving rise to these patterns.
In particular, we identify four cognitive and communicative pressures underlying both
language acquisition and language evolution, and discuss whether they are inherent
to the training objective (i.e., present by default given the learning environment and
objective) or whether they need to be artificially incorporated into the models as in-
ductive biases to elicit the desired outcome. We then contrast the identified pressures
and biases with those present in the training of large language models, with the goal of
promoting knowledge transfer between machine learning and language sciences. We
conclude with concrete suggestions for future directions, aimed at developing more
cognitively plausible language models for both language development and language
evolution research.

Emergent communication, initial mismatches, and their resolution

Figure 1. Schematics of a simple communication game. The sender sees an object and
has to compose a message to describe it. The receiver only sees the message and has to
discriminate the object against distractors, or fully reconstruct it.

Computational modeling has long been used to study language evolution by simulating
the process of communication and transmission between artificial agents, typically
Bayesian learners (Dale & Lupyan, 2012; Gong et al., 2008; Kirby, 2002; Kirby et al.,
2004; Kirby et al., 2015; Perfors & Navarro, 2014; Smith et al., 2003; Smith & Kirby,
2008; Steels, 2016). The emergence of new communication systems is similarly studied
using deep neural network models (Lazaridou & Baroni, 2020), and in experimental
work with human participants (Kirby et al., 2008; Raviv et al., 2019b; Selten & Warglien,
2007; Winters et al., 2015). Regardless of whether the subjects of these experiments are
humans, Bayesian agents, or deep neural networks, they all share the samemethodolog-
ical framework, namely, sender-receiver communication games: One agent describes
an input (e. g., an object or a scene), and transmits a message to another agent, that
then has to guess or fully reconstruct the sender’s input (see Figure 1). The agents in
emergent communication experiments are typically based on deep neural networks,
similar to those used in large language models.
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Table 1: Observed phenomena from humans in agents from emergent communication
simulations

Phenomenon in Hu-
mans

Mismatch in Emergent Com-
munication agents

Resolution

Zipfian distribution in
utterance length (fre-
quent meanings are
described by shorter
utterances)

Sender agents exploit the
full channel capacity because
longer messages are easier
to distinguish by receiver
agents.

Introducing a penalty on
long utterances (simulating
"laziness") restores the Zip-
fiandistribution onutterance
length.

Compositional struc-
ture reliably emerges
during communi-
cation and cultural
transmission, and
is beneficial for lan-
guage learning and
generalization

Inconsistent emergence of
compositional structure in
neural agents, and seemingly
no advantage ofmore compo-
sitional protocols for general-
ization

Periodically resetting agents’
parameters (simulating gen-
erational turnover) gives rise
to compositional protocols,
which are easier to learn for
neural network agents

Population size af-
fects the emergence
of compositional
structure (larger
communities create
more systematic
languages)

Larger populations of neural
agents do not create more
compositional protocols

Introducing population
heterogeneity (simulating
individual differences) or
production-comprehension
symmetry (simulating role
alternation in language use)
leads to larger populations
creating more systematic
protocols
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In a typical communication game, the sender acts as a conditioned-generation model,
taking a target input (for example, an image or a set of attribute values) and produces a
message consisting of multiple symbols. The symbols of the message are generated one
by one without any pre-defined vocabulary. The generated message is then transmitted
to the receiver. The receiver is trained to infer the sender’s input based on the message,
by selecting the correct object among distractors or by fully reconstructing it.

Emergent communication models start with randomly-initialized parameters, without
any pre-defined list of words or look-up table. Thus, the messages start out as random,
and only over the course of training and interaction do the models develop a communi-
cation protocol. In fact, it is the central assumptions of emergent communication that
the agents are not seeded with some initial language or communication protocol, but
that they develop the communication system on their own during interaction. Thus,
agents start from scratch and are guided primarily by communicative success. Yet,
there is room for inductive biases, i. e., additional biases that are imposed on the learn-
ing system to promote desired behaviours (Mitchell, 1980). While cognitive biases in
biological learning systems occur naturally, inductive biases in machine learning are
artificially introduced to guide the learning dynamics. For a profound overview of the
emergent communication literature, we refer to recent review and survey papers by
Lazaridou and Baroni (2020), Galke et al. (2022), and Brandizzi (2023).

Notably, methods from the field of emergent communication and from the closely
related field of reinforcement learning (see Kosoy et al., 2020; Kosoy et al., 2022, inter
alia) have already been used for language development research (see Ohmer et al., 2020;
Portelance et al., 2021, inter alia), for example, to study the emergence of a mutual
exclusivity bias with pragmatic agents.

While emergent communication simulations hold a great potential for advancing our un-
derstanding of how languages emerge, we can only expect insights gainedwith deepneu-
ral networks to inform language evolution research if the resulting languages actually
show the same properties as natural languages (Galke et al., 2022). Consequently, most
emergent communication simulations try to compare the properties of their emerging
communication protocols to the properties found in natural languages (Havrylov &
Titov, 2017; Kottur et al., 2017; Lazaridou et al., 2017). By following this approach, the
field has unveiled substantial differences between humans and machines in how they
learn to communicate and what kinds of languages they develop.

Crucially, although the emergent languages of neural networks initially did not exhibit
many of the linguistic properties typically associated with human languages, most
of these differences could be reconciled by adding adequate inductive biases, such
as laziness and impatience – which, when introduced, recovered the effects found in
humans. Notably, some linguistic phenomena such as the word-order/case-marking
trade-off seem to occur in communicating neural networks without specific inductive
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biases (Lian et al., 2023). Below we review selected properties of human languages in
which initial mismatches between humans and neural network agents were resolved
and discuss the inductive biases that were necessary for their recovery. Table 1 provides
an overview of the three phenomena and their occurrence in neural simulations.

Zipfian distribution in utterance length

Perhaps the most illustrative example of mismatches between the languages devel-
oped by humans and machines was the initial absence of Zipf’s law of abbreviation in
machine learning simulations. According to Zipf’s law of abbreviation, the relation-
ship between word frequency and word length follows a power law distribution, such
that more frequent words are typically shorter while less frequent words are typically
longer (Newman, 2005; Zipf, 1949). Zipf (1949) suggested that this effect is caused by the
principle of least effort, i.e., since frequent words are produced often, and shorter words
are easier to produce. Critically, Zipf’s law has important implications for language
evolution (Kanwal et al., 2017) and language acquisition (Ellis & Collins, 2009), with
active restructuring of lexicon towards more efficient communication (Gibson et al.,
2019).

Initial findings in emergent communication showed that Zipf’s Law of Abbreviation
is absent from the languages developed by neural agents, which was dubbed as ’anti-
efficient coding’ (Chaabouni et al., 2019). This was because neural senders were not
under any pressure to communicate efficiently or to reduce effort. In fact, longer
messages were easier for the receiver agent to process because they allowed for more
opportunities to differentiate between meanings: for a 1-symbol utterance, the sender
can select only 1 item from the alphabet of size k, but for a n-symbol utterance, the
sender can produce kn different combinations. The more distinct utterances are from
another, the easier it is for the receiver to distinguish the target meaning from other pos-
sible meanings. Thus, longer utterances are advantageous for conveying the meaning
correctly – especially when there is no penalty for utterance length.

The mismatch with human language was resolved by adjusting the optimization objec-
tive in a direction that made sender agents “lazy” (i.e., longer messages were penalized)
and receiver agents “impatient” (i.e., receivers tried to infer the meaning as early as
possible in a sequential read) (Rita et al., 2020). This inductive bias, which aims at
mimicking real human behavior during language production and comprehension, has
recovered Zipf’s Law of Abbreviation in emergent communication simulations – show-
ing that when such biases for efficiency are introduced, communication protocols
developed by neural agents do show a similar frequency–length relationship as found
in natural languages.

Volume 5, Issue 1



Language Development Research 123

The emergence of compositional structure and its benefits for learning and general-
ization

Compositional structure is considered a hallmark feature of human language (Hockett,
1960; Szabó, 2022): there is a systematic mapping between linguistic forms (e.g., words,
morphemes) and their meanings (e.g., concepts, grammatical categories), such that
the meaning of a complex expression can be typically derived from the meanings its
constituent parts. For example, themeaning of the phrase "small cats" is directly derived
from the meanings of the words "small", "cat", and the marker "-s" (denoting plurality).
The presence of such compositional structure underlies the infinite expressive and
productive power of human languages, allowing us to describe new meanings in a
way that is transparent and understandable to other speakers (Kirby, 2002; Zuidema,
2002).

In experiments simulating the evolution of languages in the lab using sender-receiver
communication games, the need to communicate over a growing number of different
items or in an open-ended meaning space leads to the emergence of compositional
languages (Nölle et al., 2018; Raviv et al., 2019a). Crucially, the degree of compositional
structure in linguistic input then predicts adults’ learning and generalization accuracy,
such that, compared to languages with little to no compositionality, languages with
more compositional structure are learned better and faster and result in better (i.e.,
more transparent and systematic) generalizations to new meanings, which are also
shared across different individuals who never interacted before (Raviv et al., 2021).
Thus, the evolution of more compositional and systematic linguistic structure allows
for more productive generalization and facilitates communication and convergence
between strangers.

The learning advantage of more compositional structure for adult participants is also
echoed in numerous iterated learning studies, which have shown that artificial lan-
guages become more compositional and consequently easier to learn over the course
of cross-generational transmission (Beckner et al., 2017; Carr et al., 2017; Kirby et al.,
2008; Kirby et al., 2014).

Testing the limits of our imagination, neural networks seemed to generalize well even
without compositional communication protocols (Chaabouni et al., 2020; Lazaridou
et al., 2018). Specifically, Chaabouni et al. (2020) found that, after many repetitions
of an emergent communication experiment, all compositional languages generalized
well, but so did non-compositional languages. This finding spurred numerous follow-
up studies that aimed at improving the learning dynamics through inductive biases
or by making the communication game more difficult (more complex stimuli, larger
alphabet, longer messages, more agents) to successfully promote the emergence of
compositional structure (Chaabouni et al., 2022; Rita, Tallec, et al., 2022). However, the
lack of correlation between the degree of compositional structure – as measured by

Volume 5, Issue 1



Language Development Research 124

topographic similarity (Brighton & Kirby, 2006) – and generalization performance had
remained.

The most reliable way to promote the emergence of compositional languages is period-
ically resetting the parameters of the neural network agents (Chaabouni et al., 2022;
F. Li & Bowling, 2019; Zhou et al., 2022), similar to Kirby et al. (2014)’s iterated learning
paradigm – leading to the hypothesis that compositional languages have a learnability
advantage (Chaabouni et al., 2020; Chaabouni et al., 2022; Guo et al., 2019; F. Li &
Bowling, 2019). However, these attempts did not directly test language learnability in a
purely supervised fashion.

Recently, Conklin and Smith (2022) have re-analyzed the setting of Chaabouni et al.
(2020) and found that, in fact, the lack of correlation between compositionality and
generalization performance in the original simulation was caused by a fallacy of the
topographic similarity metric that had been used to measure compositionality. For
instance, homonyms (different forms for same meaning) obscure compositionality
under the topographic similarity measure. When taking this variation into account,
compositional structure does reliably emerge and is beneficial for generalization. In
other words, it is probably the case that there was not really a mismatch between
humans and neural agents in the first place.

Supporting this view, Galke et al. (2023) have replicated a large-scale language learning
study originally conducted with human participants (Raviv et al., 2021) with deep neural
networks and have confirmed the advantage of compositional structure for learning
and generalization in neural networks. The results showed similar pattern across three
learning systems – humans, small-scale recurrent neural networks trained from scratch,
and the large pre-trained language model GPT-3 – with compositional structure being
advantageous for all types of learners. Specifically, the results showed that neural net-
works benefit frommore structured linguistic input, and that their productions become
increasingly more similar to human productions when trained on more structured
languages. This structure bias can be found in the networks’ learning trajectories and
their generalization behavior, mimicking previous findings with humans: although
all languages can eventually be learned, languages with a higher degree of composi-
tional structure were led to better and more human-like generalization to new, unseen
items.

Population size effects

Socio-demographic factors such as population size have long been assumed to be impor-
tant determinants of language evolution and variation (Lupyan&Dale, 2010; Nettle, 2012;
Wray & Grace, 2007). Supporting this idea, global cross-linguistic studies report that big-
ger communities tend to have languages with more regular and transparent structures
(Lupyan & Dale, 2010). Similarly, in experimental work, larger groups of interacting
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participants generally develop languages with more systematic (i.e., compositional)
grammars (Raviv et al., 2019b). These findings are typically attributed to compressibil-
ity pressures arising during communication: remembering partner-specific variants
becomes increasingly more challenging as group size increases and shared history
decreases, which lead larger groups to prefer easier-to-learn-and-generalize variants
and thus converge on more transparent and systematic languages.

Tieleman et al. (2019) has investigated populations of autoencoders. Autoencoders are
neural network models composed of an encoder module and a decoder module that
learn to “good” representations (the code) by reconstructing their own input. Now Tiele-
man et al. (2019) have decoupled encoder and decoders and exchanged them throughout
training – while communicating in a continuous channel. There, larger communities
produced representationswith less idiosyncrasies and lead to better convergence among
different agents. While a promising starting point, the communication was modeled as
exchanging continuous vectors and training the encoder decoder modules together, as
if they were one model. This is arguably natural communication paradigm for neural
networks because it is optimized in the same way as the communication between layers
in a single neural network. However, this continuous channel stands in contrast with
the discrete nature of human communication (Hockett, 1960). Most other approaches
in emergent communication, however, do consider a discrete channel (Galke et al.,
2022).

While Chaabouni et al. (2022) argued that it is necessary to scale up emergent commu-
nication experiments in different aspects including population size in order to better
align neural emergent communication with human language evolution, they have not
found a consistent advantage of population size in generalization and ease-of-learning
(in contrast with (Tieleman et al., 2019)). Similarly, Rita, Strub, et al. (2022) found that
language properties are not enhanced by population size alone.

While emergent communication in populations of agents has been investigated ear-
lier (Fitzgerald, 2019; Graesser et al., 2019; Lowe et al., 2019, e.g.), the effect of popu-
lation size on structure with groups of more than two agents has only recently been
analyzed (Chaabouni et al., 2022; Michel et al., 2023; Rita, Strub, et al., 2022). Out
of these, two studies aimed to recover the group size effect in populations of neural
network agents by introducing population heterogeneity (Rita, Strub, et al., 2022) and
manipulating sender-receiver ties (Michel et al., 2023).The first study by Rita, Strub,
et al. (2022) modeled population heterogeneity by giving each agent a different random
learning rate While previous simulations used populations of identical agents, Rita et
al. modeled population heterogeneity by giving each agent a different random learning
rate. Results showed that in this scenario, group size effects could be partially recovered.
Notably, the authors found that it is important to give sender agents having (much)
higher learning rates than receivers.
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Secondly, while most emergent communication simulations keep senders and receivers
distinct (i.e., agents that produce never comprehend, and vice versa), there is also
work that emphasizes linking production and comprehension components within the
agents (e.g., by sharing some of themodel parameters) (Graesser et al., 2019; Portelance
et al., 2021). Galke et al. (2022) argue that this naturalistic property of alternating
between sending and receiving (i.e., engaging in both production and comprehension in
typical language use) may be a crucial ingredient to ensuremore linguistically plausible
learning dynamics – and could lead to recovering the group size effect. Subsequently,
Michel et al. (2023) have introduced sender-receiver ties via gradient blocking, such that
a sender and a receiver together form a single agent and each receiver is only optimized
for its corresponding sender. This change indeed led to a recovery of the group size
effect, with larger population of agents creating more compositional protocols. Another
promising approach is to have agents model other agents’ knowledge, allowing them
to communicate differently with different agents - something that has been implied to
underlie group size effects in humans (Lutzenberger et al., 2021; Meir et al., 2012; Mudd
et al., 2020; Thompson et al., 2020). While such "theory of mind" is generally absent
from emergent communication simulations in populations, the ability to infer other
agents’ beliefs has been successfully implemented in various reinforcement learning
setups, e.g., (Filos et al., 2021; Ohmer et al., 2020).

Underlying learning pressures and inductive biases

In general, there are two types of learning biases and pressures. First, some biases
and pressures seem to be present naturally, or universally, across all different learning
systems investigated here, including deep learning agents. An example for this is the
structure-bias, i.e., the learnability and generalization advantage ofmore compositional
communication protocols (Galke et al., 2023) (see above). This structure-advantage
seems to be present for both humans and neural networks, even without specific
inductive biases. In contrast, some biases need to be artificially introduced in order
to recover the effects found in humans. These include, for example, adding a length-
penalty for senders, which effectively makes agents "lazy". In the above examples,
we demonstrated the flexibility and adaptive nature of neural simulations and how
they can be tweaked to replicate human behavioral patterns. While many features
associated with natural languages were initially absent from such simulations, these
mismatches have been fully or partially resolved by introducing theory-driven and
human-inspired cognitive biases and learning pressures to the learning system – and
these inductive biases have consequentially led to better alignment between neural
agents and humans. Below, we outline on a more fine-grained level what pressures are
relevant for language learning and evolution in neural networks, contrasting them with
the pressures to which current large language models are exposed, and to what extent
incorporating the pressures may promote the relevance of large language models for
developmental research. Table 2 provides an overview of the comparison of learning
pressures in emergent communication agents and large language models. Notably,
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Table 2: Pressures derived from emergent communication simulations and their opera-
tionalization in neural agents and large language models

Derived Pressure Emergent Communication
Agents

Large LanguageModels

Pressure for success-
ful communication

The main training objective
in communication games

Absent in pre-training and
fine-tuning. Only introduced
when learning from human
preferences in RLHF.

Pressure for learnabil-
ity

Can be artificially introduced
through parameter reset and
iterated learning

Neural networks underlying
large languagemodels have a
tendency to find the simplest
solution first

Pressure to reduce
production effort

Can be artificially introduc-
ing, e.g., through a penalty
term for long messages

Production length is learned
from LLM’s training data and
human feedback in RLHF.

Memory constraints Absent because the high ca-
pacity of neural agents is suf-
ficient to memorize even un-
structured mappings

Huge capacity due to ex-
tremely high amount of pa-
rameters, yet “working mem-
ory” for in-context learning
is limited by context window
(how many tokens the mod-
els can process at a time)

Production-
comprehension
symmetry

Can be artificially introduced
by linking sender and re-
ceiver modules

By design – LLMs employ the
same neural network mod-
ules and parameters for com-
prehension and production

Modeling other
agents’ internal states

Can be modeled explicitly,
e.g., for pragmatic reasoning

In the RLHF training stage, a
reward model is trained and
consulted to estimate human
preferences.
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this is not an exhaustive list – it focuses on the specific pressures that underlie the
phenomena described above, but do not consider many other important aspects that
govern natural language learning, such as grounding, a noisy environment,multi-modal
communication, or referential and iconic signs.

Pressure for successful communication

In order to achieve successful communication, language users need distinguish between
a variety of meanings. This expressivity pressure is hypothesized to underlie human
language evolution, and serves as a "counter pressure" for simplicity/compressibility
(i.e., the idea that languages should be as simple and as learnable as possible) (Kirby
et al., 2015). The pressure for communicative success, e. g., to accurately reconstruct the
meaning of referents from a message during interaction, is the most straight-forward
pressure found in collaborative communication games (and, arguably, in real-world
interaction). In emergent communication with deep neural networks, this pressure is
encoded right in the optimization objective of the neural networks.

In contrast, for large language models such as GPT-3.5, the main objective during pre-
training is not communication success. The standard language modeling objective used
during pre-training of large languagemodels instead optimizes for utterance completion
(i. e., learning to predict words from their context). While this language modeling
objective leads to tremendous success regarding language competence other emergent
abilities (Devlin et al., 2019; Wei et al., 2022), it is clearly a different training objective
thanoptimizing for communicative success, as in emergent communication simulations.
After large-scale pre-training, large languagemodels are fine-tuned using small datasets
of human-generated pairs of instructions and their corresponding responses, usually
with the same training objective as in pre-training. In other words, themodels aremade
to learn from interactions by completingutterances fromhuman-generated interactions,
but not by interacting themselves. Only during the last stage of training, the models are
trained via Reinforcement Learning from Human Feedback (RLHF), where a reward
model estimates human preferences based on human ratings of different machine-
generated responses (Ouyang et al., 2022; Schulman et al., 2017). Only in this final
RLHF training stage of LLMs, the models are optimized for successful communication.
Yet, this stage is important to turn base models into chat assistants that engage in
conversations with humans (OpenAI, 2023; Ouyang et al., 2022).

In general, while emergent communication simulations are tuned for communicative
success by design, this is in fact an extra step in large languagemodels after pre-training
on utterance completion. Thus, the learning paradigms of fine-tuning and subsequent
learning from human feedback are worth further exploration for the goal of having
language models being more representative of human behavior. For instance, a recent
study has showcased that fine-tuning large language models on data from psychological
tests turns them into useful cognitive models (Binz & Schulz, 2023).
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Pressure to reduce production effort

Humans constantly strive to reduce effort during interaction (Gibson et al., 2019). For
instance, this is demonstrated by our tendency to shorten or erode highly frequent
words (Kanwal et al., 2017; Zipf, 1949). However, the pressure to communicate with least
effort is absent in neural networks, and is usually not reflected in their training objective.
In other words, it simply does not cost more “effort” for a neural network to generate
a longer message. By introducing a bias for more efficient communication, Rita et al.
(2020) have shown that typical humanbehavior canbe recovered. Since languagemodels
similarly don’t have an ’innate’ pressure to reduce effort, it may be worth considering
integrating such a pressure for efficient communication into thesemodels for the sake of
mimicking human behavior with respect to language development. However, one needs
to strike a balance, as imposing a least-effort bias could also lead to communication
failure in emergent communication scenarios (Lian et al., 2021), calling for further
investigation of how a least-effort bias is best incorporated.

In large language models, there is no pressure to reduce production effort: LLMs are
trained on next-token production over large corpora of text data, which is being piped
through the model in a batched fashion to maximize throughput (see for instance
Brown et al., 2020; Touvron et al., 2023, inter alia). Thus, the main driver for production
length is simply the utterance length in data, and the placement of specific separator
tokens, e.g., at the end of each unit of consecutive text during training. Moreover, the
RLHF stage of training large language models (Ouyang et al., 2022; Schulman et al.,
2017), which is supposed to align LLMs with human preferences, even promotes the
generation of longer utterances, as they are deemed to bemore “helpful” by (instructed)
human annotators (Singhal et al., n.d.).

At inference time, when the LLM is prompted to generate text, a hard cut-off on the
number of tokens or a soft length penalty may be introduced – the details of these
techniques, however, are oftennot publicly available. Regardless, the training procedure
itself does usually not include a length penalty, which needs to be taken into account
when planning to use large language models for language development research.

Pressure for learnability

Based on our review, a pressure for learnability (or continual re-learning) also governs
the development of communication protocols between neural network agents. That
is, agents should prioritize communication protocols (or single variants) that are eas-
ier to learn, and such protocols should in turn boost performance. This learnability
pressure is strongly connected to the fact that languages must be transmitted, learned,
and used by multiple individuals, often from limited input and with limited exposure
time (Smith et al., 2003). Yet, there is a subtle difference to strict transmission chains
of iterated learning, as it is sufficient with neural networks to reset only some of the
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agents (F. Li & Bowling, 2019), or only parts of a single agent (Zhou et al., 2022). In
numerous different settings, it has been shown that learnability pressures are crucial
for compositional structure to emerge (Chaabouni et al., 2022; F. Li & Bowling, 2019;
Zhou et al., 2022).

This also suggests that under repeated learning, either in Iterated Learning with human
participants or with parameter reset in neural networks, weak learning biases can get
amplified in the process of cross-generational transmission (Reali & Griffiths, 2009).
But what are these learning biases exactly? How can they be operationalized? And how
do they actually translate into language learning in the real-world? For example, do
these biases differ between children and adults, or between different levels of linguistic
analyses (e.g., vocabulary vs. syntax)? At the moment, these are still open questions.
However, they highlight the need to seriously consider the meaning and implications
of different modeling choices when simulating language acquisition using language
models and deep neural networks.

As for large language models, Chen et al. (2024) have made relevant findings by an-
alyzing the learning dynamics: language models pick up grammar as the simplest
explanation for the data very early on during training (structure onset), and only shortly
thereafter, general linguistic capabilties arise. In addition, when suppressing grammar
as a possible way to explain the data, the models learn other strategies, but do not go
back to grammar when the constraint is removed later in training.

This finding connects well with more general findings of simplicity bias in neural net-
works (Geirhos et al., 2020). In addition, it also connects with the findings of emergent
communication in emphasizing that re-learning (e. g., through parameter reset) is im-
portant for compositional structure to emerge (F. Li & Bowling, 2019). Our hypothesis
is that, if there was no pressure for re-learning, then agents would fall for the earliest
successful strategy and do not consider alternatives – stressing the importance of the
learnability pressure.

Memory constraints

Human language learning is governed by cognitive constraints such as a limitedmemory
capacity. These, in turn, affect processes of language evolution and promote greater
convergence to a common language within a community: once groups become too big,
it becomes hard to maintain unique communication protocols with different partners
(i.e., idiolects) (Wray & Grace, 2007).

Such constraints have been shown to underlie patterns of cross-linguistic diversity,
whereby larger populations develop more structured and less variable languages (Raviv
et al., 2019b). Yet, neural networks have virtually no memory constraints because they
are commonly heavily over-parametrized. Due to this over-parametrization, neural
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networks have no problem to keep a large number of different partner-specific variants
in their memory, and have little need to converge on a single shared language. However,
simply reducing the number of model parameters to the theoretical minimum is not
feasible either, as explored in emergent communication by Resnick et al. (2020). This is
because over-parametrization is, in fact, a critical ingredient for the success of deep
neural networks (Arora et al., 2019; Cybenko, 1989; Nakkiran et al., 2021; Zhong et
al., 2017). But given the importance of such memory constraints for human language
learning and evolution, itmaybeworth consideringhowsuchpressures cannonetheless
be mimicked or introduced as inductive biases when employing deep neural networks
as models for language development research.

While large languagemodels have even higher model capacity with billions of learnable
parameters, there is an interesing conceptual connection with working memory: As
the model parameters are not updated at inference time (when the model is prompted
with a specific input), the model can only base its generation on what is available in
the prompt, which is limited by the LLMs’ context window of how many tokens can
be processed at a time. Although also these context windows grow larger and larger
with the development of new models (OpenAI, 2023), it allows researchers to explicitly
control what information is available to the model at a specific point in time.

Production-comprehension symmetry

In addition, in naturalistic settings with proficient language users, every person ca-
pable of producing a language is also capable of understanding it (Hockett, 1960) – a
property that was typically absent from emergent communication simulations (Galke
et al., 2022). Indeed, introducing an inherent connection between production and
comprehension in neural networks has led to an increase in the desirable properties of
emergent languages (Michel et al., 2023). Interestingly, comprehension and production
are intrinsically linked in autoregressive large language models as the same model
parameters are used for processing and for generation (Radford et al., 2019). Such
results again underscore the importance of keeping seemingly basic psycholinguistic
features in mind when using large language models and neural networks as models for
human language learning and use.

Modeling other agents’ internal states

Furthermore, another intriguing direction is to explicitly model other agents’ internal
states. For instance, Ohmer et al. (2020) integrates pragmatic reasoning into the agents,
leading to accelerated learning – an effect that is even stronger with Zipfian input dis-
tributions compared to uniform input distributions. Explicitly modeling other agents
internal states and social learning has been shown to be successful in other reinforce-
ment learning scenarios, where agents can cooperate or compete about resources (Filos
et al., 2021; Ndousse et al., 2021). Interestingly, these ideas of explicitly modeling the
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internal state of the interlocutor are already present in the final training stage of large
language models, when optimizing for human preferences via RLHF (Ouyang et al.,
2022; Schulman et al., 2017): the common procedure is to learn a specific reward model
that estimates human preferences on new data, which is then be employed for steering
the generations of the language model in a particular direction – here the rewardmodel
is specifically designed to estimate to what extent humans would prefer one genera-
tion over the other, which is closely resembles the idea of modeling other agents’ (or
humans’) internal states.

Discussion

Several important mismatches between humans and neural agents with respect to
language emergence can be explained by the absence of key cognitive and communica-
tive pressures, such as memory constraints and production-comprehension symmetry,
which drive language evolution. Here, we demonstrated how including these factors in
neural agents can resolve said mismatches, and lead to more accurate simulations that
mimic the settings and pressures operating during human language learning and use –
and consequentially resulting in emergent neural communication protocols that are
more linguistically plausible. Notably, additional psycho- and sociolinguistic factors
may affect language evolution and learning, and might also play a role in explaining
further discrepancies in behavioral patterns across learning systems.

In the current paper we presented a number of initial mismatches between humans and
agents engaging in communication games – and demonstrated how they could be re-
solved through inductive biases. So far, there is no unified approach that consolidates all
of the resolutions mentioned above. We deem this a promising direction of future work
– e. g., merging the techniques of population heterogeneity, laziness and impatience,
and sender-receiver ties, which have so far only been evaluated independently.

As exemplified by recent work, it is promising to keep up and nourish the knowledge
exchange between researchersworking on human languages and thoseworking on com-
putational simulations of language, e. g., via theory diffusion from language studies into
machine learning and vice versa. A famous example is cultural evolution (Tomasello,
2008) and the iterated learning paradigm (Kirby et al., 2008; Kirby et al., 2014), which
sparked the idea of iteratively training neural networks while resetting some of the
networks’ parameters (Frankle & Carbin, 2018; F. Li & Bowling, 2019; Nikishin et al.,
2022; Zhou et al., 2022). This idea has, for instance, advanced our understanding of
neural networks (their reliance on sparse sub-networks) and led to favorable learning
dynamics that cause better and more systematic generalization beyond the training
distribution. Similarly, the discrete and compositional structure of natural languages
inspired researchers to incorporate discrete representations into neural network ar-
chitectures in order to advance the models’ generalization performance and continual
learning capabilities (Liu et al., 2021; Träuble et al., 2023).
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In conclusion, The emergent communication literature provided the opportunity to
assist in developing linguistic theories in the spirit of Elman (1993), while, conversely,
reflecting on how phenomena and biases known from humans may ultimately enhance
neural networks, as in lifelong and open-world learning, which is still a major open
problem in machine learning. For making use of large language models in language
development research, we consider it a promising direction for future work to take
inspiration from the emergent communication literature, and see which inductive
biases (such as the ones sketched here) have helped to recover patterns from human
language learning. Concretely, this would entail ingesting a training objective for
communicative success earlier in language model training, and integrating a pressure
to keep utterances as short as possible. Integrating these biases into large language
modelsmay very well lead tomore cognitively plausiblemodels for gaining new insights
on how children acquire their first language.

References

Abdou, M., Kulmizev, A., Hershcovich, D., Frank, S., Pavlick, E., & Søgaard, A. (2021).
Can language models encode perceptual structure without grounding? a case study in
color. Proceedings of the 25th Conference on Computational Natural Language Learning,
109–132. https://doi.org/10.18653/v1/2021.conll-1.9

Arora, S., Du, S., Hu, W., Li, Z., & Wang, R. (2019). Fine-Grained Analysis of
Optimization and Generalization for Overparameterized Two-Layer Neural Networks.
Proceedings of the 36th International Conference on Machine Learning, 322–332.

Bahdanau, D., Cho, K., & Bengio, Y. (2015). Neural Machine Translation by Jointly
Learning to Align and Translate. Proceedings of ICLR.

Baroni, M. (2021). On the proper role of linguistically-oriented deep net analysis in
linguistic theorizing. arXiv preprint, abs/2106.08694. https://arxiv.org/abs/2106.08694

Beckner, C., Pierrehumbert, J. B., & Hay, J. (2017). The emergence of linguistic
structure in an online iterated learning task. Journal of Language Evolution, 2(2),
160–176.

Binz, M., & Schulz, E. (2023). Turning large language models into cognitive models.
arXiv:2306.03917.

Brandizzi, N. (2023). Towards More Human-like AI Communication: A Review of
Emergent Communication Research. arXiv:2308.02541.

Volume 5, Issue 1

https://doi.org/10.18653/v1/2021.conll-1.9
https://arxiv.org/abs/2106.08694


Language Development Research 134

Brighton, H., & Kirby, S. (2006). Understanding linguistic evolution by visualizing the
emergence of topographic mappings. Artificial Life, 12(2), 229–242.
https://doi.org/10.1162/artl.2006.12.2.229

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., . . .
Amodei, D. (2020). Language models are few-shot learners. Advances in Neural
Information Processing Systems 33.

Carr, J. W., Smith, K., Cornish, H., & Kirby, S. (2017). The cultural evolution of
structured languages in an open-ended, continuous world. Cognitive science, 41(4),
892–923.

Chaabouni, R., Kharitonov, E., Bouchacourt, D., Dupoux, E., & Baroni, M. (2020).
Compositionality and generalization in emergent languages. ACL, 4427–4442.

Chaabouni, R., Kharitonov, E., Dupoux, E., & Baroni, M. (2019). Anti-efficient encoding
in emergent communication. NeurIPS, 6290–6300.

Chaabouni, R., Strub, F., Altché, F., Tarassov, E., Tallec, C., Davoodi, E.,
Mathewson, K. W., Tieleman, O., Lazaridou, A., & Piot, B. (2022). Emergent
communication at scale. ICLR. https://openreview.net/forum?id=AUGBfDIV9rL

Chater, N., & Christiansen, M. H. (2010). Language Acquisition Meets Language
Evolution. Cognitive Science, 34(7), 1131–1157.
https://doi.org/10.1111/j.1551-6709.2009.01049.x

Chen, A., Shwartz-Ziv, R., Cho, K., Leavitt, M. L., & Saphra, N. (2024). Sudden drops in
the loss: Syntax acquisition, phase transitions, and simplicity bias in MLMs. The Twelfth
International Conference on Learning Representations.
https://openreview.net/forum?id=MO5PiKHELW

Conklin, H., & Smith, K. (2022). Compositionality with Variation Reliably Emerges in
Neural Networks. The Eleventh International Conference on Learning Representations.

Contreras Kallens, P., Kristensen-McLachlan, R. D., & Christiansen, M. H. (2023). Large
Language Models Demonstrate the Potential of Statistical Learning in Language.
Cognitive Science, 47(3), e13256. https://doi.org/10.1111/cogs.13256

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function.Math.
Control. Signals Syst., 2(4), 303–314. https://doi.org/10.1007/BF02551274

Volume 5, Issue 1

https://doi.org/10.1162/artl.2006.12.2.229
https://openreview.net/forum?id=AUGBfDIV9rL
https://doi.org/10.1111/j.1551-6709.2009.01049.x
https://openreview.net/forum?id=MO5PiKHELW
https://doi.org/10.1111/cogs.13256
https://doi.org/10.1007/BF02551274


Language Development Research 135

Dale, R., & Lupyan, G. (2012). Understanding the origins of morphological diversity:
The linguistic niche hypothesis. Advances in complex systems, 15(03n04), 1150017.

Dasgupta, I., Lampinen, A. K., Chan, S. C. Y., Creswell, A., Kumaran, D.,
McClelland, J. L., & Hill, F. (2022). Language models show human-like content effects
on reasoning. arXiv:2207.07051.

De Seyssel, M., Lavechin, M., & Dupoux, E. (2023). Realistic and broad-scope learning
simulations: First results and challenges. Journal of Child Language, 1–24.
https://doi.org/10.1017/S0305000923000272

Demszky, D., Yang, D., Yeager, D. S., Bryan, C. J., Clapper, M., Chandhok, S.,
Eichstaedt, J. C., Hecht, C., Jamieson, J., Johnson, M., Jones, M., Krettek-Cobb, D.,
Lai, L., JonesMitchell, N., Ong, D. C., Dweck, C. S., Gross, J. J., & Pennebaker, J. W.
(2023). Using large language models in psychology. Nature Reviews Psychology.
https://doi.org/10.1038/s44159-023-00241-5

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep
bidirectional transformers for language understanding. Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), 4171–4186.
https://doi.org/10.18653/v1/N19-1423

Dupoux, E. (2018). Cognitive Science in the era of Artificial Intelligence: A roadmap for
reverse-engineering the infant language-learner. Cognition, 173, 43–59.
https://doi.org/10.1016/j.cognition.2017.11.008

Ellis, N., & Collins, L. (2009). Input and Second Language Acquisition: The Roles of
Frequency, Form, and Function Introduction to the Special Issue. The Modern Language
Journal, 93(3), 329–335. https://doi.org/10.1111/j.1540-4781.2009.00893.x

Elman, J. L. (1993). Learning and development in neural networks: The importance of
starting small. Cognition, 48(1), 71–99. https://doi.org/10.1016/0010-0277(93)90058-4

Filos, A., Lyle, C., Gal, Y., Levine, S., Jaques, N., & Farquhar, G. (2021). Psiphi-learning:
Reinforcement learning with demonstrations using successor features and inverse
temporal difference learning. International Conference on Machine Learning, 3305–3317.

Fitzgerald, N. (2019). To populate is to regulate. EmeCom workshop at NeurIPS.

Foerster, J., Assael, I. A., de Freitas, N., & Whiteson, S. (2016). Learning to
Communicate with Deep Multi-Agent Reinforcement Learning. Advances in Neural
Information Processing Systems, 29.

Volume 5, Issue 1

https://doi.org/10.1017/S0305000923000272
https://doi.org/10.1038/s44159-023-00241-5
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1016/j.cognition.2017.11.008
https://doi.org/10.1111/j.1540-4781.2009.00893.x
https://doi.org/10.1016/0010-0277(93)90058-4


Language Development Research 136

Frankle, J., & Carbin, M. (2018). The Lottery Ticket Hypothesis: Finding Sparse,
Trainable Neural Networks. International Conference on Learning Representations.

Galke, L., Ram, Y., & Raviv, L. (2022). Emergent communication for understanding
human language evolution: What’s missing? Emergent Communication Workshop at ICLR
2022. https://openreview.net/forum?id=rqUGZQ-0XZ5

Galke, L., Ram, Y., & Raviv, L. (2023). What makes a language easy to deep-learn?
arXiv:2302.12239.

Geirhos, R., Jacobsen, J.-H., Michaelis, C., Zemel, R., Brendel, W., Bethge, M., &
Wichmann, F. A. (2020). Shortcut learning in deep neural networks. Nature Machine
Intelligence, 2(11), 665–673.

Gibson, E., Futrell, R., Piantadosi, S. P., Dautriche, I., Mahowald, K., Bergen, L., &
Levy, R. (2019). How Efficiency Shapes Human Language. Trends in Cognitive Sciences,
23(5), 389–407. https://doi.org/10.1016/j.tics.2019.02.003

Gong, T., Minett, J. W., & Wang, W. S.-Y. (2008). Exploring social structure effect on
language evolution based on a computational model. Connection Science, 20(2-3),
135–153.

Goth, G. (2016). Deep or shallow, NLP is breaking out. Communications of the ACM, 59(3),
13–16. https://doi.org/10.1145/2874915

Graesser, L., Cho, K., & Kiela, D. (2019). Emergent linguistic phenomena in multi-agent
communication games. EMNLP/IJCNLP (1), 3698–3708.

Guo, S., Ren, Y., Havrylov, S., Frank, S., Titov, I., & Smith, K. (2019). The emergence of
compositional languages for numeric concepts through iterated learning in neural
agents. arXiv preprint, abs/1910.05291.

Harris, Z. S. (1954). Distributional Structure.WORD, 10(2-3), 146–162.
https://doi.org/10.1080/00437956.1954.11659520

Havrylov, S., & Titov, I. (2017). Emergence of language with multi-agent games:
Learning to communicate with sequences of symbols. NeurIPS, 2149–2159.

Hockett, C. F. (1960). The origin of speech. Scientific American, 203(3), 88–97.

Huebner, P. A., Sulem, E., Cynthia, F., & Roth, D. (2021). BabyBERTa: Learning more
grammar with small-scale child-directed language. Proceedings of the 25th Conference on

Volume 5, Issue 1

https://openreview.net/forum?id=rqUGZQ-0XZ5
https://doi.org/10.1016/j.tics.2019.02.003
https://doi.org/10.1145/2874915
https://doi.org/10.1080/00437956.1954.11659520


Language Development Research 137

Computational Natural Language Learning, 624–646.
https://doi.org/10.18653/v1/2021.conll-1.49

Kanwal, J., Smith, K., Culbertson, J., & Kirby, S. (2017). Zipf’s law of abbreviation and
the principle of least effort: Language users optimise a miniature lexicon for efficient
communication. Cognition, 165, 45–52.

Kirby, S. (2002). Learning, bottlenecks and the evolution of recursive syntax.

Kirby, S. (2017). Culture and biology in the origins of linguistic structure. Psychonomic
bulletin & review, 24(1), 118–137.

Kirby, S., Cornish, H., & Smith, K. (2008). Cumulative cultural evolution in the
laboratory: An experimental approach to the origins of structure in human language.
Proceedings of the National Academy of Sciences, 105(31), 10681–10686.

Kirby, S., Griffiths, T., & Smith, K. (2014). Iterated learning and the evolution of
language. Current opinion in neurobiology, 28, 108–114.

Kirby, S., Smith, K., & Brighton, H. (2004). From ug to universals: Linguistic adaptation
through iterated learning. Studies in Language, 28(3), 587–607.

Kirby, S., Tamariz, M., Cornish, H., & Smith, K. (2015). Compression and
communication in the cultural evolution of linguistic structure. Cognition, 141, 87–102.

Kosoy, E., Collins, J., Chan, D. M., Huang, S., Pathak, D., Agrawal, P., Canny, J.,
Gopnik, A., & Hamrick, J. B. (2020). Exploring exploration: Comparing children with rl
agents in unified environments. Bridging AI and Cognitive Science workshop at ICLR.

Kosoy, E., Liu, A., Collins, J. L., Chan, D., Hamrick, J. B., Ke, N. R., Huang, S.,
Kaufmann, B., Canny, J., & Gopnik, A. (2022). Learning causal overhypotheses through
exploration in children and computational models. In B. Schölkopf, C. Uhler, &
K. Zhang (Eds.), Proceedings of the first conference on causal learning and reasoning
(pp. 390–406). PMLR. https://proceedings.mlr.press/v177/kosoy22a.html

Kottur, S., Moura, J., Lee, S., & Batra, D. (2017). Natural language does not emerge
‘naturally’ in multi-agent dialog. Proceedings of the 2017 Conference on Empirical Methods
in Natural Language Processing, 2962–2967. https://doi.org/10.18653/v1/D17-1321

Lazaridou, A., & Baroni, M. (2020). Emergent multi-agent communication in the deep
learning era. arXiv preprint, abs/2006.02419.

Volume 5, Issue 1

https://doi.org/10.18653/v1/2021.conll-1.49
https://proceedings.mlr.press/v177/kosoy22a.html
https://doi.org/10.18653/v1/D17-1321


Language Development Research 138

Lazaridou, A., Hermann, K. M., Tuyls, K., & Clark, S. (2018). Emergence of linguistic
communication from referential games with symbolic and pixel input. ICLR.

Lazaridou, A., Peysakhovich, A., & Baroni, M. (2017). Multi-agent cooperation and the
emergence of (natural) language. ICLR.

Li, B. Z., Nye, M., & Andreas, J. (2021). Implicit representations of meaning in neural
language models. Proc. of ACL, 1813–1827. https://doi.org/10.18653/v1/2021.acl-long.143

Li, F., & Bowling, M. (2019). Ease-of-teaching and language structure from emergent
communication. NeurIPS, 15825–15835.

Li, K., Hopkins, A. K., Bau, D., Viégas, F., Pfister, H., & Wattenberg, M. (2023).
Emergent world representations: Exploring a sequence model trained on a synthetic
task. Proc. of ICLR. https://openreview.net/forum?id=DeG07_TcZvT

Lian, Y., Bisazza, A., & Verhoef, T. (2021). The Effect of Efficient Messaging and Input
Variability on Neural-Agent Iterated Language Learning. Proceedings of the 2021
Conference on Empirical Methods in Natural Language Processing, 10121–10129.
https://doi.org/10.18653/v1/2021.emnlp-main.794

Lian, Y., Bisazza, A., & Verhoef, T. (2023). Communication Drives the Emergence of
Language Universals in Neural Agents: Evidence from the Word-order/Case-marking
Trade-off. Transactions of the Association for Computational Linguistics, 11, 1033–1047.

Liu, D., Lamb, A. M., Kawaguchi, K., ALIAS PARTH GOYAL, A. G., Sun, C., Mozer, M. C.,
& Bengio, Y. (2021). Discrete-Valued Neural Communication. Advances in Neural
Information Processing Systems, 34, 2109–2121.

Lowe, R., Gupta, A., Foerster, J., Kiela, D., & Pineau, J. (2019). Learning to learn to
communicate. Proceedings of the 1st Adaptive & Multitask Learning Workshop.

Lupyan, G., & Dale, R. (2010). Language structure is partly determined by social
structure. PloS one, 5(1), e8559.

Lutzenberger, H., De Vos, C., Crasborn, O., & Fikkert, P. (2021). Formal variation in the
kata kolok lexicon. Glossa: a journal of general linguistics, 6.

Meir, I., Israel, A., Sandler, W., Padden, C. A., & Aronoff, M. (2012). The influence of
community on language structure: Evidence from two young sign languages. Linguistic
Variation, 12(2), 247–291.

Volume 5, Issue 1

https://doi.org/10.18653/v1/2021.acl-long.143
https://openreview.net/forum?id=DeG07_TcZvT
https://doi.org/10.18653/v1/2021.emnlp-main.794


Language Development Research 139

Michel, P., Rita, M., Mathewson, K. W., Tieleman, O., & Lazaridou, A. (2023). Revisiting
Populations in multi-agent Communication. The Eleventh International Conference on
Learning Representations.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed
Representations of Words and Phrases and their Compositionality. Advances in Neural
Information Processing Systems 26, 3111–3119.

Mitchell, T. M. (1980). The Need for Biases in Learning Generalizations.

Mudd, K., De Vos, C., & De Boer, B. (2020). An agent-based model of sign language
persistence informed by real-world data. Language Dynamics and Change, 10(2), 158–187.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B., & Sutskever, I. (2021). Deep
double descent: Where bigger models and more data hurt. Journal of Statistical
Mechanics: Theory and Experiment, 2021(12), 124003.

Ndousse, K. K., Eck, D., Levine, S., & Jaques, N. (2021). Emergent social learning via
multi-agent reinforcement learning. International conference on machine learning,
7991–8004.

Nettle, D. (2012). Social scale and structural complexity in human languages.
Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1597), 1829–1836.

Newman, M. E. (2005). Power laws, pareto distributions and zipf’s law. Contemporary
physics, 46(5), 323–351.

Nikishin, E., Schwarzer, M., D’Oro, P., Bacon, P.-L., & Courville, A. (2022). The Primacy
Bias in Deep Reinforcement Learning. Proceedings of the 39th International Conference on
Machine Learning, 16828–16847.

Nölle, J., Staib, M., Fusaroli, R., & Tylén, K. (2018). The emergence of systematicity:
How environmental and communicative factors shape a novel communication system.
Cognition, 181, 93–104. https://doi.org/10.1016/j.cognition.2018.08.014

Ohmer, X., König, P., & Franke, M. (2020). Reinforcement of semantic representations
in pragmatic agents leads to the emergence of a mutual exclusivity bias. CogSci.

OpenAI. (2023). GPT-4 Technical Report. arXiv:2303.08774.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C.,
Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P. F., Leike, J., & Lowe, R. (2022).

Volume 5, Issue 1

https://doi.org/10.1016/j.cognition.2018.08.014


Language Development Research 140

Training language models to follow instructions with human feedback. Advances in
Neural Information Processing Systems, 35, 27730–27744.

Patel, R., & Pavlick, E. (2022). Mapping language models to grounded conceptual
spaces. Proc. of ICLR. https://openreview.net/forum?id=gJcEM8sxHK

Perfors, A., & Navarro, D. J. (2014). Language evolution can be shaped by the structure
of the world. Cognitive science, 38(4), 775–793.

Portelance, E., Frank, M. C., Jurafsky, D., Sordoni, A., & Laroche, R. (2021). The
emergence of the shape bias results from communicative efficiency. Proceedings of the
25th Conference on Computational Natural Language Learning, 607–623.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al. (2019).
Language models are unsupervised multitask learners. OpenAI blog, 1(8), 9.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., &
Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research, 21, 140:1–140:67.

Raviv, L., de Heer Kloots, M., & Meyer, A. (2021). What makes a language easy to learn?
a preregistered study on how systematic structure and community size affect language
learnability. Cognition, 210, 104620.

Raviv, L., Meyer, A., & Lev-Ari, S. (2019a). Compositional structure can emerge without
generational transmission. Cognition, 182, 151–164.

Raviv, L., Meyer, A., & Lev-Ari, S. (2019b). Larger communities create more systematic
languages. Proceedings of the Royal Society B, 286(1907), 20191262.

Reali, F., & Griffiths, T. L. (2009). The evolution of frequency distributions: Relating
regularization to inductive biases through iterated learning. Cognition, 111(3), 317–328.
https://doi.org/10.1016/j.cognition.2009.02.012

Resnick, C., Gupta, A., Foerster, J. N., Dai, A. M., & Cho, K. (2020). Capacity, bandwidth,
and compositionality in emergent language learning. AAMAS, 1125–1133.

Rita, M., Chaabouni, R., & Dupoux, E. (2020). "lazimpa": Lazy and impatient neural
agents learn to communicate efficiently. CoNLL, 335–343.

Rita, M., Strub, F., Grill, J.-B., Pietquin, O., & Dupoux, E. (2022). On the role of
population heterogeneity in emergent communication. ICLR.
https://openreview.net/forum?id=5Qkd7-bZfI

Volume 5, Issue 1

https://openreview.net/forum?id=gJcEM8sxHK
https://doi.org/10.1016/j.cognition.2009.02.012
https://openreview.net/forum?id=5Qkd7-bZfI


Language Development Research 141

Rita, M., Tallec, C., Michel, P., Grill, J.-B., Pietquin, O., Dupoux, E., & Strub, F. (2022).
Emergent Communication: Generalization and Overfitting in Lewis Games. Advances in
Neural Information Processing Systems.

Schrimpf, M., Blank, I. A., Tuckute, G., Kauf, C., Hosseini, E. A., Kanwisher, N.,
Tenenbaum, J. B., & Fedorenko, E. (2021). The neural architecture of language:
Integrative modeling converges on predictive processing. Proceedings of the National
Academy of Sciences, 118(45), e2105646118. https://doi.org/10.1073/pnas.2105646118

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347.

Selten, R., & Warglien, M. (2007). The emergence of simple languages in an
experimental coordination game. Proceedings of the National Academy of Sciences, 104(18),
7361–7366.

Singhal, P., Goyal, T., Xu, J., & Durrett, G. (n.d.). A long way to go: Investigating length
correlations in RLHF [to appear in the Conference on Language Modeling 2024].
arXiv:2310.03716.

Smith, K. (2022). How language learning and language use create linguistic structure.
Current Directions in Psychological Science, 31(2), 177–186.

Smith, K., Brighton, H., & Kirby, S. (2003). Complex systems in language evolution: The
cultural emergence of compositional structure. Advances in complex systems, 6(04),
537–558.

Smith, K., & Kirby, S. (2008). Cultural evolution: Implications for understanding the
human language faculty and its evolution. Philosophical Transactions of the Royal Society
B: Biological Sciences, 363(1509), 3591–3603.

Srikant, S., Lipkin, B., Ivanova, A. A., Fedorenko, E., & O’Reilly, U.-M. (2022).
Convergent representations of computer programs in human and artificial neural
networks. Advances in Neural Information Processing Systems.

Steels, L. (2016). Agent-based models for the emergence and evolution of grammar.
Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1701), 20150447.

Szabó, Z. G. (2022). Compositionality. In E. N. Zalta & U. Nodelman (Eds.), The Stanford
Encyclopedia of Philosophy (Fall 2022). Metaphysics Research Lab, Stanford University.

Thompson, B., Raviv, L., & Kirby, S. (2020). Complexity can be maintained in small
populations: A model of lexical variability in emerging sign languages.

Volume 5, Issue 1

https://doi.org/10.1073/pnas.2105646118


Language Development Research 142

Tieleman, O., Lazaridou, A., Mourad, S., Blundell, C., & Precup, D. (2019). Shaping
representations through communication: Community size effect in artificial learning
systems. arXiv:1912.06208.

Tomasello, M. (2008). Origins of Human Communication. MIT Press.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y., Bashlykov, N.,
Batra, S., Bhargava, P., Bhosale, S., et al. (2023). Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288.

Träuble, F., Goyal, A., Rahaman, N., Mozer, M. C., Kawaguchi, K., Bengio, Y., &
Schölkopf, B. (2023). Discrete Key-Value Bottleneck. Proceedings of the 40th International
Conference on Machine Learning, 34431–34455.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
& Polosukhin, I. (2017). Attention is All you Need. Advances in Neural Information
Processing Systems 30, 6000–6010.

Warstadt, A., & Bowman, S. R. (2022). What Artificial Neural Networks Can Tell Us
About Human Language Acquisition. arXiv:2208.07998.

Warstadt, A., Choshen, L., Mueller, A., Williams, A., Wilcox, E., & Zhuang, C. (2023).
Call for papers – the BabyLM challenge: Sample-efficient pretraining on a
developmentally plausible corpus. arXiv:2301.11796.

Webb, T., Holyoak, K. J., & Lu, H. (2023). Emergent analogical reasoning in large
language models. Nature Human Behaviour, 1–16.
https://doi.org/10.1038/s41562-023-01659-w

Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama, D.,
Bosma, M., Zhou, D., Metzler, D., Chi, E. H., Hashimoto, T., Vinyals, O., Liang, P.,
Dean, J., & Fedus, W. (2022). Emergent abilities of large language models. Transactions
of Machine Learning Research, 2022. https://openreview.net/forum?id=yzkSU5zdwD

Winters, J., Kirby, S., & Smith, K. (2015). Languages adapt to their contextual niche.
Language and Cognition, 7(3), 415–449.

Wray, A., & Grace, G. W. (2007). The consequences of talking to strangers: Evolutionary
corollaries of socio-cultural influences on linguistic form. Lingua, 117(3), 543–578.

Zeigler, B. P., Praehofer, H., & Kim, T. G. (2000). Theory of modeling and simulation.
Academic press.

Volume 5, Issue 1

https://doi.org/10.1038/s41562-023-01659-w
https://openreview.net/forum?id=yzkSU5zdwD


Language Development Research 143

Zhong, K., Song, Z., Jain, P., Bartlett, P. L., & Dhillon, I. S. (2017). Recovery Guarantees
for One-hidden-layer Neural Networks. Proceedings of the 34th International Conference
on Machine Learning, 4140–4149.

Zhou, H., Vani, A., Larochelle, H., & Courville, A. (2022). Fortuitous Forgetting in
Connectionist Networks. The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022.

Zipf, G. K. (1949). Human behavior and the principle of least effort: An introduction to
human ecology.

Zuidema, W. (2002). How the poverty of the stimulus solves the poverty of the stimulus.
Advances in neural information processing systems, 15.

Data, Code andMaterials Availability Statement

This review paper does not introduce any new data, code, or materials.

Authorship and Contributorship Statement

LG conceptualized the idea, reviewed the literature and wrote the paper. LR conceptu-
alized the idea and helped write the paper.

Acknowledgements

We thank Mitja Nikolaus and Mathieu Rita for insightful comments and discussions.
We thank Eva Portelance and Michael C Frank for their valuable comments on an initial
version of the manuscript.

License

Language Development Research (ISSN 2771-7976) is published by TalkBank and the
Carnegie Mellon University Library Publishing Service. Copyright© 2024 The Author(s).
This work is distributed under the terms of the Creative Commons Attribution Noncom-
mercial 4.0 International license (https://creativecommons.org/licenses/by-nc/4.0/),
which permits any use, reproduction and distribution of the work for noncommercial
purposes without further permission provided the original work is attributed as speci-
fied under the terms available via the above link to the Creative Commons website.

Volume 5, Issue 1

https://creativecommons.org/licenses/by-nc/4.0/

	Introduction
	Emergent communication, initial mismatches, and their resolution
	Zipfian distribution in utterance length
	The emergence of compositional structure and its benefits for learning and generalization
	Population size effects

	Underlying learning pressures and inductive biases
	Pressure for successful communication
	Pressure to reduce production effort
	Pressure for learnability
	Memory constraints
	Production-comprehension symmetry
	Modeling other agents' internal states

	Discussion
	Data, Code and Materials Availability Statement
	Authorship and Contributorship Statement
	Acknowledgements
	License

