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Abstract: What are the necessary conditions to acquire language? Do infants rely on simple statistical
mechanisms, or do they come pre-wired with innate capabilities allowing them to learn their native lan-
guage(s)? Previous modeling studies have shown that unsupervised learning algorithms could reproduce
some aspects of infant phonetic learning. Despite these successes, algorithms still fail to reproduce the
learning trajectories observed in infants. Here, we advocate that this failure is partly due to a wrong initial
state. Contrary to infants, unsupervised learning algorithms start with little to no prior knowledge of
speech sounds. In this work, we propose a modeling approach to investigate the relative contribution of
innate factors and language experience in infant speech perception. Our approach allows us to investigate
theories hypothesizing a more significant role of innate factors, offering new modeling opportunities for
studying infant language acquisition.
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Introduction

The ‘statistical learning hypothesis’ posits that infants learn their native languages(s)
by gradually collecting statistics over their language input (Saffran & Kirkham, 2018).
This is strikingly similar to how current Al's Large Language Models (LLMs) learn:
building a probabilistic model of sequences of words from the mere observation of
these sequences as they occur in their language inputs’. How does learning in such
models fare in comparison to learning in infants? First, LLMs typically learn from text,
while preschool children learn from speech, which constitutes a richer, noisier, and
more variable signal. Second, LLMs are trained on exceedingly large amounts of data.
For instance, the recent model LLaMA was trained on 1.4T tokens, roughly 800B words
(Touvron et al., 2023) while children hear only between 1M and 10M words per year
(Gilkerson et al., 2017). At this rate, infants would need to live between 80,000 years and
almost a million years to get the same amount of data. Therefore, current language
models are outranked by children regarding robustness to input signal variability and
data efficiency as already advocated in Lavechin et al. (2023) and Warstadt et al. (2023).
One candidate explanation for the incredibly slow learning pace observed in LLMs
is their lack of innate language capabilities. Indeed, LLMs have a relatively generic
architecture that can be used to learn visual or musical patterns. In contrast, it has
been claimed that language learning critically relies on evolution-supplied specialized
structures unique to humans (Chomsky, 1957; Hauser et al., 2002).

Far from entering the complicated controversy about the role of innate knowledge in
language and cognition, we focus in this paper on an apparently simple yet fundamental
subcomponent of language: phonetics. The ability to encode the sounds of language
in terms of a relatively invariant representation has been considered one of the first
steps of language acquisition in infants. Quite surprisingly, preverbal infants have an
excellent ability to discriminate between very subtle sound differences that sometimes
escape adults. Contrary to English adult speakers, 10- to 12-month-old English-learning
infants can distinguish [ta] from [ta], which is contrastive in Hindi (Werker et al., 1981).
Similarly, Japanese-learning infants can discriminate [1a] from [la] as in ‘right’ versus
‘light’ (Kuhl et al., 2006), while Japanese adult speakers struggle to hear the difference
(Best & Strange, 1992; Yamada & Tohkura, 1992). It is only when infants grow older that
their perception specializes to their native language(s) (Kuhl et al., 2006; McMurray
et al., 2018).

The early capacities of infants to discriminate speech sounds highlight the initial state
of their perceptual apparatus, whereas their developmental trajectories emphasize the
role of experience (Eimas et al., 1971; Kuhl & Iverson, 1995; Kuhl et al., 2003; Maye et al.,
2002; Werker & Curtin, 2005).

More precisely, they learn by predicting the conditional probability of future linguistic units — words
or sub-word tokens — based on past units.
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In this study, we investigate the respective contribution of initial state abilities and
language experience in infant speech perception with computational modeling?. Our
approach involves pretraining computational models of early phonetic learning to
induce initial state sound discrimination capabilities. We then observe how these
induced capabilities affect the learning trajectories taken by the model. Our results
show that models with strong initial state capabilities better fit the observed data in 6-8
and 10-12 month-old American English and Japanese-learning infants. Our methodology
allows us to explore theories positing a greater contribution of initial state factors in
infant language acquisition, a theoretical space that has been largely overlooked in
computational modeling until now.

Theoretical views on early phonetic learning in infants

The relative contributions of initial abilities versus language experience in phonetic
learning have been subject to much debate. Aslin and Pisoni (1980) have outlined
three possible theories concerning the development of speech perception in infants
- see Rowland (2013) for an overview of the different theories. Those are depicted in
Figure 1.

The universal theory hypothesizes that infants come pre-equipped with general auditory
mechanisms partially shared with other species. According to this theory, newborns
could initially discriminate all possible speech sound contrasts. Through exposure
to speech, only sensitivity to contrasts to which the child is exposed would persist
(maintenance), while sensitivity to contrasts to which the child is not exposed would
decline (loss) - see Aslin et al. (2002). There exist at least two observations incompatible
with the universal theory. First, infants lose sensitivity for some non-native contrasts
but not all of them - see Singh et al. (2022) and Tsuji and Cristia (2014) for meta-analytic
evidence. Second, infants are born capable of discriminating many sound contrasts but
not all of them - e.g., see Eilers and Minifie (1975) for an example where infants fail to
discriminate between [s] as in ‘sing’ versus [0] as in ‘thing’.

The attunement theory, perhaps the prevailing theory nowadays, proposes that infants
come pre-equipped with language-specific mechanisms that would enable them to
roughly discriminate speech sounds, although not to the same extent as adults in
terms of native speech sound discrimination (Kuhl, 2004; Werker & Curtin, 2005). The
attunement theory places greater importance on the role of experience by stipulating
thatthe language(s) infants are exposed to reorganize their perceptual abilities. Through
exposure to speech, infants’ sensitivity to some - mostly native - contrasts would
increase (facilitation), while sensitivity to some other - mostly non-native - contrasts
would decline (loss). According to this theory, there may be no change in perceptual

2Here, we take the initial state to be the state of the perceptual system at birth. Such a system can
come about through a combination of evolutionary processes (the true 'innate’ components) and prenatal
learning in utero. We do not attempt to distinguish these two sources of initial state abilities.
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Figure 1. The possible effects of innate factors (Evolution/Prenatal) and language
experience (Development/Postnatal) in infant speech sound perception. Adapted from
Aslin and Pisoni (1980).

abilities for some native or non-native contrasts (maintenance), which has been reported
in many studies in 6- to 12-month-old infants (Best et al., 1995; Eilers & Minifie, 1975;
Polka et al., 2001; Tsao et al., 2006) - see Best et al. (2016) for a review on the different
speech sound discrimination trajectories observed in infants. Although there may
be disagreement on the details of the implementation - e.g., the PRIMIR framework
proposed by Werker and Curtin (2005) or the perceptual magnet theory proposed by
Kuhl and Iverson (1995) and Kuhl et al. (2008) -, the attunement theory nicely accounts
for the large array of developmental patterns observed in infants.

A major critique of both the attunement theory and the universal theory is that we
may overestimate infants’ capabilities to discriminate speech sounds for two reasons.
First, it is common when working with infant participants to exclude those who fail
to pay attention, cry, or fall asleep during the experiment. Nittrouer (2001) argues
that infants may show uncooperative precisely because they cannot discriminate the
stimuli presented. Consequently, excluding infants who fail to meet the criterion of the
experimental procedure may result in inflated measures of discriminability. Indeed,
testing 6- to 14-month-olds and 2- to 3-year-olds, Nittrouer (2001) found lower discrim-
inability scores than typically reported in the literature - but see Aslin et al. (2002) for
counterarguments. The second argument is that sound discrimination experiments use

Volume 5, Issue 1



Language Development Research 5

simplified stimuli in the form of prototypical sounds and cherry-picked contrasts that
fail to account for the large variability of spontaneous speech encountered by infants
(Pierrehumbert, 2003). Under this view, sound discrimination capabilities measured
in controlled laboratory settings would not reflect the actual capabilities of infants in
real-world situations (Nittrouer, 2001; Pierrehumbert, 2003; Swingley, 2009).

This brings us to the perceptual learning theory, which proposes a scenario where experi-
ence plays a more important role. According to this theory, there would be no need to
assume innate capabilities, and infants could build the sound system of their native
language(s) in a bottom-up manner from sole exposure to speech. This theory seems
plausible in light of the experiments attempting to isolate learning mechanisms infants
may bring to the task. For instance, Maye et al. (2002) showed that it is possible to
induce different discrimination patterns in 6- and 8-month-old infants. Infants exposed
to a bimodal distribution of sounds along a [ta]-[da] continuum can discriminate [ta]
from [da], while those exposed to a unimodal distribution drawn from the center of the
continuum cannot. The perceptual learning theory is further supported by computa-
tional modeling studies showing that it is possible to reproduce some developmental
patterns in speech perceptual learning using unsupervised learning models (Lavechin
et al., 2022; Risdnen et al., 2016; Schatz et al., 2021; Steels & De Boer, 2008; Vallabha
et al., 2007)3.

Current work in modeling early phonetic learning

Computational modeling studies have always been central to the debate on the relative
contribution of innate factors and experience, as they shed light on what can be learned
from the input signal (Ambridge & Lieven, 2011; Bates et al., 1996; Joanisse & McClelland,
2015). After all, if a model successfully reproduces the observed data in infant perceptual
learning of speech sounds, do we need to posit innate factors? Despite successes in
reproducing some aspects of early phonetic learning as observed in infants (Antetomaso
etal., 2017; Lavechin et al., 2022; Miyazawa et al., 2010; Rasanen, 2012; Schatz et al., 2021;
Steels & De Boer, 2008; Vallabha et al., 2007), we argue that computational modeling
studies have thus far failed to account for the large array of infant developmental
trajectories depicted in Figure 1 and reviewed in Best et al. (2016).

Let us take the example of the American English [1]-[l] contrast which has received the
attention of both infant development and modeling experts. In a seminal study, Kuhl
et al. (2006) showed that between 6 and 8 months, Japanese- and American English-

3Here, our goal was to provide an overview of the main arguments supporting or challenging the
different views but note that most authors do not consider these three theories to be mutually exclusive.
In other words, it is unlikely that a single theory explains the development of all speech contrasts. From
our perspective, the debate is not about trying to establish a single definitive theory as the absolute truth
but more about where the initial state fits on the nature versus nurture continuum (vertical dashed line
of Figure 1) and how this initial state influences developmental outcomes.
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learning infants are capable of discriminating [1] from [l] with similar performance
scores. However, when tested a few months later, these same infants show markedly
different perceptual patterns. By 10-12 months, American English infants show an
improvement (facilitation) in their ability to discriminate the [1]-[l] contrast, while
Japanese infants show a decline (loss). While the effect of language exposure (higher
scores for the model for whom the contrast is native) has been reproduced in numerous
computational modeling studies and across different pairs of languages - e.g., Lavechin
et al. (2022), Li et al. (2020), Matusevych et al. (2023), and Schatz et al. (2021) -, a
closer examination of the trajectories taken by the proposed algorithms reveals notable
differences with the trajectories observed in infants.

Schatz et al. (2021) used an algorithm based on a mixture of Gaussians applied to mel-
frequency cepstral coefficients (MFCCs) with their first- and second-order derivatives.
Their results showed that the discrimination score obtained by the Japanese model on
the [1]-[1] contrast increases with the quantity of speech available in the training set. In
other words, for this contrast, the algorithm follows the inductive trajectory depicted in
Figure 1, contrary to the loss observed in infants according to previous studies (Kuhl
et al., 2006; Tsushima et al., 1994)*.

Another example using the same algorithm from Li et al. (2020) showed a slightly
different trajectory. When trained on a single speaker, the algorithm exhibits an increase
(induction) on the [1]-[1] contrast followed by a decrease (loss), resulting in an inverted
U-shaped trajectory which, to the best of our knowledge, has not been documented in
infants. Intriguingly, the same U-shaped trajectory is observed on the [w]-[]] pair (as
in ‘wet’ versus ‘yet’), which is contrastive in Japanese, and for which current theories
predict either a facilitation or maintenance trajectory. This performance loss on the
[w]-[j] pair, when the algorithm is trained on a large quantity of speech produced by
the same speaker, may indicate that the algorithm overfits that same speaker. Lavechin
et al. (2022) report the discrimination accuracy obtained by a Contrastive Predictive
Coding (CPC) algorithm trained on raw speech. Although no trajectory is reported for
individual contrasts, the overall discrimination accuracy averaged across all English or
French contrasts also follows an inductive trajectory.

Statistical learning models, irrespective of whether they operate on handcrafted features
or raw speech, are inherently rooted in the perceptual learning theory. Essentially,
they begin with limited prior knowledge of speech sounds, and their performance
largely tends to exhibit improvement over time. Consequently, current models fail to
reproduce the large array of developmental trajectories observed in infants.

“In Kuhl et al.’s (2006) study, the observed decline on the [1]-[1] contrast for Japanese infants was not
deemed significant, contrary to Tsushima et al. (1994), where a significant decline was noted. When taken
together with studies in later childhood and adulthood (e.g., Miyawaki et al. (1975)), it appears reasonable
to interpret the cumulative evidence as suggestive of a decline, though additional infant experiments
would be advisable.
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The present study

In this study, we seek to explore the respective contribution of initial state abilities and
experience on the development of speech sound discrimination capabilities. By and
large, existing models of early phonetic learning implement the perceptual learning
theory, where the proposed model starts with undeveloped or minimally developed
discrimination capabilities (first portion of the vertical dashed line in Figure 1). Our
primary contribution involves introducing a novel approach, previously used in ma-
chine learning but not yet applied to phonetic learning modeling, which consists of
inducing ‘innate’ speech sound discrimination capabilities by pretraining our model. By
controlling the initial state, we can now build computational models of early phonetic
learning that posit a greater role of innate factors compared to language experience
and assess which of these models better aligns with observed data in infants.

To demonstrate the relevance of our approach in modeling early phonetic learning, we
simulate the learning process of American English- and Japanese-learning infants using
CPC, an algorithm that learns from raw speech in an unsupervised manner already
proposed in Lavechin et al. (2022, 2024) and Nguyen et al. (2020) - see Matusevych
et al. (2023) for a comparison of different models. To induce ‘innate’ speech sound
discrimination capabilities and propose models more aligned with the attunement
or universal theories, we pretrain models on ambient sounds in Experiment 1, and
on multilingual speech in Experiment 2. Following Schatz et al. (2021), we evaluate
the model’s capability to discriminate American English and Japanese contrasts using
the machine ABX sound discrimination task and test whether the simulated learning
trajectories align with the observed data in infants. In particular, we focus on the [1]-[1]
pair, which is contrastive in English but not in Japanese and for which existing data
indicate a facilitation effect over the first year of life for American English-learning
infants and a loss effect for Japanese-learning infants (Kuhl et al., 2006; Tsushima et al.,
1994). We also analyze the performance obtained on the [w]-[j] control pair (as in ‘well’
versus ‘yell’), contrastive in both languages, for which prevailing theories predict either
a maintenance or facilitation effect over the first year of life for both American English-
and Japanese-learning infants. Although fewer observations are available on the [w]-[j]
contrast, see Tsushima et al. (1994) whose results are compatible with a maintenance
or facilitation trajectory in Japanese-learning infants.

Experiment 1: inducing initial speech sound discrimination capabilities
through pretraining on ambient sounds

In this first experiment, we ask whether it is possible to induce ‘innate’ speech sound
discrimination capabilities in our model and how the resulting initial state affects
its developmental trajectory. Following Lavechin et al. (2024), we chose a learning
algorithm relying on auditory predictive coding at the core of the predictive brain
hypothesis that has gained attention in the neuroscience community (Huang & Rao,
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2011; Hueber et al., 2020). The algorithm learns by predicting future representations of
audio based on present and past ones (see Methods).

We consider two types of models. One model starts from random initialization, which
is akin to assuming little initial discrimination capabilities except those brought by the
architecture which has been optimized to process human speech (see Riviere et al.,
2020) and corresponds to how computational models of early phonetic learning are
typically trained (e.g., see Lavechin et al., 2024; Matusevych et al., 2023; Schatz et al.,
2021). This is our no-pretraining condition, which aligns with the perceptual learning
theory. The other model follows a pre-exposure or evolutionary phase during which
it is pretrained on ambient sounds (e.g., animal vocalizations, vehicles, raindrops)
yielding an initial state optimized to process ambient sounds. We predicted that such a
pretrained model would learn the temporal dynamics of non-speech sounds and show
some initial discrimination capabilities that are not specific to any language. This is our
pretrained condition, which aligns with attunement or universal theories.

These two types of models (no pretraining vs. pretrained) undergo an exposure phase,
during which they receive the exact same language experience in the form of either
Japanese or American English recordings. We then compare their learning trajectories
in terms of speech sound discrimination capabilities.

Methods
Pretraining dataset

To build the dataset of ambient sounds, we started with the Animal Sound Archive
(Frommolt et al., 2006; GBIF.org, 2023), which consists of 78 hours of field recordings
of animals. We supplemented it with 422 hours from AudioSet (Gemmeke et al., 2017),
excluding utterances annotated as human vocalizations or music and retaining only
animal sounds or everyday environmental sounds. Additionally, we filtered out the
remaining speech segments missed by human annotators using the model proposed in
Bredin et al. (2020). Our pretraining set comprises 500 hours of ambient sounds.

Training datasets

The Japanese training set is derived from the Corpus of Spontaneous Japanese (Maekawa,
2003), and the American English corpus is made of audiobooks (Kahn et al., 2020; Kearns,
2014). For both corpora, non-speech segments were removed (Bredin et al., 2020). We
then selected a subset of American English audiobooks to match the characteristics of
the Japanese corpus in two aspects: the number of speakers and the duration of speech
per individual speaker. Ultimately, both corpora are made of approximately 500 hours
of speech data. This quantity of speech is compatible with what infants hear during
their first year as current estimates vary from 60 hours (Cristia et al., 2019) to 1,000
hours (Cristia, 2023).
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For each language, we built smaller datasets by partitioning them into mutually exclu-
sive subsets of varying sizes: 1 hour, 4 hours, 20 hours, and 100 hours. In all conducted
experiments, whether on Japanese or English, we trained separate models on 15 sub-
sets for the 1-hour, 4-hour, and 20-hour splits and 5 separate models for the 100-hour
split.

The learner model

We chose Contrastive Predictive Coding (CPC) as our core learning mechanism (Oord
et al., 2018; Riviere et al., 2020). In the Zero Resource Speech Challenge 2021 on unsu-
pervised representation learning, CPC achieved the best speech sound discrimination
scores (Dunbar et al., 2021). This model takes as input the raw waveforms. It is designed
to predict future states of a sequence from its past in an autoregressive manner. In other
words, given a sequence of observations, the model aims to accurately predict the next
state of the input sequence based on its past context. This predictive task is achieved
through a contrastive objective, where the model learns to distinguish between positive
samples — the actual future states — and a set of negative samples — sampled from
other parts of the dataset — during training (see implementation details in Appendix
"Contrastive Predictive Coding").

Measuring speech sound discrimination

To assess the model’s ability to discriminate contrasts, we conducted the same machine
ABX sound discrimination task as used by Schatz et al. (2013). This evaluation procedure
presents the model with three triphone stimuli pronounced by the same speaker labeled
as A, B, and X. A and X are two instances of the same triphone (e.g., ‘boot’), while
B differs only in the central phone while maintaining the same context (e.g., ‘beet’).
We compute the corresponding representations R4, Rp, and Ry for these stimuli and
calculate the pairwise distances d(R4, Rx) and d(Rp, Rx), with d the angular distance.
As stimuli can have different durations, we perform Dynamic Time Warping (DTW)
to obtain a time alignment before computing the average angular distance along the
shortest DTW path. The representations of A and X returned by the model are more
similar than those of B and X if d(R4, Rx) < d(Rp, Rx), in which case the model is
considered to be correct in discriminating the contrasts. The ABX accuracy is computed
as the average number of times the model provides the correct answer across all possible
triphones and all possible contrasts. Alternatively, the accuracy can be computed across
all possible triphones containing a specific contrast (e.g., [1]-[1]).

Evaluation sets

We used the same evaluation sets as in Schatz et al. (2021). These sets consist of two
Japanese corpora - the left-out subset of the CSJ and the Globalphone corpus of Japanese
(GPJ) (Schultz, 2002) — and two American English corpora - a subset of the Wall Street
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Journal corpus (WS]) (Paul & Baker, 1992) and the Buckeye corpus (Pitt et al., 2005). The
CSJ and Buckeye corpora contain more spontaneous speech, while GPJ and WS]J are
composed of read speech. The CS]J evaluation set was built from the speech of speakers
absent in the training set. All four evaluation sets are made of approximately ten hours
of speech along with their forced-aligned phonetic transcripts.. Across registers (read
or spontaneous speech), the number of speakers, the proportion of male and female
speakers, and the cumulated duration per speaker are matched.

We compute the ABX accuracy in the native and the non-native condition. In the native
condition, models are evaluated on the same language they have been exposed to (e.g.,
the Japanese model evaluated on our two Japanese evaluation sets). In the non-native
condition, models are evaluated on the language they have not been exposed to (e.g.,
the Japanese model evaluated on our two American English evaluation sets). When
mutually exclusive training sets of the same duration are available, we consider the
mean and the standard deviation of the ABX accuracy in either the native or non-native
condition.

Results and discussion

We begin by measuring the ABX accuracy of both our unpretrained and pretrained
learners to assess their initial speech sound discrimination capabilities. We then com-
pare the learning trajectories displayed by our two types of learners during the language
exposure phase. To gain deeper insights into the nature of our two initial states (no
pretraining vs. pretrained), we visualize the separability of the representations ac-
cording to phonetic categories. Finally, we reflect on how the learning trajectories
exhibited by our learners on the [w]-[j] and [1]-[l] contrasts fare with the data observed
in infants.

Initial speech sound discrimination capabilities and developmental trajectories

Panel a) of Figure 2 shows the average American English and Japanese ABX accuracy
obtained by our two initial states: with no pretraining (in blue) or with pretraining
on ambient sounds (in orange). Our randomly initialized model, which has not been
pretrained, obtains an average ABX accuracy of 62.3% (up = 65.2%, upny = 59.4%). In
contrast, our model pretrained on ambient sounds obtains 92.4% ABX accuracy (up
= 93.1%, ugx = 91.8%) showing better discrimination capabilities. We interpret the
surprisingly high ABX accuracy obtained by our model pretrained on non-speech sounds
as evidence that learning generic representations not specific to any language is enough
to discriminate most human speech sounds.

Now that our first goal - inducing initial speech sound discrimination capabilities in

our model - has been achieved, we analyze the learning trajectory exhibited by our
model after exposure to either American English or Japanese in panel b). Here, we
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Figure 2. Comparison of our learner trained with no pretraining (in blue) or with pre-
training on ambient sounds (in orange). Panel a) shows the average American English
and Japanese ABX accuracy obtained by both types of learners before language expe-
rience (initial state). Panel b) shows the same information for native (same training
and test language; dashed line) and non-native (different training and test languages;
solid line) models as a function of the quantity of speech available in the training set
(development). Error bars in panel a) represent +/- the standard deviation computed
across our four evaluation sets. Shaded areas in panel b) represent +/- the standard
deviation computed across mutually exclusive training sets whose number depends on
the quantity of data.

distinguish between native (same training and test language, solid line) and non-native
(different training and test languages, dashed line) models.

Let us first focus on the trajectory exhibited by our model that has not been pretrained in
blue. For low data quantities (between 1 and 4 hours), the native and non-native models
obtain similar ABX accuracies, indicating that models have not yet learned language-
specific representations. In other words, the American English model discriminates
American English sounds as accurately as the Japanese model (and vice-versa). It is
only after substantial exposure to their ‘native’ language (20 hours) that models start
learning language-specific representations. Overall, we observe a positive effect of data
quantity on the sound discrimination performance of our models. This is true for both
the native and the non-native models. The more speech the model receives, the better
it discriminates sounds. While this is expected in the native condition (e.g., exposure
to Japanese makes the model better at discriminating Japanese sounds), this might be
more surprising in the non-native condition. This is because there are many shared
sounds across the two languages and the results reported in panel b) are computed
across all possible contrasts — similar to what has been observed by Lavechin et al.
(2022), Matusevych et al. (2023), and Schatz et al. (2021).
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We now turn to the model pretrained on ambient sounds in orange. The pretrained
model starts with better sound discrimination capabilities and exhibits a slower learning
trajectory. Similarly to models which have not been pretrained, models pretrained
on ambient sounds obtain a higher ABX accuracy with an increase in the quantity of
speech. They also learn more language-specific representations as they receive more
speech (the gap between the orange solid and dashed lines broadens with the number
of training hours). Interestingly, after exposure to 500 hours of speech, pretrained
models performed slightly worse than models that were not pretrained. Similarly, they
learn representations that are less language-specific. Indeed, the relative difference in
ABX error rate between native and non-native models is 16.5% in the no-pretraining
condition versus 11.9% in the pretrained condition. We conducted two-way ANOVA
analyses with factors nativeness and training language for each speech quantity (1h,
4h, 20h and 100h). In all settings the p-value was lower than .0001 indicating significant
differences between the native and non-native models. While pretraining on ambient
sounds initially steers the model in a favorable direction enabling it to discriminate
speech sound contrasts effectively, this pre-exposure to non-speech sounds ends up
hurting the performance of our model in processing speech sounds. Although it is hard
to provide precise evidence, we hypothesize that, even after exposure to 500 hours of
speech, some neurons are still dedicated to processing non-speech sounds.

Visualization of the initial sound discrimination capabilities

To better understand the initial sound discrimination capabilities induced previously
through pretraining, we visualize in Figure 3 the phone representations in a two-
dimensional space using the t-distributed Stochastic Neighbor Embedding (t-SNE)
method - as done in de Seyssel et al. (2022) or Lavechin et al. (2022).

Panel a) shows the t-SNE projection of the phone representations of our two initial
states: no pretraining versus pretrained on ambient sounds. Although no fine-grained
separability between sonority categories was expected for the unpretrained model, we
still observe some degree of separability between consonants and vowels. This aligns
with the above-chance ABX accuracy of 62.3% obtained by this model (Figure 2). The
model pretrained on ambient sounds show drastically different separability patterns.
Here, we observe that phones are organized along a sonority continuum with a relatively
good separability between the different categories, despite the model never receiving
speech sounds during pretraining. Although results are only presented on our American
English test sets, similar patterns are observed on our Japanese test set.

In panel b), we specifically study the separability between the [1]-[I] and [w]-[j] contrasts
which will be the focus of the upcoming section. Our unpretrained model shows no
separability for the [1]-[1] or [w]-[j] contrast. However, this is not the case with our model
pretrained on ambient sounds, which shows good separability for both contrasts.
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Figure 3. Visualization of the initial sound discrimination capabilities for our learner
trained with no pretraining (in blue) or with pretraining on ambient sounds (in orange).
Panel a) shows t-SNEs visualizations of the continuous representations (last layer)
averaged within phones in the American English test set according to sonority. Panel
b) shows the same information for the American English [1]-[1] and [w]-[;] contrasts.
Each point is the t-SNE projection of an individual phone’s representation.

These results demonstrate that inducing ‘innate’ speech sound discrimination capabili-
ties is possible via pretraining on non-speech sounds. The first version of our model
comes with no pretraining (random initialization) and shows limited initial speech
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sound discriminability. This version corresponds to the initial state of most computa-
tional models of early phonetic learning but does not necessarily align with dominant
theories of early phonetic acquisition in infants - it implements the perceptual learning
theory. A second version of our model comes with pretraining and shows relatively good
speech sound discriminability - it implements the attunement or universal theory.

Now that we have two different initial states at both ends of the nature-nurture contin-

uum, an important question arises: Which better predicts the developmental trajectory
observed in infants?

Individual trajectories for the [1]-[1] and [w]-[i] pairs

Training language: —e&— American English —-=¢-- Japanese

No pretraining
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Figure 4. Comparison of the learning trajectory exhibited by our model without pre-
training (in blue) or with pretraining on ambient sounds (in orange) on the [1]-[1] and
[w]-[;] pairs. Models are trained on either American English (solid line) or Japanese
(dashed line). [1]-[1] and [w]-[j] occurrences are extracted from our American English
evaluation sets. Shaded areas represent +/- the standard deviation computed across
mutually exclusive training sets whose number depends on the quantity of data. Sig-
nificance scores are obtained with a one-way ANOVA with factor training language
(na: not applicable, ns: not significant, * p<.05, **, p<.001, *** p<.0001).

To investigate this question, we study the learning trajectories exhibited by our models

on the American English [1]-[1] pair, contrastive in American English but not in Japanese,
and the [w]-[j] control pair, contrastive in both languages. Figure 4 shows the ABX
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accuracy obtained on these contrasts for our American English model (solid line) or our
Japanese model (dashed line), in the no pretraining condition (in blue) or the pretrained
condition (in orange).

Let us first focus on the no pretraining condition. The American English model better
discriminates the [1]-[]] contrast than the non-native Japanese model. We also observe
that the gap between the two models increases with the quantity of speech. On the con-
trary, on the [w]-[j] contrast, our native American English and our non-native Japanese
models develop similar discrimination performances. These results closely replicate
those of Li et al. (2020) and Schatz et al. (2021) with a different model and correspond,
at least to some extent, to what has been observed in infants, namely that 10-12 month-
old American English- and Japanese-learning infants show a similar discrimination
performance on the [w]-[j] contrast, but American English-learning infants show better
discrimination on the [1]-[l] contrast.

Looking more closely at how the trajectories exhibited by our models fare with those
observed in infants, we observe notable differences. While the American English
model succeeds in reproducing the facilitation trajectory observed in American English
infants on the [1]-[l] contrast, this is not the case with the Japanese model. Indeed,
our unpretrained Japanese model also follows an inductive trajectory, while Kuhl et al.
(2006) and Tsushima et al. (1994) reported a loss trajectory in Japanese-learning infants
between 6-8 and 10-12 months for this specific contrast. Although there is less data
available on the [w]-[j] contrast, prevailing theories predict either a facilitation or a
maintenance trajectory compatible with the trajectories exhibited by our unpretrained
model.

We now turn to a similar analysis of the trajectories exhibited by our models pretrained
on ambient sounds in orange. In this condition, our native American English model
replicates the facilitation trajectory observed in American English-learning infants
on the [1]-[l] contrast. On this same contrast, our non-native Japanese model now
exhibits a maintenance trajectory with constant performance regardless of the quantity
of speech available in the training set. While this maintenance trajectory still does not
perfectly match what has been observed in infants (i.e., a loss trajectory), the match
is closer than in the no pretraining condition. Indeed, Kuhl et al. (2006) report a low
difference in discrimination accuracy between the 6-8 month-old group and the 10-12
month-old Japanese group. Furthermore, the effect of age was found not significant
for the Japanese group. Therefore, we interpret Kuhl’s results as compatible with the
maintenance trajectory exhibited by our Japanese model. Our interpretation of the
learning trajectories exhibited by our model concerning the [w]-[j] contrast in relation to
the infant literature is similar to that presented for the no pretraining condition and will
not be repeated here. An interesting observation, however, is that performance on the
[w]-[j] contrast still improves after 500 hours of speech, contrary to the no pretraining
condition in which performance flattens after 20 hours of speech.
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Experiment 2: inducing initial speech sound discrimination capabilities through
multilingual pretraining

Experiment 1 showed that it is possible to induce innate speech sound discrimination
capabilities by pretraining on ambient sounds. During the developmental phase, our
pretrained model exposed to Japanese exhibits a maintenance trajectory on the [1]-[]
contrast, more closely resembling infant behavioral data that suggest a loss trajectory
(Figure 4). In the present experiment, we ask whether it is possible to induce higher
initial speech sound discrimination capabilities — and perhaps obtain a loss trajectory
on the [1]-[l] contrast - with a different pretraining strategy: pretraining on a set of
typologically diverse languages.

Methods

We use the same training sets, learner, evaluation sets, and evaluation protocol as used
in Experiment 1. The only difference is that we pretrain on a multilingual corpus derived
from VoxPopuli (Wang et al., 2021), a large-scale multilingual speech corpus containing
recordings of European Parliament events. We remove the Germanic languages from
the 23 languages present in the dataset to prevent the model trained on English from
being positively biased. This procedure resulted in selecting 18 typologically diverse
languages®. To ensure consistency with Experiment 1, our pretraining set is made of
500 hours of speech uniformly sampled across languages, resulting in approximately
28 hours per language.

Results and discussion
Initial sound discrimination capabilities and developmental trajectories

Panel a) of Figure 5 suggests that pretraining on multilingual is sensibly similar to pre-
training on ambient sounds in terms of initial speech sound discrimination capabilities
(pgp = 93.5 %, pupn = 92.1%). Contrary to our initial hypothesis, training on mulitilingual
speech does not yield higher speech sound discrimination capabilities compared to
pretraining on ambient sounds.

During the developmental phase, the learning trajectories obtained in the pretrained
condition are similar than those obtained in Experiment 1. Two-way ANOVAs also
resulted in p-values lower than .0001 for all speech quantities indicating significant
differences between the native and non-native models. A notable difference compared to
Experiment 1 is that pretraining on multilingual speech does not hurt the performance
obtained after 500 hours of exposure, contrary to what was observed when pretraining
on ambient sounds, as shown in panel b) of Figure 5.

SBulgarian, Czech, Croatian, Estonian, Finnish, French, Greek, Hungarian, Italian, Latvian, Lithua-
nian, Maltese, Polish, Portuguese, Romanian, Slovak, Slovene and Spanish.
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Figure 5. Comparison of our learner trained with no pretraining (in blue) or with
multilingual pretraining (in orange) for native (same training and test language; solid
line) and non-native (different training and test languages; dashed line) models as a
function of the quantity of speech available in the training set (development). Shaded
areas represent +/- the standard deviation computed across mutually exclusive training
sets whose number depends on the quantity of data.

Individual trajectories for the [1]-[1] and [w]-[i] pairs

Again, the learning trajectories on the [1]-[l] and [w]-[j] contrasts in Figure 6 are sensibly
similar to those observed in Experiment 1. However, in the pretrained condition, the
Japanese model seems to follow a facilitation trajectory on the [1]-[l] contrast, contrary
to the maintenance trajectory observed in Experiment 1. This is due to the lower ABX
accuracy on the [1]-[1] contrast obtained by the initial state pretrained on multilingual
speech (85.8% on Buckeye, 91.7% on WS]) compared to the initial state pretrained on
ambient sounds (87.8% on Buckeye, 93.9% on WS]J).

In the context of this study, pretraining on 500 hours of multilingual speech does
not seem to present any advantage as compared to pretraining on ambient sounds.
Admittedly, training on larger quantities of multilingual speech - and perhaps a higher
number of languages - may yield a model that starts with higher initial speech sound
discrimination capabilities, as was the initial goal of this experiment.

In a concluding experiment (see Experiment 3 in Appendix), we show that our model
reproduces the trajectories observed in infants: facilitation on the [1]-[l] contrast and
maintenance on the [w]-[j] contrast for American English-learning infants; loss on the [1]-
[1] contrast and maintenance on the [w]-[j] contrast for Japanese-learning infants. This
is achieved through cross-lingual pretraining, where models are pre-trained on either
American English or Japanese and then further trained on the language to which they
have not been exposed. This protocol assumes higher non-native sound discrimination
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Figure 6. Comparison of the learning trajectory exhibited by our model without pre-
training (in blue) or with multilingual pretraining (in orange) on the [1]-[1] and [w]-[;]
pairs. Models are trained on either American English (solid line) or Japanese (dashed
line). [1]-[1] and [w]-[j] occurrences are extracted from our American English evalua-
tion sets. Shaded areas represent +/- the standard deviation computed across mutually
exclusive training sets whose number depends on the quantity of data. Significance
scores are obtained with a one-way ANOVA with factor training language (na: not
applicable, ns: not significant, * p<.05, **, p<.001, *** p<.0001).

capabilities than in Experiment 1 or 2. While this final experiment may not have
direct relevance from an evolutionary perspective, it achieves to demonstrate that
our model’s performance can maintain, improve, or deteriorate depending on the
interaction between innate and environmental factors.

General discussion

What is the respective contribution of innate factors and experience in child language
acquisition? Without bringing indisputable evidence to the question, we proposed a
novel method to build computational models of early phonetic learning that start with
initial sound discrimination capabilities. Conducting two experiments, we showed that
the model endowed with initial capabilities could demonstrate maintenance, facilita-
tion, or loss trajectories, as opposed to the standard model, which learns from scratch
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and mostly exhibits facilitation trajectories. Here, we reflect on the implications of
our findings for the existing literature on modeling infant phonetic learning. We first
return to the idea of language-universal capabilities in newborns. We then propose
other approaches to induce such capabilities in computational models. Finally, we
reflect on how our work can be extended in a more systematic approach to the study of
infant phonetic learning.

The idea of universal speech perception capabilities at the initial state is prevailing
in current theories of language acquisition. In Kuhl’s (2004) words, infants have an
"initial universal ability to distinguish between phonetic units". Werker and Curtin
(2005) write about "language-general" and "language-specific" perception. In our view,
testing these theories should not only consist in collecting relevant data in infants but
also in implementing them (de Seyssel et al., 2023; Dupoux, 2018). In that regard, our
approach has two advantages. First, it encourages us to transform verbally-expressed
ideas into implementable algorithms. Second, it offers us ways to test and compare our
verbal theories.

In Experiment 1, we implemented the idea of a language-universal perceptual space
by pretraining on ambient sounds. We found that the learning trajectories taken by
the model during the developmental phase better fit the observed data in infants,
providing evidence in favor of attunement and universal theories. In Experiment 2, we
proposed a second strategy that consists of pretraining on multilingual speech data.
Admittedly, one could devise different strategies - that should be equally evaluated in
terms of their fit with observed data in infants. For instance, one might pretrain at a
larger scale both in terms of quantity of speech data and number of languages. This
could be done by training on the more than 7,000 languages being spoken worldwide®
before comparing the learning trajectories taken by the model when trained on a single
language with those observed in infants (hypothesizing rather strong initial capabilities).
On the contrary, one could devise strategies to build models that assume poorer initial
capabilities by training on a different source of data or by lowering the amount of data
available in the pretraining set. Importantly, our goal is not to provide an explanation of
the evolutionary transition from a primitive amphibian auditory system to the human
auditory system. In that regard, the pretraining strategy has no other function than
to hypothesize some degree of initial capabilities, offering us a rather vast ground for
exploration.

In contrast to existing modeling studies (Lavechin et al., 2024; Li et al., 2020; Matusevych
et al., 2023; Schatz et al., 2021), our approach goes beyond evaluating models solely
based on measures of native advantage (i.e., better discrimination score for the model
for whom the contrast is native). It includes assessing their fit to developmental trajec-
tories observed in infants. This work focused on the [1]-[]] pair contrastive in American

®https://www.ethnologue.com
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English but not in Japanese and the [w]-[j] pair contrastive in both languages. However,
there is available data in Zulu, Tigrinya, Taa, Nuu-Chah-Nulth, Spanish, Hindi, Czech,
Nthlakampx, and Mandarin (Best et al., 2016). A more systematic approach would
involve building a training set for each of these languages and studying the speech
sound discrimination patterns developed by computational models. Successful models,
capturing a significant proportion of the variance of the available empirical record,
can then be used to obtain predictions on contrasts that have yet to be studied. These
predicted trajectories can subsequently be validated or refuted through new sound
discrimination experiments with infants. Alternatively, instead of focusing on data
from individual studies, one could compare the learning outcomes developed by com-
putational models against robust data from meta-analyses as proposed by Cruz Blandén
et al. (2023). We strongly believe that such a systematic dialogue between experimental
and modeling studies is essential to foster theory-building in psychological sciences
(Frank et al., 2017).

Conclusion

Even though current Al language models have been considered as supporting empiricist
views of language learning, these models offer a much larger range of theoretical
options. By decomposing model training in a (potentially long) evolutionary phase and
a (potentially short) developmental phase, they can implement either extreme versions
of empiricism, or extreme versions of nativism, with a whole range of intermediary
cases. In our work, we conducted two experiments that demonstrated the possibility
of inducing initial sound discrimination capabilities in our computational model of
early phonetic learning. Contrary to the randomly initialized model, the models pre-
equipped with discrimination capabilities showed learning trajectories more closely
resembling those observed in infants. Further research is needed to establish in a more
quantitative fashion what model of the initial state would fit best the observed learning
trajectories in infants.
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Appendices

Contrastive predictive coding (implementation details)

Training a neural network in an unsupervised manner often requires designing a pretext
task that will force the model to learn high-level representations of the input data. The
pretext task in a Contrastive Predictive Coding algorithm is forward modeling. where
the model is trained to predict the future states of a sequence based on its past context.
During training, the model receives a positive example drawn from the near future
up to 120 ms, and multiple negative examples not drawn from the near future. Given
the past context of a sequence, the model has to come to reliably choose the positive
sample over the negative ones.

In more technical terms, a non-linear encoder denoted as ge,. maps the observations z;
attime ¢ to alatent representation z; = genc (7). The context-dependent representation ¢,
is then built by an autoregressive model, g,,, which aggregates the latent representations:
¢t = Gar(#1, ..., 21). Given the past context ¢, a predictor gy.q is asked to predict future
representations z;,, for k € {1, ..., K'}. The model is trained to maximize the categorical
cross-entropy to correctly identify a positive future sample ;. from a set of unrelated
negative samples. Formally, at step ¢, the loss function £, for the pretext task is defined
as follows:

L, = _i Zlog |:Z exp(gpred(ct)gztﬂc) 1)

neN; eXp(gpred (Ct);—genc (n))

with N, the set of negatives samples. The model is asked to predict up to K = 12 time
steps in the future, equivalent to 120ms. The encoder g, comprises 5 one-dimensional
convolutional layers with kernel sizes (10, 8, 4, 4, 4) and strides (5, 4, 2, 2, 2) and returns a
256-dimensional vector every 10 milliseconds. The auto-regressive model g,, is a 2-layer
long short-term memory network of dimension 256. The predictor gpreq is a single multi-
head transformer layer with K = 12 heads, each predicting at time step k& € {1, ..., 12}.
All models are trained for 100 epochs and the best epoch is selected according to the
validation accuracy. For each independent dataset, 5 % of the data is used as the
validation set. The other hyperparameters follow Kharitonov et al. (2021).

When training on speech, the negative samples N, are drawn from within the same
speaker. On the other hand, when training on ambient sounds, as there is no no-
tion of speaker in this particular dataset, the negative samples are drawn from within
the sequence. This is the only difference in the training process between the two
approaches.
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t-SNE visualization

To compute the t-SNE visualizations in panel a) of Figure 3, we first extract the audio
representations of the American English Buckeye corpus. For each phone, we average
the representations over time to get a single vector representation. Next, we apply the
t-SNE method to reduce the 256-dimensional space into a 2-dimensional space. For the
sake of clarity, only 1,000 randomly sampled phones for each category are displayed.
For panel b) we apply the t-SNE method only on the representations of [1]-[1] or [w]-[j]
occurrences. Similarly, we display only 1,000 randomly sampled representations for
each phonetic category.

Evaluated phonetic inventory

Table 1 shows the American English and Japanese phonetic inventory used in the ABX
sound discrimination task and the t-SNE visualization.

Sonority American English Japanese

Fricative f,v,0,0,s,7 [,3h d,s,8,2,¢¢,2 h
Affricate &, tf ts, tst, te, te

Plosive p, b,d, t,k, g p, P, b, d, t, t1, k, ki, g
Approximant w, j, 1,1 W, j, T

Nasal m, n, 1 m, n, N

Vowel 1, i, €, A, 3y &, ai, oI, U, W, €I, al, av, o, OU  a, al, €, €I, 1, iI, 0, OI, UI, Ul

Table 1. Evaluated phonetic inventory in American English and Japanese in the Inter-
national Phonetic Alphabet (IPA) standard (same as Schatz et al., 2021).

Additional experiment: inducing initial speech sound discrimination capabilities
through cross-lingual pretraining

Experiment 1 showed that it was possible to induce initial speech sound discrimination
capabilities in our learner through pretraining on ambient sounds. Despite a better
match between the learning trajectory exhibited by our learner and the observed data
in infants, we could only simulate a maintenance trajectory on the [1]-[l] contrast for
the Japanese model. Experiment 2 showed that pretraining on multilingual speech did
not yield higher initial speech sound discrimination capabilities than pretraining on
ambient sounds.

In the present experiment, we ask whether the Japanese model can exhibit a loss tra-
jectory on the [1]-[1] contrast. We likely need to hypothesize even higher speech sound
discrimination capabilities to do so. In this experiment, this is achieved through cross-
lingual pretraining. Namely: we first pre-train models on either American English or
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Japanese and train them on the language they have not been exposed to. This experi-
mental protocol is akin to assuming near-perfect sound discrimination capabilities of
American English contrasts by Japanese infants and near-perfect sound discrimination
capabilities of Japanese contrasts by American English infants.

Arguably, such a protocol lacks ecological validity as: 1) it assumes different initial states
for our American English and Japanese models; 2) it assumes near-perfect discrimina-
tion of English sounds for our Japanese model; and 3) near-perfect discrimination of
Japanese sounds for our English model. However, this Experiment serves as proof that,
being gifted with high enough initial sound discrimination capabilities, our Japanese
model can follow a loss trajectory on the [1]-[l] contrast, while maintaining a mainte-
nance trajectory on the [w]-[j] contrast, similar to what is observed in infants (which
was not shown in Experiment 1 and 2).

Methods

We use the exact same training sets, learner, evaluation sets, and evaluation protocol
used in Experiment 1. The only difference is that we pretrain cross-linguistically instead
of pretraining on ambient sounds. Our approach involves two distinct initial states
for English and Japanese models. They are derived from the models trained on 500
hours of speech in Experiment 1. The two initial states consist of the model’s weights
after exposure to either 500 hours of American English or Japanese. We then train the
English models starting from the Japanese weights and the Japanese models starting
from the English weights.

Results and discussion

Figure 7 shows the trajectories taken by models with a cross-lingual pretraining com-
pared to those without any pretraining. Two-way ANOVAs with factors nativeness and
training language resulted in p<.0001 for each data quantity, indicating significant dif-
ferences between the native and non-native models. We observe a slight negative native
advantage when training on as little as 1 hour of speech. This arises from the fact that
the initial state of the Japanese models, composed of weights from a model trained on
500 hours of English, performs slightly better on English than the initial state of the
English models (and vice-versa). This negative native advantage reverses after exposure
to 4 hours of speech.

After training on 500 hours of speech, pretrained models show identical ABX accuracies
to those obtained by non-pretrained models. In other words, pre-exposure to another
language does not harm or benefit the final performance obtained by the models. The
cross-lingual pretraining yields different learning trajectories than those observed in
Experiment 1. Here, we observe a loss trajectory for the non-native pretrained model
(decreasing orange dashed line).
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Figure 7. Comparison of our learner trained with no pretraining (in blue) or with
cross-lingual pretraining (in orange) for native (same training and test language; solid
line) and non-native (different training and test languages; dashed line) models as a
function of the quantity of speech available in the training set (development). Shaded
areas represent +/- the standard deviation computed across mutually exclusive training
sets whose number depends on the quantity of data. Significance scores are obtained
with a one-way ANOVA with factor training language (na: not applicable, ns: not
significant, * p<.05, **, p<.001, *** p<.0001).

Individual trajectories for the [1]-[1] and [w]-[i] pairs

Figure 8 shows the trajectories on the [1]-[]] and [w]-[j] contrasts for models that have
not been pretrained (in blue) or pretrained cross-linguistically (in orange).

We will not repeat our interpretations of the trajectories taken by the unpretrained
models (left column), which are the same results as those reported in Figure 4 and are
left only for comparison.

In the pretrained condition, the American English model better discriminates the [1]-
[1] contrast than the non-native Japanese model. The American English model also
successfully reproduces the facilitation trajectory observed in infants (Kuhl et al., 2006),
similar to what has been observed when pretraining on ambient sounds in Experiment
1. Unlike what has been observed in Experiment 1, the Japanese model follows a loss
trajectory, i.e., the performance on the [1]-[l] contrast worsens as the quantity of speech
increases.
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Figure 8. Comparison of the learning trajectory exhibited by our model without pre-
training (in blue) or with cross-lingual pretraining (in orange) on the [1]-[1] and [w]-[;]
pairs. Models are trained on either American English (solid line) or Japanese (dashed
line). [1]-[1] and [w]-[j] occurrences are extracted from our American English evalua-
tion sets. Shaded areas represent +/- the standard deviation computed across mutually
exclusive training sets whose number depends on the quantity of data.

On the [w]-[j] contrast, we now observe a maintenance trajectory instead of a facilitation
trajectory in Experiment 1. In other words, after the cross-lingual pre-exposure phase,
the discrimination performance obtained by our models has already converged on the
[w]-[j] contrast. Performance does not benefit from further exposure to speech.

ABX sound discrimination accuracy

To enable comparisons, we provide the ABX accuracy obtained by models from Experi-
ment 1, 2 and the additional experiment of the present study in Table 2.
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Training =~ ABX accuracy in ABX accuracy in
Exp. # Initial state language Japanese (CSJ/GPJ) English (Buckeye / WS])
MFCCs - 90.8 /91.2 87.5/93.4
1 No pretraining - 65.0 /65.3 60.4/58.3
1 Ambient sounds - 92.7 / 93.5 89.5/94.0
2 Multilingual - 92.8/93.9 90.6 / 93.6
1,2 No pretraining JP 96.1/95.5 92.0/94.7
1,2 No pretraining AE 95.2/95.5 93.0/96.4
1 Ambient sounds JP 95.6 /954 91.8/94.7
1 Ambient sounds AE 94.3/94.9 92.1/95.5
2 Multilingual P 96.0 / 95.8 92.1/95.1
2 Multilingual AE 94.6 / 95.2 92.6/95.8
3 Cross-lingual JP 96.3/96.0 92.3/95.2
3 Cross-lingual AE 94.5/94.9 92.7/96.3

Table 2. ABX accuracy (in %) on American English and Japanese evaluation sets.
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Introduction

Large language models are deep artificial neural networks pretrained on large unla-
beled datasets via self-supervised learning. These models have had a great impact in
the field of Natural Language Processing (hereafter NLP) for their performance in
language understanding and generation tasks (e.g., Bommasani et al., 2022). Here, we
examined the plausibility of these models as distributional learners posited by usage-
based approaches of language acquisition (e.g., Ambridge, 2020; Bybee, 2010). We fo-
cused on child word sense disambiguation (Cabiddu et al., 2022b; Rabagliati et al.,
2013). That is, how children use sense-specific representations (e.g., band = music
band, elastic band). Specifically, we examined whether the distributional learning
mechanisms that allow these models to acquire linguistic knowledge at the sentence
and word level could give rise to word sense disambiguation skills that children ex-
hibit in behavioral tasks.

We tested models based on the Transformer architecture (Vaswani et al., 2017) that
perform sense disambiguation using sentence context to form contextualized repre-
sentations. Transformers are sensitive to both bottom-up direct word-associations (a
word co-occurring frequently with another across different sentences) and top-down
syntactic and semantic sentence structures (e.g., Jawahar et al., 2019; Tenney et al.,
2019) on which sense disambiguation depends. Here, we refer to these high-level sen-
tence structures as top-down cues that a usage-based learner might acquire through
language experience (Alishahi & Stevenson, 2013; Bybee, 2010). These refer to any
abstract knowledge that might enable an individual to generalise a certain sentence
structure to novel language instances (e.g., a child knowing that “pushing a flower-
pot” is more plausible than “pushing a road” even without having heard either expres-
sion before; Andreu et al., 2013). Transformers’ inherent sensitivity to top-down cues
allow us to apply these models to raw naturalistic language, without having to enrich
the input with external, explicit resources to provide sensitivity to such structures.
For example, Alishahi and Stevenson (2013) showed how a computational learner
could apply familiar verbs to novel object arguments. The model they developed was
provided with various pieces of knowledge, such as the positions of syntactic argu-
ments within sentences and the semantic characteristics of each argument. From
this, it was able to generalize the prototypical semantic properties that an argument
of a verb should possess (i.e., verb-event structures; for instance, “The mechanic
warned the driver” is more plausible than “The mechanic warned the engine”). This
finding is significant because it provides in-principle evidence that a structural aspect
like verb-event structures can be bootstrapped from input. However, providing the
extensive knowledge presumed to be available to the learner requires several input
pre-processing steps (e.g., lemmatizing the input, identifying and recoding natural-
istic sentences as verb frames, tagging semantic characteristics of each argument us-
ing an external dictionary). It remains unclear whether the same results could be
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achieved without such pre-implemented knowledge in the model, relying only on
bootstrapping verb knowledge directly from the input. Moreover, when one wants to
apply a model to raw, naturalistic language, it becomes infeasible to pre-process the
input for several aspects of sentence structure that the model should be sensitive to
in order to perform certain tasks, such as word sense disambiguation.

Transformers have been used to form adult-like sense representations in natural lan-
guage classification tasks, and the models have been tested on their ability to pick out
a target sense given the sentence context (Loureiro, et al., 2021). However, such tasks
may not suitably assess model developmental plausibility as they use coherent test
sentences (i.e., all cues in the context unambiguously point toward one target sense).
Relying on these tasks makes it difficult to differentiate whether Transformers exhibit
rather adult-like or child-like performance, as both adults and children have been
shown to perform well at disambiguating coherent sentences (e.g., Khanna & Boland,
2010; Rabagliati et al., 2013). Thus, the goal of the current study is to test models on
contrastive tasks alongside coherent ones. Contrastive tasks put bottom-up (i.e., word
associations) and top-down sentence cues in competition. They represent a more suit-
able test of developmental plausibility because differences exist in how children and
adults behave in such tasks. In fact, in sense disambiguation children rely more on
bottom-up aspects of sentence context (e.g., word associations) than adults, with less
reliance on top-down cues likely due to differences in language experience or slow
cognitive maturation (Khanna & Boland, 2010; Rabagliati et al., 2013).

Previous studies in NLP have computed models’ representations based largely on
adult language (Loureiro et al., 2021, 2022). These representations are created by us-
ing a technique that computes an average representation of a word sense given a col-
lection of sentences (e.g., a prototypical representation of a music band). Here we
apply this technique to evaluate how properties of child sense processing could be
captured using sense representations formed from naturalistic child-directed utter-
ances. This choice is motivated by the fact that differences in how senses are assigned
to words in children and adults is likely influenced by differences in word use in child
and adult environments (Meylan et al., 2021). We note that this method does not in-
volve pre-training the models on child-directed language, although we do also include
a family of models pre-trained on child-directed utterances. We show that computing
child-directed sense prototypes has different benefits for capturing child perfor-
mance, but we also return to its limitations in the Discussion.

We evaluated Transformers using behavioral studies that tested 4-year-old children’s
abilities to use bottom-up (word associations) and top-down (sentence global plausi-
bility, verb-event structure) cues to sense disambiguation (Cabiddu et al., 2022b; Ra-
bagliati et al., 2013). We tested a large pool of models (N = 45) from 14 different fami-
lies. This integrative approach (see also Schrimpf et al., 2021) would allow us to study
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how different properties of the models may lead to different behavioral patterns,
while relying on a single model could be misleading as any conclusion might be in-
fluenced by idiosyncratic aspects of this specific model (architecture, pretraining ob-
jectives, amount/type of pretraining input, etc.). Specifically, we explored how scala-
bility in models’ size (number of parameters) and pretraining data size related to
sense disambiguation performance. It has been shown that increasing the number of
model parameters improves models' ability to generalise, enabling them to tackle a
broad spectrum of language and reasoning tasks without necessitating extensive ex-
amples during training or specific model fine-tuning (e.g., Brown et al., 2020; Chow-
dhery et al., 2022). Essentially, more parameters in language models means a greater
capacity to store patterns and nuances from the training data. This capacity to capture
a wider array of linguistic patterns may lead to improved performance in tasks such
as sense disambiguation, where understanding context and subtle differences in
meaning is crucial. Based on findings about word age of acquisition norms
(Laverghetta Jr & Licato, 2021), we expected models with a larger number of parame-
ters to better fit child data, also in line with NLP studies showing how increasing a
model's parameter count improves its ability to track both bottom-up and top-down
aspects of sentence structure (Devlin et al., 2019; Hewitt & Manning, 2019; Radford et
al., 2019). Similarly, better performance and generalisation abilities can be achieved
by training models on larger and more diverse datasets (e.g., Raffel etal., 2023). Train-
ing models on linguistic contexts that encompass a wide range of topics, styles, and
structures increases the opportunities to abstract general schemas from the linguistic
examples observed. Nevertheless, there is also evidence of small (i.e., more realistic)
pretraining input being enough to align models to adult neural data and reading com-
prehension scores (Hosseini et al., 2022), therefore we might expect a null effect of
pretraining size when attempting to capture human performance.

In summary, both model size and pre-training size are dimensions that have been
linked to models' generalisation abilities. This capacity is crucial for learning top-
down sentence structures that can then be generalised to new linguistic instances,
which is something we focus on in our study. In the following, we first introduce evi-
dence of child sense disambiguation. Secondly, we discuss the theoretical signifi-
cance of Transformers and introduce a recent framework for evaluating models in
sense disambiguation.

Child Word Sense Disambiguation

Sentence context plays a significant role in sense disambiguation (e.g., Sophia [played
in / twisted] a band). Children use a similar (though lower) diversity of senses in nat-
uralistic conversations (Meylan et al., 2021), which raises a question about which sen-
tence properties facilitate child word disambiguation (Cabiddu et al., 2022b; Hahn et
al., 2015; Khanna & Boland, 2010; Rabagliati et al., 2013). Children should access cues
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at different linguistic levels to successfully disambiguate senses. Here, we focused on
key studies that showed that 4-year-old children could use both bottom-up and top-
down disambiguation cues, although to different degrees depending on the specific
cue. Table 1 shows an overview of the three experiments we consider. A general goal
across experiments was to test children’s sensitivity to sentence context for sense dis-
ambiguation. Further, they tested if top-down cues (global plausibility, verb-event
structures) played a role beyond bottom-up word associations (when the two types of
cues are in direct competition). Similarly, here we investigate if Transformers could
use sentence context for word sense disambiguation like children, and if they would
demonstrate comparable sensitivity to top-down cues in contrastive conditions.

Table 1. Behavioral experiments. Target words are shown in bold. Underlined text
indicates cues to the dominant sense “elastic band”, while italicized text refers to
cues to subordinate “music band”. The Dominant selection column indicates aver-
age dominant sense selections in children, for dominant-plausible (underlined) and
subordinate-plausible conditions (italicized).

Study Cue type Example Dominant
selection

(Rabagliati et al., Prior Dora [looked in her drawer / 79%/ 33%
2013) Context heard some music]. The band
Exp 1, Coherent was cool
cues

Current Dora was in her room. She 81% /38%

Context [stretched / listened to] the

band, which was cool.

(Rabagliati et al., Global Elmo and his class were sing- 39% /21%
2013) Plausibility ing songs. The teacher could
Exp 2, Contrastive play music with [anything / an-
cues yone], even a band.
(Cabiddu et al.,, Verb-Event Sophia listened to some music. 62% / 26%
2022b) Structure Then she [twisted / played in] a
Contrastive cues band.

Verb-Lexical Sophia listened to some music. 60% / 26%
association Then she [got / played in] a
band.

The behavioral studies we considered have not only been used to test children’s dis-
ambiguation skills at a certain point in development but also to examine different hy-
potheses on whether young children can rely on the same cues for sentence parsing
as adults do, or whether there are limitations in their access to certain cues that re-
quire higher levels of linguistic analysis. One account posits that children rely solely
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on bottom-up cues in sentence parsing (Snedeker & Yuan, 2008), while another ac-
count emphasizes cue informativity (Trueswell & Gleitman, 2007). In the context of
sense disambiguation, an informativity account would suggest that children gradually
refine their estimation of the general reliability of each cue (whether bottom-up or
top-down) in determining word meaning as they grow. Such gradual fine-tuning could
account for the differences in how children and adults perform word sense disambig-
uation.

The evidence available so far supports an informativity account, showing that chil-
dren rely on both top-down and bottom-up cues. However, their use of top-down cues
is contingent on the strength of that cue's influence in the child's early processing.
For instance, children primarily rely on bottom-up word associations instead of using
top-down global plausibility at the discourse level, which is the strategy predomi-
nantly used by adults (Rabagliati et al., 2013). This likely occurs because word associ-
ations are a cue that is consistently present in children’s language input, and they can
use this cue from very early in development. Nonetheless, this does not imply that
children cannot use top-down cues. In fact, when considering a top-down cue that
children also consistently use in sentence and word processing from early in devel-
opment, such as verb meaning, they indeed demonstrate the ability to rely on this cue
in sense disambiguation over bottom-up word associations (Cabiddu et al., 2022b).

In all studies, children heard short stories ending with a target word and saw four
pictures. Two depicted the target word’s alternative senses: One frequent in child-di-
rected speech (dominant = elastic band) and one less frequent (subordinate = music
band), with a 3:1 frequency ratio. The other two pictures depicted semantic distrac-
tors (e.g., sock, sport team). After the story, children chose the picture that best
matched the story’s final word.

In a first experiment, Rabagliati et al. (2013) tested if children could use sentence con-
text to disambiguate dominant and subordinate senses. Disambiguation cues were
presented in a previous sentence (Prior context), or in the same sentence as the target
(Current context). Example stimuli are shown in Table 1. Children showed successful
disambiguation across conditions, selecting more dominant senses (above 50%
chance) in dominant-plausible conditions, and more subordinate senses in subordi-
nate-plausible conditions (i.e., less than 50% dominant selections).

However, in this experiment, children could have relied solely on bottom-up associ-
ations. For example, in Dora was in her room. She stretched the band, one could track
the association between stretching and elastic band in naturalistic conversations with-
out processing sentence structures (i.e., using verb-event knowledge to infer that
stretchable entities are usually objects). In the second experiment from Rabagliati et
al. (2013) and in the experiment from Cabiddu et al. (2022b), bottom-up and top-down
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cues were in competition. Stories always began with a prior context containing word
associates of the target subordinate sense. As shown in Table 1, prior contexts contain
the words music or songs pointing toward the subordinate music band. Further, in ex-
perimental conditions, stories ended with top-down cues pointing toward the oppo-
site dominant sense elastic band (see underlined cues in Table 1).

In Rabagliati et al. (2013) experiment 2, experimental stories shifted global semantic
plausibility toward the dominant sense. Children struggled to use global plausibility
and relied heavily on word associations (39% dominant selections, below chance). In
other words, children struggled to use real-world knowledge, which facilitates the
comprehension of causal relations, event sequences, and social norms conveyed by
the overall discourse. For example, when interpreting a sentence like Elmo and his
class were singing songs. The teacher could play music with anything, even a band the lis-
tener would need to infer that any object could emit sound and therefore, could po-
tentially be used as a musical instrument. In contrast, children relied mostly on bot-
tom-up word associations (i.e., tracking co-occurrences between words) to perform
shallow processing of sentence context when interpreting ambiguous words (i.e.,
mostly interpreting band as a music group because of its association with the words
singing, songs, and music).

Still, a significant difference from a control condition emerged (21% dominant selec-
tions when the story fully supported the subordinate; see italicized cue in Table 1).
This result indicated residual sensitivity to top-down global plausibility in 4-year-old
children.

The study by Rabagliati et al. (2013) also highlighted the limitations of capturing adults
and children’s reliance on top-down cues when using a distributional computational
learner that is uniquely based on tracking bottom-up word associations. They em-
ployed a bag-of-words Bayesian classifier, trained on child-directed speech, to simu-
late children’s performance in both non-contrastive and contrastive tasks. They found
that while the classifier could successfully resolve non-contrastive tasks and capture
variations in child performance (experiment 1), it failed in contrastive tasks (i.e., per-
formance at floor in experiment 2, with 0% dominant senses selected across condi-
tions), likely due to its inability to incorporate sentence-level top-down cues in its
word representations. Here, we aim to examine whether a distributional learning
Transformer architecture, which has shown sensitivity to top-down sentence-level
structure, could instead succeed in capturing child disambiguation performance in
contrastive tasks.

Cabiddu et al. (2022b) focused on verbs. Verbs are likely to represent a particularly

valid cue that young children can rely on when processing sentences and words. For
example, verbs’ syntactic arguments guide 3- to 5-year-old children’s interpretation
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of ambiguous sentences (e.g., Kidd & Bavin, 2005; Snedeker & Trueswell, 2004;
Yacovone et al., 2021). Further, the semantic restrictions that verbs impose on their
arguments (i.e., verb-event structures) guide children’s unambiguous word pro-
cessing (Andreu et al., 2013; Mani et al., 2016). For example, 3-year-olds know that
pushing a flowerpot is more plausible than pushing a road even if they have never heard
either expression (Andreu et al., 2013).

As shown in Table 1, in a Verb-Event condition, stories ended with verbs that never
co-occurred with dominant senses in naturalistic conversations (i.e., children never
or rarely hear twisting a band, which controls for verb-object associations). However,
the verbs’ event structure only accepted the dominant senses (i.e., one can only twist
an elastic band, not a music band), making it the only available cue.

Further, the researchers examined the effect of verb-object associations (see Verb-
Lexical condition in Table 1): Verbs had a neutral verb-event structure (e.g., one could
get either an elastic or music band), but often co-occurred with dominant senses in
naturalistic conversations (i.e., children frequently hear getting an elastic band). Given
the role of verb-object associations in children’s word processing (Mani et al., 2016),
this condition tested if children would weigh more word associations coming from a
verb than the rest of the (prior) context.

Children successfully resolved dominant senses using both verb-event structures and
verb-object associations, beyond bottom-up word associations from prior contexts.

Overall, results from these behavioral experiments show that children can rely on
different bottom-up and top-down cues for sense disambiguation. However, it re-
mains unclear which learning mechanisms might underlie these competencies. Below,
we use Transformers as a scientific tool to test the extent to which purely distribu-
tional learning mechanisms account for the acquisition of word sense knowledge that
is dependent on sentence context.

Word Sense Disambiguation in Transformers

Testing a usage-based learner requires an architecture that forms top-down abstrac-
tions while accounting for effects of bottom-up statistical cues in language develop-
ment (e.g., Ambridge et al., 2015; McCauley & Christiansen, 2019; Saffran et al., 1996).
Consider the meaning of table in Ambridge (2019). A fixed top-down rule defining a
table category (e.g., has legs; used for eating; made of wood, metal, or plastic; waist
height) becomes falsifiable by counterexamples (e.g., an empty barrel used as a table
at a bar). A solution is to embed specific contexts in the table representation (Am-
bridge, 2020; Srinivasan & Rabagliati, 2021). Bottom-up context-dependent infor-
mation allows the child to estimate the similarity between a new instance barrel table
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and previously encountered tables. This recursive process of estimation facilitates the
emergence of a context-independent, fuzzy, and probabilistic category of table (i.e., a
prototype). In sense disambiguation, context-dependent and context-independent
representations could gradually lead to multiple sense categories for a single word
(Srinivasan & Rabagliati, 2021), with clusters of instances sufficiently separated in the
semantic space (e.g., an object band prototype, a music band prototype).

The way sense representations are conceptualized in these proposals of word sense
acquisition aligns with the ideas proposed in accounts of word sense processing
(Duffy et al., 2001; Rodd, 2020). For instance, the recent semantic-settling account
(Rodd, 2020) assumes that word senses are stored in a lexical-semantic space as high-
dimensional representations. Distinct senses of a word form are represented as dif-
ferent paths embedding a set of dimensions or features that define the mapping be-
tween the word form and each sense. During sentence parsing, a settling process
guides access to specific word senses by increasing the activation of specific paths in
the lexical-semantic space. This activation depends on multiple cues at the word and
contextual levels, helping the system settle on one sense, from bottom-up cues (e.g.,
meaning expectation based on words frequently co-occurring in the sentence con-
text) to top-down cues (e.g., real-world knowledge used for pragmatic inferences).
Computational evidence supporting this processing account largely comes from adult
disambiguation studies (e.g., Rodd et al., 2004). However, it is still unclear whether its
predictions can extend to child processing.

The above ideas of context-dependent sense representations align with Transformers’
core self-attention mechanism. For each token, these models construct distinct rep-
resentations that dynamically integrate sentence context. Although children have ac-
cess to referential and social cues beyond sentence context, using Transformers is
useful to answer the question: How far can a distributional learner that uniquely pro-
cesses naturalistic sentence context go?

After training, Transformers encode generalized (context-independent) knowledge.
Tokens from different senses organize into separate clusters within model layers, re-
flecting the organization of senses in dictionaries and adult representations (Loureiro
etal., 2021, 2022). In Loureiro et al. (2021), Transformers were evaluated using a near-
est neighbor approach (e.g., Melamud et al., 2016; Peters et al., 2018). This uses sense-
annotated corpora to create model sense prototypes by averaging the representations
of a collection of tokens belonging to a specific sense (see Method). Sense prototypes
are then used to evaluate the model disambiguation at test. Using this method led to
a Pearson’s correlation of .9 between the best model and adult annotators. This
method is useful because it investigates knowledge of models that are not pretrained
on disambiguation, but only on predicting a word given its context (which should be
more in line with what children do). Further, compared to previous studies (Haber &
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Poesio, 2020), Loureiro et al. (2021) showed that models’ performance better aligned
with adults’ when a reference sense-annotated corpus reflected the coarse-grained
knowledge that adults have (e.g., collapsing senses that adults likely do not distin-
guish, but that are differentiated in a dictionary). This suggests that it is possible to
tailor the models’ sense prototypes to a specific population. In our work, reference
sentences were transcribed child-directed utterances, reflecting children’s natural-
istic input and containing senses known to 4-year-olds based on behavioral evidence.

Method
Models

We used 13 Transformer-based language model families with varying training tasks
and input encoding mechanisms. We also included a bidirectional recurrent neural
network (ELMo, Peters et al., 2018), which achieved state-of-the-art results in sense
disambiguation before the introduction of Transformers (e.g., Wiedemann et al.,
2019). Model descriptions can be found in Appendix S1. We also share materials and
code to reproduce the study results on our GitHub page
(https://doi.org/10.5281/zen0do.8200803). In various configurations within families,
we varied model size (number of million parameters, M = 287, range = 8 - 1,630) and
pretraining size in gigabytes of text (M = 103, range = .005 - 806). In Appendix S3, we
also include results from models with randomly initialized weights, showing that per-
formance differences were not due to architectural differences in connection pat-
terns among units.

Model Evaluation via Nearest Neighbor

Following Loureiro et al. (2021), we extracted sense prototypes using annotated sen-
tences (see Corpora for details) in which a word occurred in a specific sense (e.g.,
elastic band in “when we put the rubber bands around it then we'll put your name on it so
we'll know which one belongs to who”). We extracted a model’s contextualized vector for
each sense occurrence, summing the last four layers. For models that work at the
subword level, we first averaged representations of subword tokens for the target
word. Finally, we averaged the word vectors to obtain a centroid representing the elas-
tic band prototype. We repeated the process for the alternative music band.

In Appendix S2, we also repeat the sense prototype extraction with different random
samples of sentence exemplars to provide evidence that using a Nearest Neighbor ap-
proach is not heavily dependent on the specific set of exemplar sentences we used for
each target sense. This decreases the concern that results from our simulations might
be related to the quality of the prototypes rather than the model representations of
sense usage.
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To evaluate model performance, we extracted a contextualized vector for each test
sentence’s target word. We used cosine similarity to compare each vector with the two
prototypes representing the dominant (e.g., elastic band) and subordinate (e.g., music
band) senses. The most similar prototype determined the assigned sense for the test
word. We then transformed this binary measure (Dominant = 1, Subordinate = 0) into
a continuous measure by computing the percentage of dominant senses assigned in a
specific condition (matching the child outcome measure in Table 1).

Corpora

We took sentences for computing prototypes from ChiSense-12 (Cabiddu et al.,
2022a), which contains speech directed to children up to age 4 from the English sec-
tion of the CHILDES database (MacWhinney, 2000). Each sentence was tagged for oc-
currences of 12 ambiguous words in dominant or subordinate senses (e.g., chicken
animal, chicken food). The selection of dominant and subordinate senses within the
corpus drew from those used in the experiments conducted by Rabagliati et al. (2013).
This approach guaranteed that the chosen senses are familiar to children, as evi-
denced by their performance in experimental tasks. We used 9 words, excluding hom-
ophones with different spelling (e.g., son/sun) for which no ambiguity exists as the
models process orthographic input. We also tagged 4 new words to cover more items
from children’s experiments. The target words used were all concrete nouns: band
(binding or fastening object / music group); bat (animal / sports equipment); bow
(knot / weapon); button (device to control electronic operations / fastener on cloth-
ing); chicken (animal / meat); glasses (eyewear / drinking vessels); letter (alphabetical
symbol / mailed communication); line (geometric line / sequence of people or things
arranged one behind the other); nail (body part / metal fastener); fish (animal / meat);
lamb (animal / meat); turkey (animal / meat); card (playing card / greeting card).

Details about items and annotation process are in Appendix S2. The final corpus had
15,901 sentences for 13 target words, with dominant senses appearing 69% of the time
on average (3:1 dominant/subordinate ratio).

Comparing Child to Model Performance

We computed an optimal outcome measure comparing child and model perfor-
mance. We examined if the models exhibited a dominant sense bias reflecting the
dominant/subordinate ratio in the input. For experiment 1 in Rabagliati et al. (2013)
with non-contrastive cues, we fitted a linear mixed-effects model using the percent-
age of dominant senses selected by each model as the outcome, and model size and
pretraining size as the predictors. Model family was used as random effect intercept.
The model output is reported in full in Appendix S4. Only pretraining size negatively
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predicted dominant selection (8 =-1.53, 95% CI = [-2.30, -.75], p < .001), but not model
size (§=-1.47, 95% CI = [-3.01, .08], p = .062). As shown in Figure 1, the models better
approximated the 69% dominant sense bias as pretraining size decreased.
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Figure 1. Percentage of dominant senses selected by each model in Rabagliati et al.
(2013) experiment 1, by pretraining size in log GB. The dashed horizontal line indi-
cates dominant sense prevalence in ChiSense-12.

To further confirm that the dominant sense bias was produced by the employment of
child-directed input, in Appendix S6 we also examined the models’ dominant sense
preference using sense prototypes computed from adult-directed speech (from utter-
ances included in the British National Corpus; BNC Consortium, 2007). When we used
adult sense prototypes, the models never approached the 69% dominant sense bias,
showing equal preference for dominant and subordinate senses (50% dominant sense
selections). Overall, these preliminary investigations on the effect of input speech on
sense representations indicate that the use of child-directed input aligns models with
children’s representations of sense frequencies in naturalistic speech.

Dominant sense bias is one of the variables that can influence word disambiguation.
Itis an important aspect of how children disambiguate words, as well as being crucial
in a model learner. However, it is not the primary focus of our examination. We aim
to determine whether models are successful because they resolve the meaning of an
ambiguous word using the context of the surrounding sentence, rather than from the
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frequency of the sense itself. For this reason, the contribution of sentence-level fac-
tors (e.g., verb information) was disentangled, for example, in Cabiddu et al. (2022b),
from the contribution of word-level information (sense dominance) by statistically
controlling for the latter. This was done to test whether children were indeed using
verb information to resolve ambiguities. We adopted a similar approach with Trans-
formers, by effectively separating the contribution of word-level information from
that of sentence-level information. In other words, differences in dominant sense bias
pose a confound: A model pretrained on a small corpus might select a similar per-
centage of dominant senses to children not only due to context cue sensitivity, but
also because it prefers dominant senses more than a model pretrained on a large cor-
pus. We controlled for this confound by examining the relative difference in domi-
nant sense selections between dominant-plausible and subordinate-plausible condi-
tions. In Appendix S5, we also include analyses that examine which models better
capture children’s performance when all levels (sentence-level and word-level) are
considered. We return to these additional results in the Discussion.

We use relative differences in performance to control for the effect of dominant sense
bias. For example, in the first experiment, children selected dominant senses (e.g.,
elastic band) in 81% of trials in the dominant-plausible condition (She stretched the
band) and 38% in the subordinate-plausible (She listened to the band). For a relative
difference of 81% - 38% =43% in children, a model with 60% - 17% difference and one
with 80% - 37% were considered equally similar to children. Essentially, the relative
difference focused on a model’s sensitivity to shifts in sentence context and compared
itto children’s sensitivity. The final outcome measure estimated the distance between
model and children (e.g., [60% - 17%]) — [81% - 38%]), with values of 0 indicating
equal sensitivity in the model and children, and values lower and higher than 0 indi-
cating lower and higher sensitivity, respectively. Using this measure of relative dis-
tance as the outcome, we performed model comparison for each experiment between
multiple nested linear mixed-effects models, which are reported in full in Appendix
S4. We examined the main and interaction effects of model size and pretraining size,
and employed model family as a random effect intercept in every statistical model.

Results
Rabagliati et al. (2013) - Experiment 1

Figure 2 shows models’ performance by model size (2a) and pretraining size (2b).
Some models reached child baseline (y = 0), while others performed worse (y < 0) or
better (y > 0). The best linear mixed-effects model indicated higher context sensitivity
as model size increased (f = 5.36, 95% CI = [2.07, 8.64], p = .002) and pretraining size
increased (8 = 3.81, 95% CI = [2.16, 5.47], p < .001). A main effect of condition (f = -
9.98, 95% CI=[-16.18, -3.78], p=.002) showed models performing better in the current-
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context condition, which may not align with child performance. Although the main
effect of condition was not tested in the child experiment, children’s average scores
might suggest similar sensitivity to prior and current context (see Table 1).
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Figure 2. Models’ relative distance from children by model size (a) and pretraining
size (b), in current and prior context conditions. Model families are shown in the
legend. The black horizontal line indicates child performance. The dashed regres-
sion line with 95% confidence interval shows performance across models. Colored
regression lines are also shown for each model family, although only when
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examining model size as there is almost null variation in pretraining size within
family. Points in panel b are jittered by 2 points in the y axis to facilitate visualiza-
tion of overlapping points.

Rabagliati et al. (2013) - Experiment 2

This task used contrastive bottom-up and top-down cues, which most models seemed
to struggle with: Figure 3 shows a floor effect, which led to null effects of model size
(B=3.37, 95% CI = [-.35, 7.09], p = .075) and pretraining size (8 = 0.12, 95% CI = [-1.74,
1.98], p=.895). As confirmed in Appendix S4 (see plots showing raw dominant selec-
tion scores for each model), the floor effect led to only few models showing a differ-
ence in dominant selection between conditions. This aligns with children’s residual
sensitivity to top-down cues, as they displayed a difference between conditions de-
spite low selection rates. Nevertheless, most models performed worse than children,
suggesting an overall difficulty in managing contrastive cues.
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Figure 3. Models’ relative distance from children by model size and pretraining
size, in Rabagliati et al. (2013) experiment 2.

Cabiddu et al. (2022b)
The models better handled contrastive bottom-up and top-down cues in this task, re-

sembling the strong role of verbs in child processing. The models showed higher sen-
sitivity to verbs with a strong event structure (Figure 4a; e.g., She twisted a band), with
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model size being positively related to models’ sensitivity to verb-event cues (= 7.57,
95% CI=[3.48, 11.67], p=.001), but not pretraining size (8 =-.30, 95% CI = [-2.35, 1.74],
p = .765). Instead, sensitivity was lower to verbs that were only lexically associated
with the dominant sense (Figure 4b; e.g., She got a band), with no significant effects of
model size (f=1.73, 95% CI = [-0.87, 4.34], p = .186) or pretraining size (f =0.16, 95%

CI=[-1.14, 1.45], p = .809).
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Figure 4. Models’ relative distance from children by model and pretraining size,
when examining performance at the verb-event (a) and verb-lexical conditions (b).
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Discussion

We examined the capabilities of large Transformer models in capturing child word
sense disambiguation. Our results support the idea that children, like these models,
might be usage-based learners who bootstrap word knowledge from the naturalistic
environment (Bybee, 2010), and that child sense knowledge can, in principle, arise
from probabilistic representations embedding context-dependent and context-inde-
pendent information (Ambridge, 2020; Rodd, 2020; Srinivasan & Rabagliati, 2021). In
line with a cue informativity account of child processing (Trueswell & Gleitman,
2007), Transformers captured the changes in word sense disambiguation perfor-
mance observed across child behavioral experiments. Coherent tasks were resolved
with greater ease, and performance on contrastive tasks was found to be dependent
on the type of top-down cue provided (i.e., as observed in children, verbs provided a
better facilitation for sense disambiguation than global plausibility).

In line with Laverghetta Jr and Licato (2021), larger models were more sensitive to
both coherent (Figure 2) and contrastive cues (Figure 4a), likely because they form
more precise representations based on both bottom-up and top-down aspects of sen-
tence structure (Devlin et al., 2019; Hewitt & Manning, 2019; Radford et al., 2019).

Contrary to our prediction, models trained on larger corpora were more sensitive to
coherent cues (Figure 2), while we found the predicted null effect of pretraining for
contrastive cues (Figure 3 and 4). In coherent sentences, a model can rely on both
word associations and top-down cues, with more pretraining likely increasing sensi-
tivity to both. However, more pretraining might not always be as valuable for resolv-
ing contradicting bottom-up and top-down cues in the other conditions. Larger models
might instead have an advantage in this regard.

Further, a visual inspection of models’ performance at contrastive tasks (see raw plots
of dominant sense selection for each model in Appendix S4) showed a stronger overall
preference for subordinate senses across conditions compared to children, which
might indicate models’ higher sensitivity to prior context word associations (an anal-
ysis of relative differences could not highlight this, as it specifically controls for abso-
lute differences in sense selection). In a follow-up analysis (see Appendix S5), we
found evidence for this interpretation. We used an alternative outcome measure (Eu-
clidean distance) which, compared to the relative difference, additionally looked at
how close models got to y =0 (Figure 2, 3, and 4) and at the exact match between mod-
els and children (i.e., difference in absolute scores): Given 81% - 38% as the children’s
response difference, a model performing 80% - 37% would be now closer to children
than one that performs 60% - 17%. This measure might suffer from dominant sense
bias (Figure 1), which we included as covariate in the statistical models to control for
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its effect. We replicated the positive effect of pretraining size in experiment 1 (Figure
2b), and found a negative effect of pretraining size in the verb-event structure condi-
tion of the third experiment (Figure 4a).

This result might indicate that smaller pretraining prevented an extreme sensitivity
to word associations, allowing models to find the right balance between bottom-up
and top-down cues. Interestingly, the best models in this condition received pretrain-
ing that was judged as psychologically plausible in previous studies (100 million to-
kens, Hosseini et al., 2022), although for an older population than ours (10-year-olds).
To gain deeper insights into word association sensitivity, future work should explore
how pretraining size influences the ability of large language models to track word as-
sociations and whether smaller, more realistic input can better capture children's
sensitivity to these associations. Ideally, to answer this question, one would need ac-
cess to the original corpora used for pretraining, which is not always possible. This
would enable an understanding of precisely what types of word associations the mod-
els might have encountered during pretraining. Some recent investigations have re-
vealed that sensitivity to word associations begins to decrease at around 1 billion to-
kens of input (Zhang et al., 2021). This finding might suggest the necessity to scale
down to a much smaller input to avoid extreme sensitivity to bottom-up cues and to
better align with child performance.

Only models with small pretraining approximated the dominant sense bias in the
child input (Figure 1), and only few models (Figure 4b) showed sensitivity to verb-
sense associations (e.g., get-elastic band), which are idiosyncrasies of the child input.
One way to better align models with the child environment would be pretraining di-
rectly on child input (Hosseini et al., 2022; Warstadt & Bowman, 2022). This would
also enhance the psychological plausibility of the models, which are currently pre-
trained on vast amounts of input, often sourced from unknown corpora and adult-
directed written language. However, this task is limited by the lack of sufficiently
large corpora. For example, in our study we included BabyBERTa (Huebner et al.,
2021), which despite being pretrained on child input showed no sensitivity to sentence
context, likely due to its small pretraining (5 million tokens). To address this gap,
there is an ongoing effort within the research community to optimize model pretrain-
ing given an input limited in size, aligning more closely with human development
(Warstadt et al., 2023). Model optimization also means that researchers will be able to
examine and manipulate more fine-grained model dimensions than those we have
considered (number of epochs, learning rate, batch size, etc.), allowing researchers
to work with architectures that are likely to better approximate child learning and
processing. Manipulating aspects of models’ architecture will also give the oppor-
tunity to causally test their impact on the model's ability to capture child perfor-
mance. For example, ablation analyses (e.g., removing parts of the model such as lay-
ers, attention heads, or specific weights) can be used to uncover necessary language
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knowledge within the models for successful task performance, generating hypothe-
ses about language representations. Additionally, public release of the datasets used
for training optimization will enable researchers to directly test the causal effect of
input characteristics (Frank, 2023). Models can serve in controlled experiments to iso-
late pretraining inputs that enable effective disambiguation, offering insights into
sentence-level factors that might assist children in developing word sense profi-
ciency.

Models’ performance was impaired in tasks that introduced contrastive cues (Figure
3 and 4). This suggests that this area requires further investigation, despite previous
results showing that Transformers approximate adult performance in annotating
word senses (Loureiro et al., 2021) or judging the semantic relatedness between word
senses (Nair et al., 2020) when tested on non-contrastive sentences. Sense prototypes
based on child input might have contributed to the low performance of the models in
our study. In additional analyses presented in Appendix S6, we replicated all the sim-
ulations in the study using sense prototypes based on sense-tagged utterances from
adult-directed speech. Specifically, we used utterances from the spoken part of the
British National Corpus (BNC Consortium, 2007). We found that adult-based and
child-based models produced similar percentages of correct responses in every ex-
periment. Further, when we related models’ performance to child responses, we
found that child-based prototypes more closely aligned models with child perfor-
mance in coherent tasks (Rabagliati et al., 2013; Study 1), but no difference was found
at capturing child responses between models using child and adult sense prototypes
in contrastive tasks (Rabagliati et al., 2013; Study 2; Cabiddu et al., 2022b). Overall,
these supplemental results indicate that the low model performance at contrastive
tasks was not due to a lack of richer linguistic cues that adult utterances might con-
tain. The fact that the models performed poorly in tasks involving contrastive cues,
even when the sense prototypes were derived from adult-directed speech, stands in
contrast to the many linguistic feats of large language models (e.g., Gammelgaard et
al., 2023).

Given that previous studies have not used contrastive tasks, one possibility is that such
tasks might simply be difficult for models. Few models were sensitive to contrastive
cues (Figure 3 and 4), indicating that at least some information about top-down struc-
tures might be captured from sentence context via distributional learning. However,
overall models’ performance was lower than children’s. This occurs even if the task
proposed to children might be more challenging than what the models faced. In fact,
the models were only required to disambiguate between two alternative senses of
each target word. However, other potential senses of a target word exist in dictionar-
ies and may be known to children (e.g., for "band", not just "elastic band" and "music
band", but also a “band” of bad weather). We would expect the models' ability to dis-
tinguish between word senses to deteriorate when considering a wider array of
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alternative senses. This is supported by Loureiro et al. (2019), which demonstrated
that collapsing some of the senses in WordNet, that might not be distinguished by
adults, improved Transformers’ performance in word sense disambiguation.

Difficulties in approximating child knowledge could be due to the fact that children’s
representations of top-down structures are not only based on sentence context but
also include real-world knowledge, which would need to be integrated into neural
systems and could lead to abstractions more akin to human cognition (e.g., Pavlick,
2023). Specifically, while language models are capable of forming knowledge about
direct word associations (bottom-up knowledge) and syntactic and semantic struc-
tures (top-down knowledge), it is crucial to acknowledge that the models’ top-down
generalisations about language patterns—though reflective of a form of understand-
ing or knowledge—remain purely derived from textual patterns. For example, the
models may solve experimental tasks (e.g., “Sophia listened to some music. Then, she
twisted a band”) by leveraging indirect associations between words—such as “twist”
being associated with “bend” and “pull”—or by linking verbs to various objects (e.g.,
“twist” with “scarf” or “knob”), using these patterns as proxies for top-down infer-
ences. This process enables language models to abstract semantic properties from the
verbs and apply these properties to new contexts or objects that they have not explic-
itly encountered in their training data. The model's reliance on indirect associations
to infer word meanings or predict plausible word combinations exemplifies a form of
semantic generalisation. This simulates top-down processing by using the extensive
network of associations encoded within their training data, thereby enabling applica-
tion of these patterns to novel linguistic contexts. However, it remains an open ques-
tion whether top-down abstractions based only on language patterns can approxi-
mate the generalisations that emerge from grounded representations (e.g., Pavlick,
2023, for a discussion on this topic). The challenges faced by large language models
in word sense disambiguation, as highlighted in our current study, could provide val-
uable insights into whether grounded representations are necessary to accurately
model human language processing.

For example, when modelling word acquisition trajectories, Transformers are not in-
fluenced by grounded sensorimotor, social, and cognitive factors (e.g., noun con-
creteness), but rely on surface features (e.g., word frequency) to a greater extent than
children (Chang & Bergen, 2021). We speculate that this lack of grounded knowledge
might also explain the fact that the models performed worse at disambiguating prior
contexts than current contexts (Figure 2). Current contexts contained words that
might appear closer to target words in naturalistic language, becoming easier to track
by a distributional learner. This difficulty might not exist for children who can use
their real-world knowledge for semantically-related (but distant) words (e.g., in Dora
looked in her drawer. The band was cool, a child can infer that entities stored in a drawer
are usually objects). Indeed, word acquisition trajectories can probably be better
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captured by neural models that process a richer multimodal signal comprising audi-
tory features, communicative intentions, and perceptual information about word ref-
erents (e.g., Frank et al., 2009; Nikolaus & Fourtassi, 2021; Nyamapfene & Ahmad,
2007). Future work should focus on modelling child multimodal processing, currently
limited by the scarcity of naturalistic multimodal corpora (e.g., Nikolaus et al., 2022).

Integrating multimodal input could also be potentially beneficial for investigating the
models' performance with words varying in concreteness (e.g., concrete nouns vs
more abstract verbs), which was not considered in our simulations but could be intri-
guing given the role of concreteness in early vocabulary learning (e.g., Braginsky et
al., 2019). For instance, abstract nouns or verbs might depend more heavily on lin-
guistic context for disambiguation, whereas concrete nouns might rely more on mul-
timodal contexts (e.g., Sakreida et al., 2013). Highlighting this distinction could be
valuable for future research, suggesting that Transformers trained on text might
demonstrate superior performance with abstract words. This potential difference
warrants further investigation to better understand how varying contexts influence
word disambiguation across different word types.

Moreover, examining the distinction between concrete and abstract word senses
could further elucidate the implications of basing model sense prototypes on child-
directed or adult-directed sentences. For instance, since child-directed input often
features more redundancy and a concrete vocabulary (Saxton, 2009) compared to
adult-directed input, this might result in the formation of sense prototypes that better
facilitate the disambiguation of concrete nouns like those used in our study. In other
words, similarly to how child-directed sense prototypes may lead to a dominant sense
bias typical of child-directed speech (Appendix S6), one should also find that child-
directed sense prototypes lead to a bias toward concrete nouns.

Enriching models’ input would allow researchers to test if acquiring multimodal
knowledge suffices to capture sensitivity to top-down structures, or whether one
would need to integrate domain-specific constraints in line with nativist approaches
(e.g., Pinker, 1989; Thornton, 2012) or more domain-general innate biases (e.g., Per-
fors et al., 2011). For instance, a development of our work might involve investigating
whether a purely distributional learner that can process visual object referents is able
to bootstrap certain elements of sentence structure that are posited to be innate by
alternative theories of language development. For example, when a word typically
used as a verb (e.g., “eat”) is presented in a noun context (e.g., “an eat”), 20-month-
old infants more readily associate the word with a novel animal. Conversely, when a
noun is strongly linked to a specific referent (e.g., “dog”), infants struggle to apply it
to a different novel animal (Dautriche et al., 2018). This phenomenon indicates that
employing different syntactic categories facilitates the extension of a word's meaning
to encompass new referents. Given this evidence, one could examine whether a
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purely distributional learner, trained on input mirroring the quantity and quality
available to 20-month-old infants exhibits similar facilitation from syntactic catego-
ries on word sense extension. Such empirical evidence would challenge the idea, pro-
posed by universal grammar theories, that syntactic categories are innate rather than
learned through language interaction (e.g., Valian et al., 2009).

Additionally, our method of assessing word sense disambiguation in large language
models and humans could be used to evaluate approaches that view learning as an
embodied and situated phenomenon. Indeed, the formation of semantic representa-
tions of words is not uniquely based on the statistics of word co-occurrences in lan-
guage (the language-based distributional hypothesis). Properties of words related to
the extralinguistic environment (e.g., physical properties) also play a crucial role in
shaping semantic representations (the experiential hypothesis). Examining the capa-
bilities of a distributional learner that relies exclusively on language co-occurrence
statistics to capture word semantic representations can shed light on the importance
of considering the real-world experiences of children. This approach can help deter-
mine how these two sources of information—linguistic and experiential—contribute
independently or together to children's learning (e.g., Andrews et al., 2009). To this
end, research involving language-based large language models can be expanded to
also consider the combined influence of visual aspects (Lu et al., 2019; Qi et al., 2020;
Sun et al., 2019; Zhuang et al., 2023).

Finally, the language that children are exposed to is often displaced, meaning care-
givers frequently discuss word referents that are not present in the immediate envi-
ronment (Tomasello & Kruger, 1992). Despite this, children might still leverage ex-
tralinguistic cues, such asiconicity (e.g., a caregiver mimicking the action of swinging
a bat to clarify its meaning in conversation), in line with the language-as-situated hy-
pothesis (Murgiano et al., 2021). Therefore, exploring the extent to which child se-
mantic representations can be derived from both the linguistic and physical contexts
in which children learn can reveal whether it is necessary to incorporate additional
aspects of the communicative context, such as iconic cues, into our understanding of
child word meaning representation.

Conclusion - What Large Language Models (LLMs) can('t) tell us about child lan-
guage acquisition

We have begun to examine the capabilities and limitations of Transformer models for
studying early word sense disambiguation. We have demonstrated that, as efficient
distributional learners processing raw language input, large language models can be
used to provide proof of principles concerning the extent to which usage-based learn-
ing can contribute to the acquisition of semantic representations at the word level.
Importantly, it is this proficiency that highlights an interesting contrast: We have
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found that, although large language models excel at numerous language understand-
ing and production tasks, they show significant limitations in their use of top-down
cues for sense disambiguation. This results in their performance falling short com-
pared to that of young children under certain disambiguation conditions. This finding
serves as a crucial hint that an approach centered on providing more distributional
linguistic cues might not be the most effective solution. Rather, it underscores the
importance of either making models sensitive to additional multimodal cues or inte-
grating specific constraints or biases into the models. This additional knowledge
could potentially enable them to bridge the performance gap and align more closely
to child learners.

Furthermore, in our tasks requiring the use of sentence context for word-level disam-
biguation, large language models have allowed us to avoid having to equip the models
with syntactic and semantic knowledge at the sentence level (using external resources
to pre-process the input) to ultimately perform word disambiguation. This would have
required making assumptions about what knowledge the learner possesses at a cer-
tain point in development, which can come with benefits but also complications stem-
ming from confounding effects caused by the assumptions made by the modeler.

Finally, we showed that an evaluation approach that leverages sense-annotated cor-
pora can sensibly be used to examine the developmental plausibility of sense repre-
sentations in large language models. Currently, limitations concerning model pre-
training do not allow researchers to determine the impact of child language input on
models’ performance. However, we have seen that even the simple use of sense pro-
totypes based on child input produced a partial alignment to child processing. This
presents the prospect of combining corpus analyses of models’ input with experi-
mental simulations to elucidate the dynamics between the contribution of input char-
acteristics and the nature of the learner's representational system.

References

Abbot-Smith, K., & Tomasello, M. (2006). Exemplar-learning and schematization in a
usage-based account of syntactic acquisition. 23(3), 275-290.

https://doi.org/10.1515/TLR.2006.011

Alishahi, A., & Stevenson, S. (2013). Gradual Acquisition of Verb Selectional Prefer-
ences in a Bayesian Model. In A. Villavicencio, T. Poibeau, A. Korhonen, & A.
Alishahi (Eds.), Cognitive Aspects of Computational Language Acquisition (pp. 297-316).

Springer. https://doi.org/10.1007/978-3-642-31863-4_11

Ambridge, B. (2019). Against stored abstractions: A radical exemplar model of lan-

guage acquisition: First Language. https://doi.org/10.1177/0142723719869731

Volume 5, Issue 1


https://doi.org/10.1515/TLR.2006.011
https://doi.org/10.1007/978-3-642-31863-4_11
https://doi.org/10.1177/0142723719869731

Language Development Research 58

Ambridge, B. (2020). Abstractions made of exemplars or ‘You're all right, and I've
changed my mind’: Response to commentators. First Language, 40(5-6), 640-659.

https://doi.org/10.1177/0142723720949723

Ambridge, B., Kidd, E., Rowland, C. F., & Theakston, A. L. (2015). The ubiquity of
frequency effects in first language acquisition. Journal of Child Language, 42(2), 239-

273. https://doi.org/10.1017/S030500091400049X

Andreu, L., Sanz-Torrent, M., & Trueswell, J. C. (2013). Anticipatory sentence pro-
cessing in children with specific language impairment: Evidence from eye move-
ments during listening. Applied Psycholinguistics, 34(1), 5-44.
https://doi.org/10.1017/S0142716411000592

Andrews, M., Vigliocco, G., & Vinson, D. (2009). Integrating experiential and distri-
butional data to learn semantic representations. Psychological Review, 116(3), 463—

498. https://doi.org/10.1037/a0016261

BNC Consortium. (2007). British National Corpus, XML edition. https://ota.bod-
leian.ox.ac.uk/repository/xmlui/handle/20.500.12024/2554

Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bern-
stein, M. S., Bohg, J., Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D.,
Castellon, R., Chatterji, N., Chen, A., Creel, K., Davis, J. Q., Demszky, D., ... Liang, P.
(2022). On the Opportunities and Risks of Foundation Models (arXiv:2108.07258). arXiv.

http://arxiv.org/abs/2108.07258

Braginsky, M., Yurovsky, D., Marchman, V. A., & Frank, M. C. (2019). Consistency
and Variability in Children’s Word Learning Across Languages. Open Mind : Discover-

ies in Cognitive Science, 3, 52—67. https://doi.org/10.1162/opmi_a_00026

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A.,
Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C.,
... Amodei, D. (2020). Language Models are Few-Shot Learners (arXiv:2005.14165).
arXiv. https://doi.org/10.48550/arXiv.2005.14165

Bybee, J. (2010). Language, Usage and Cognition. Cambridge University Press.
https://doi.org/10.1017/CB0O9780511750526

Cabiddu, F., Bott, L., Jones, G., & Gambi, C. (2022a). ChiSense-12: An English Sense-
Annotated Child-Directed Speech Corpus. Proceedings of the Thirteenth Language Re-

sources and Evaluation Conference, 5198-5205. https://aclanthology.org/2022.1rec-
1.557

Volume 5, Issue 1


https://doi.org/10.1177/0142723720949723
https://doi.org/10.1017/S030500091400049X
https://doi.org/10.1017/S0142716411000592
https://doi.org/10.1037/a0016261
https://ota.bodleian.ox.ac.uk/repository/xmlui/handle/20.500.12024/2554
https://ota.bodleian.ox.ac.uk/repository/xmlui/handle/20.500.12024/2554
http://arxiv.org/abs/2108.07258
https://doi.org/10.1162/opmi_a_00026
https://doi.org/10.48550/arXiv.2005.14165
https://doi.org/10.1017/CBO9780511750526
https://aclanthology.org/2022.lrec-1.557
https://aclanthology.org/2022.lrec-1.557

Language Development Research 59

Cabidduy, F., Bott, L., Jones, G., & Gambi, C. (2022b). The Role of Verb-Event Struc-
ture in Children’s Lexical Ambiguity Resolution. Proceedings of the Annual Meeting of

the Cognitive Science Society, 44(44). https://escholarship.org/uc/item/9kh29212

Chang, T. A., & Bergen, B. K. (2021). Word Acquisition in Neural Language Models
(arXiv:2110.02406). arXiv. https://doi.org/10.48550/arXiv.2110.02406

Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham,
P., Chung, H. W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S.,
Maynez, J., Rao, A., Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., ... Fiedel, N.
(2022). PaLM: Scaling Language Modeling with Pathways (arXiv:2204.02311). arXiv.

https://doi.org/10.48550/arXiv.2204.02311

Dautriche, I., Fibla, L., Fievet, A.-C., & Christophe, A. (2018). Learning homophones
in context: Easy cases are favored in the lexicon of natural languages. Cognitive Psy-

chology, 104, 83-105. https://doi.org/10.1016/j.cogpsvch.2018.04.001

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding (arXiv:1810.04805). arXiv.

https://doi.org/10.48550/arXiv.1810.04805

Duffy, S. A., Kambe, G., & Rayner, K. (2001). The effect of prior disambiguating con-
text on the comprehension of ambiguous words: Evidence from eye movements. In
On the consequences of meaning selection: Perspectives on resolving lexical ambiguity (pp.

27-43). American Psychological Association. https://doi.org/10.1037/10459-002

Frank, M. C. (2023). Openly accessible LLMs can help us to understand human cog-
nition. Nature Human Behaviour, 7(11), Article 11. https://doi.org/10.1038/s41562-023-
01732-4

Frank, M. C., Goodman, N. D., & Tenenbaum, J. B. (2009). Using speakers’ referen-
tial intentions to model early cross-situational word learning. Psychological Science,

20(5), 578-585. https://doi.org/10.1111/§.1467-9280.2009.02335.x

Gammelgaard, M. L., Christiansen, J. G., & Segaard, A. (2023). Large language models
converge toward human-like concept organization (arXiv:2308.15047). arXiv.

https://doi.org/10.48550/arXiv.2308.15047

Haber, J., & Poesio, M. (2020). Word Sense Distance in Human Similarity Judge-
ments and Contextualised Word Embeddings. Proceedings of the Probability and

Meaning Conference (PaM 2020), 128-145. https://aclanthology.org/2020.pam-1.17

Hahn, N., Snedeker, J., & Rabagliati, H. (2015). Rapid Linguistic Ambiguity Resolu-
tion in Young Children with Autism Spectrum Disorder: Eye Tracking Evidence for

Volume 5, Issue 1


https://escholarship.org/uc/item/9kh29212
https://doi.org/10.48550/arXiv.2110.02406
https://doi.org/10.48550/arXiv.2204.02311
https://doi.org/10.1016/j.cogpsych.2018.04.001
https://doi.org/10.48550/arXiv.1810.04805
https://doi.org/10.1037/10459-002
https://doi.org/10.1038/s41562-023-01732-4
https://doi.org/10.1038/s41562-023-01732-4
https://doi.org/10.1111/j.1467-9280.2009.02335.x
https://doi.org/10.48550/arXiv.2308.15047
https://aclanthology.org/2020.pam-1.17

Language Development Research 60

the Limits of Weak Central Coherence. Autism Research, 8(6), 717-726.
https://doi.org/10.1002/aur.1487

Hewitt, J., & Manning, C. D. (2019). A Structural Probe for Finding Syntax in Word
Representations. Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, Volume 1

(Long and Short Papers), 4129-4138. https://doi.org/10.18653/v1/N19-1419

Hosseini, E. A., Schrimpf, M., Zhang, Y., Bowman, S., Zaslavsky, N., & Fedorenko, E.
(2022). Artificial neural network language models align neurally and behaviorally with
humans even after a developmentally realistic amount of training (p. 2022.10.04.510681).

bioRxiv. https://doi.org/10.1101/2022.10.04.510681

Huebner, P. A., Sulem, E., Cynthia, F., & Roth, D. (2021). BabyBERTa: Learning
More Grammar With Small-Scale Child-Directed Language. Proceedings of the 25th
Conference on Computational Natural Language Learning, 624-646.

https://doi.org/10.18653/v1/2021.conll-1.49

Jawahar, G., Sagot, B., & Seddah, D. (2019). What Does BERT Learn about the Struc-
ture of Language? Proceedings of the 57th Annual Meeting of the Association for Compu-

tational Linguistics, 3651-3657. https://doi.org/10.18653/v1/P19-1356

Khanna, M. M., & Boland, J. E. (2010). Children’s use of language context in lexical
ambiguity resolution. Quarterly Journal of Experimental Psychology, 63(1), 160-193.

https://doi.org/10.1080/17470210902866664

Kidd, E., & Bavin, E. L. (2005). Lexical and referential cues to sentence interpreta-
tion: An investigation of children’s interpretations of ambiguous sentences. Journal

of Child Language, 32(4), 855-876. https://doi.org/10.1017/S0305000905007051

Laverghetta Jr, A., & Licato, J. (2021). Modeling Age of Acquisition Norms Using
Transformer Networks. The International FLAIRS Conference Proceedings, 34.

https://doi.org/10.32473/flairs.v34i1.128334

Loureiro, D., Jorge, A. M., & Camacho-Collados, J. (2022). LMMS Reloaded: Trans-
former-based Sense Embeddings for Disambiguation and Beyond. Artificial Intelli-

gence, 305, 103661. https://doi.org/10.1016/j.artint.2022.103661

Loureiro, D., Rezaee, K., Pilehvar, M. T., & Camacho-Collados, J. (2021). Analysis and
Evaluation of Language Models for Word Sense Disambiguation (arXiv:2008.11608).

arXiv. https://doi.org/10.48550/arXiv.2008.11608

Lu, J., Batra, D., Parikh, D., & Lee, S. (2019). ViLBERT: Pretraining Task-Agnostic Vi-
siolinguistic Representations for Vision-and-Language Tasks. Advances in Neural

Volume 5, Issue 1


https://doi.org/10.1002/aur.1487
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.1101/2022.10.04.510681
https://doi.org/10.18653/v1/2021.conll-1.49
https://doi.org/10.18653/v1/P19-1356
https://doi.org/10.1080/17470210902866664
https://doi.org/10.1017/S0305000905007051
https://doi.org/10.32473/flairs.v34i1.128334
https://doi.org/10.1016/j.artint.2022.103661
https://doi.org/10.48550/arXiv.2008.11608

Language Development Research 61

Information Processing Systems, 32. https://proceedings.neurips.cc/pa-
per/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html

MacWhinney, B. (2000). The CHILDES project: Tools for analyzing talk: Transcription
format and programs, Vol. 1, 3rd ed (pp. xi, 366). Lawrence Erlbaum Associates Pub-
lishers.

Mani, N., & Huettig, F. (2012). Prediction during language processing is a piece of
cake—But only for skilled producers. Journal of Experimental Psychology. Human Per-

ception and Performance, 38(4), 843-847. https://doi.org/10.1037/a0029284

Mani, N., Daum, M. M., & Huettig, F. (2016). “Proactive” in many ways: Develop-
mental evidence for a dynamic pluralistic approach to prediction. Quarterly Journal
of Experimental Psychology, 69(11), 2189-2201.

https://doi.org/10.1080/17470218.2015.1111395

McCauley, S. M., & Christiansen, M. H. (2019). Language learning as language use: A
cross-linguistic model of child language development. Psychological Review, 126, 1-

51. https://doi.org/10.1037/rev0000126

Melamud, O., Goldberger, J., & Dagan, I. (2016). context2vec: Learning Generic Con-
text Embedding with Bidirectional LSTM. Proceedings of the 20th SIGNLL Conference

on Computational Natural Language Learning, 51-61. https://doi.org/10.18653/v1/K16-
1006

Meylan, S. C., Mankewitz, J., Floyd, S., Rabagliati, H., & Srinivasan, M. (2021). Quan-
tifying Lexical Ambiguity in Speech To and From English-Learning Children. Pro-
ceedings of the Annual Meeting of the Cognitive Science Society, 43(43). https://escholar-

ship.org/uc/item/1pq031fn

Murgiano, M., Motamedi, Y., & Vigliocco, G. (2021). Situating Language in the Real-
World: The Role of Multimodal Iconicity and Indexicality. Journal of Cognition, 4(1),

38. https://doi.org/10.5334/joc.113

Nair, S., Srinivasan, M., & Meylan, S. (2020). Contextualized Word Embeddings En-
code Aspects of Human-Like Word Sense Knowledge. In M. Zock, E. Chersoni, A.
Lenci, & E. Santus (Eds.), Proceedings of the Workshop on the Cognitive Aspects of the
Lexicon (pp. 129-141). Association for Computational Linguistics. https://aclanthol-

ogy.org/2020.cogalex-1.16

Nikolaus, M., & Fourtassi, A. (2021). Evaluating the Acquisition of Semantic
Knowledge from Cross-situational Learning in Artificial Neural Networks. Proceed-
ings of the Workshop on Cognitive Modeling and Computational Linguistics, 200-210.

https://doi.org/10.18653/v1/2021.cmcl-1.24

Volume 5, Issue 1


https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://doi.org/10.1037/a0029284
https://doi.org/10.1080/17470218.2015.1111395
https://doi.org/10.1037/rev0000126
https://doi.org/10.18653/v1/K16-1006
https://doi.org/10.18653/v1/K16-1006
https://escholarship.org/uc/item/1pq031fn
https://escholarship.org/uc/item/1pq031fn
https://doi.org/10.5334/joc.113
https://aclanthology.org/2020.cogalex-1.16
https://aclanthology.org/2020.cogalex-1.16
https://doi.org/10.18653/v1/2021.cmcl-1.24

Language Development Research 62

Nikolaus, M., Alishahi, A., & Chrupata, G. (2022). Learning English with Peppa Pig.
Transactions of the Association for Computational Linguistics, 10, 922-936.

https://doi.org/10.1162/tacl a_00498

Nyamapfene, A., & Ahmad, K. (2007). A Multimodal Model of Child Language Acqui-
sition at the One-Word Stage. 2007 International Joint Conference on Neural Networks,

783-788. https://doi.org/10.1109/IJCNN.2007.4371057

Pavlick, E. (2023). Symbols and grounding in large language models. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences,

381(2251), 20220041. https://doi.org/10.1098/rsta.2022.0041

Perfors, A., Tenenbaum, J. B., & Regier, T. (2011). The learnability of abstract syn-

tactic principles. Cognition, 118(3), 306-338. https://doi.org/10.1016/ij.cogni-
tion.2010.11.001

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., & Zettle-
moyer, L. (2018). Deep Contextualized Word Representations. Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguis-
tics: Human Language Technologies, Volume 1 (Long Papers), 2227-2237.

https://doi.org/10.18653/v1/N18-1202

Pinker, S. (1989). Learnability and Cognition. MIT Press. https://mit-
press.mit.edu/9780262660730/learnability-and-cognition/

Qi, D, Sy, L., Song, J., Cui, E., Bharti, T., & Sacheti, A. (2020). ImageBERT: Cross-
modal Pre-training with Large-scale Weak-supervised Image-Text Data.

arXiv:2001.07966 [Cs]. http://arxiv.org/abs/2001.07966

Rabagliati, H., Pylkkéanen, L., & Marcus, G. F. (2013). Top-down influence in young
children’s linguistic ambiguity resolution. Developmental Psychology, 49, 1076-1089.

https://doi.org/10.1037/a0026918

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language

Models are Unsupervised Multitask Learners. https://www.semanticscholar.org/pa-
per/Language-Models-are-Unsupervised-Multitask-Learners-Radford-
Wu/9405cc0d6169988371b2755€573cc28650d14dfe

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.,
& Liu, P. J. (2023). Exploring the Limits of Transfer Learning with a Unified Text-to-Text

Transformer (arXiv:1910.10683). arXiv. https://doi.org/10.48550/arXiv.1910.10683

Rodd, J. M. (2020). Settling Into Semantic Space: An Ambiguity-Focused Account of
Word-Meaning Access. Perspectives on Psychological Science, 15(2), 411-427.

Volume 5, Issue 1


https://doi.org/10.1162/tacl_a_00498
https://doi.org/10.1109/IJCNN.2007.4371057
https://doi.org/10.1098/rsta.2022.0041
https://doi.org/10.1016/j.cognition.2010.11.001
https://doi.org/10.1016/j.cognition.2010.11.001
https://doi.org/10.18653/v1/N18-1202
https://mitpress.mit.edu/9780262660730/learnability-and-cognition/
https://mitpress.mit.edu/9780262660730/learnability-and-cognition/
http://arxiv.org/abs/2001.07966
https://doi.org/10.1037/a0026918
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://www.semanticscholar.org/paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/9405cc0d6169988371b2755e573cc28650d14dfe
https://doi.org/10.48550/arXiv.1910.10683

Language Development Research 63

https://doi.org/10.1177/1745691619885860

Rodd, J. M., Gaskell, M. G., & Marslen-Wilson, W. D. (2004). Modelling the effects of
semantic ambiguity in word recognition. Cognitive Science, 28(1), 89-104.

https://doi.org/10.1207/s15516709c0g2801_4

Saffran, J. R., Aslin, R. N., & Newport, E. L. (1996). Statistical Learning by 8-Month-
Old Infants. Science, 274(5294), 1926-1928. https://doi.org/10.1126/sci-
ence.274.5294.1926

Sakreida, K., Scorolli, C., Menz, M. M., Heim, S., Borghi, A. M., & Binkofski, F.
(2013). Are abstract action words embodied? An fMRI investigation at the interface
between language and motor cognition. Frontiers in Human Neuroscience, 7, 125.

https://doi.org/10.3389/fnhum.2013.00125

Saxton, M. (2009). The Inevitability of Child Directed Speech. In S. Foster-Cohen
(Ed.), Language Acquisition (pp. 62-86). Palgrave Macmillan UK.

https://doi.org/10.1057/9780230240780_4

Schrimpf, M., Blank, I. A., Tuckute, G., Kauf, C., Hosseini, E. A.; Kanwisher, N.,
Tenenbaum, J. B., & Fedorenko, E. (2021). The neural architecture of language: Inte-
grative modeling converges on predictive processing. Proceedings of the National

Academy of Sciences, 118(45), €2105646118. https://doi.org/10.1073/pnas.2105646118

Snedeker, J., & Trueswell, J. C. (2004). The developing constraints on parsing deci-
sions: The role of lexical-biases and referential scenes in child and adult sentence
processing. Cognitive Psychology, 49(3), 238-299.

https://doi.org/10.1016/j.cogpsych.2004.03.001

Snedeker, J., & Yuan, S. (2008). Effects of prosodic and lexical constraints on parsing
in young children (and adults). Journal of Memory and Language, 58(2), 574-608.

https://doi.org/10.1016/j.jm1.2007.08.001

Srinivasan, M., & Rabagliati, H. (2021). The Implications of Polysemy for Theories of
Word Learning. Child Development Perspectives, 15(3), 148-153.

https://doi.org/10.1111/cdep.12411

Sun, C., Myers, A., Vondrick, C., Murphy, K., & Schmid, C. (2019). VideoBERT: A
Joint Model for Video and Language Representation Learning. 2019 IEEE/CVF Inter-
national Conference on Computer Vision (ICCV), 7463-7472.

https://doi.org/10.1109/ICCV.2019.00756

Tenney, 1., Das, D., & Pavlick, E. (2019). BERT Rediscovers the Classical NLP Pipeline
(arXiv:1905.05950). arXiv. https://doi.org/10.48550/arXiv.1905.05950

Volume 5, Issue 1


https://doi.org/10.1177/1745691619885860
https://doi.org/10.1207/s15516709cog2801_4
https://doi.org/10.1126/science.274.5294.1926
https://doi.org/10.1126/science.274.5294.1926
https://doi.org/10.3389/fnhum.2013.00125
https://doi.org/10.1057/9780230240780_4
https://doi.org/10.1073/pnas.2105646118
https://doi.org/10.1016/j.cogpsych.2004.03.001
https://doi.org/10.1016/j.jml.2007.08.001
https://doi.org/10.1111/cdep.12411
https://doi.org/10.1109/ICCV.2019.00756
https://doi.org/10.48550/arXiv.1905.05950

Language Development Research 64

Thornton, R. (2012). Studies at the interface of child language and models of lan-
guage acquisition. First Language, 32(1-2), 281-297.
https://doi.org/10.1177/0142723711403881

Tomasello, M., & Kruger, A. C. (1992). Joint attention on actions: Acquiring verbs in
ostensive and non-ostensive contexts. Journal of Child Language, 19(2), 311-333.

https://doi.org/10.1017/S0305000900011430

Trueswell, J. C., & Gleitman, L. R. (2007). Learning to parse and its implications for
language acquisition. In M. G. Gaskell (Ed.), The Oxford Handbook of Psycholinguistics

(p. 0). Oxford University Press. https://doi.org/10.1093/0x-
fordhb/9780198568971.013.0039

Valian, V., Solt, S., & Stewart, J. (2009). Abstract categories or limited-scope formu-
lae? The case of children’s determiners. Journal of Child Language, 36(4), 743-778.

https://doi.org/10.1017/S0305000908009082

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., & Polosukhin, I. (2017). Attention Is All You Need (arXiv:1706.03762). arXiv.

https://doi.org/10.48550/arXiv.1706.03762

Warstadt, A., & Bowman, S. R. (2022). What Artificial Neural Networks Can Tell Us
About Human Language Acquisition (arXiv:2208.07998). arXiv.

https://doi.org/10.48550/arXiv.2208.07998

Warstadt, A., Mueller, A., Choshen, L., Wilcox, E., Zhuang, C., Ciro, J., Mosquera,
R., Paranjabe, B., Williams, A., Linzen, T., & Cotterell, R. (2023). Findings of the Bab-
yLM Challenge: Sample-Efficient Pretraining on Developmentally Plausible Cor-
pora. In A. Warstadt, A. Mueller, L. Choshen, E. Wilcox, C. Zhuang, J. Ciro, R. Mos-
quera, B. Paranjabe, A. Williams, T. Linzen, & R. Cotterell (Eds.), Proceedings of the
BabyLM Challenge at the 27th Conference on Computational Natural Language Learning
(pp. 1-34). Association for Computational Linguistics.

https://doi.org/10.18653/v1/2023.conll-babylm.1

Wiedemann, G., Remus, S., Chawla, A., & Biemann, C. (2019). Does BERT Make Any
Sense? Interpretable Word Sense Disambiguation with Contextualized Embeddings

(arXiv:1909.10430). arXiv. https://doi.org/10.48550/arXiv.1909.10430

Yacovone, A., Shafto, C. L., Worek, A., & Snedeker, J. (2021). Word vs. World
Knowledge: A developmental shift from bottom-up lexical cues to top-down plausi-
bility. Cognitive Psychology, 131, 101442.

https://doi.org/10.1016/j.cogpsych.2021.101442
Zhang, Y., Warstadt, A., Li, X., & Bowman, S. R. (2021). When Do You Need Billions

Volume 5, Issue 1


https://doi.org/10.1177/0142723711403881
https://doi.org/10.1017/S0305000900011430
https://doi.org/10.1093/oxfordhb/9780198568971.013.0039
https://doi.org/10.1093/oxfordhb/9780198568971.013.0039
https://doi.org/10.1017/S0305000908009082
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.48550/arXiv.2208.07998
https://doi.org/10.18653/v1/2023.conll-babylm.1
https://doi.org/10.48550/arXiv.1909.10430
https://doi.org/10.1016/j.cogpsych.2021.101442

Language Development Research 65

of Words of Pretraining Data? Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), 1112-1125.

https://doi.org/10.18653/v1/2021.acl-long.90

Zhuang, C., Fedorenko, E., & Andreas, J. (2023, October 20). Visual Grounding Helps
Learn Word Meanings in Low-Data Regimes. arXiv.Org.

https://arxiv.org/abs/2310.13257v1

Data, code and materials availability statement

Raw data, simulation and analysis scripts used in the study can be found on the

GitHub project repository https://doi.org/10.5281/zenod0.8200803. The ChiSense-12
corpus can be downloaded at https://gitlab.com/francescocabiddu/chisense-12. The
CHILDES database is accessible at https://childes.talkbank.org/. The British National
Corpus can be downloaded at https://llds.ling-phil.ox.ac.uk/llds/xmlui/han-
dle/20.500.14106/2554.

Ethics statement

Ethics approval was not required as the study used previously-collected publicly-
available data from the CHILDES database (MacWhinney, 2000).

Authorship and Contributorship Statement

Francesco Cabiddu: conceptualization; data curation; formal analysis; investigation;
methodology; project administration; resources; software; writing - original draft
preparation; writing - review & editing; funding acquisition. Mitja Nikolaus: concep-
tualization; formal analysis; methodology; writing - review & editing. Abdellah Four-
tassi: conceptualization; formal analysis; methodology; writing - review & editing.

All authors approved the final version of the manuscript and agree to be accountable
for all aspects of the work in ensuring that questions related to the accuracy or integ-
rity of any part of the work are appropriately investigated and resolved.

Acknowledgements

We would like to express our gratitude to Alex Warstadt for his valuable comments
during the initial stages of this project, and to Abhishek Agrawal for offering helpful
suggestions on the manuscript. We also extend our thanks to the anonymous review-
ers for their insightful feedback. The research presented in this article has been gen-
erously supported by a Study Visit Grant from the Experimental Psychology Society
(UK).

Volume 5, Issue 1


https://doi.org/10.18653/v1/2021.acl-long.90
https://arxiv.org/abs/2310.13257v1
https://doi.org/10.5281/zenodo.8200803
https://gitlab.com/francescocabiddu/chisense-12
https://childes.talkbank.org/
https://llds.ling-phil.ox.ac.uk/llds/xmlui/handle/20.500.14106/2554
https://llds.ling-phil.ox.ac.uk/llds/xmlui/handle/20.500.14106/2554

Language Development Research 66

Appendix S1: Model Families

We provide a description of the model families included in the study, and details about mod-
els’ configurations varying in model size and pretraining size (Table S1.1). Transformer mod-
els were downloaded using the Huggingface Transformers Python library (Wolf et al. 2020),
apart from the model BabyBERTa (Huebner et al. 2021) whose pretrained weights were down-
loaded directly from its GitHub project page (https://github.com/phueb/BabyBERTa, October
2022). The recurrent neural model ELMo (version 3; Peters et al. 2018) was downloaded using
the TensorFlow Python library (Abadi et al. 2015).

The 13 Transformer model families used were: BERT (Devlin et al. 2019), RoBERTa (Liu et al.
2019), and GTP (OpenAI GPT, Radford et al. 2018; GPT-2, Radford et al. 2019). For each of these
three families we included their distilled model versions (DistilBERT, DistilRoBERTa, and Dis-
tilGPT2; Sanh et al. 2020), and the RoBERTa family also included versions pretrained on small
corpora (MiniBERTa, Warstadt et al. 2020). BabyBERTa (Huebner et al. 2021); ALBERT-v1 and
ALBERT-v2 (Lan et al. 2020); DeBERTa and DeBERTA-v2 (He, Gao, et al., 2021); DeBERTa-v3
(He, Liu, et al., 2021); Transformer-XL (Dai et al., 2019); CTRL (Keskar et al., 2019); T5 (Raffel
et al., 2020); XLNet (Yang et al., 2020).

A first macro distinction between families concerns their unidirectional or bidirectional way
of predicting a token given its context. Unidirectional Transformers (GPT, Transformer-XL,
and CTRL) are trained on predicting the next token given the (previous) left sentence context.
This type of training objective is in line with prediction-based approaches of children’s online
sentence processing (Mani & Huettig, 2012). The remaining Transformers and ELMo are in-
stead trained on predicting tokens by taking into account both (previous) left and (following)
right contexts. This type of objective is plausible because children are not only involved in
predicting upcoming input when hearing speech, but they can also revise their interpretation
of ambiguous words based on following cues (e.g., Qi et al., 2020). Also, in naturalistic con-
versations there are cases in which children would likely attend to following sentence context
to disambiguate nouns (e.g., “Look at the bat, it’s flying!”).

A second macro distinction concerns how different models track the position of tokens in a
text sequence. Most models track tokens’ absolute positions, essentially encoding sentence
word order which is required for learning syntax (e.g., distinguishing between “The dog chased
the boy” and “The boy chased the dog”). Additionally, some models implement mechanisms that
track both absolute and relative positions of tokens (DeBERTa, DeBERTa-v2, DeBERTa-v3) or
only relative positions (Transformer-XL, T5, XLNet). Tracking relative positions means track-
ing the relative distance between pairs of tokens in a sequence, which translates into
weighting more the words that appear closer to a target word (e.g., the contribution of “deep”
for the vector representation of “learning” is higher if the two appear one next to the other,
compared to when they appear in different sentences). Tracking relative positions can be
considered a proxy of children’s sentence local parsing (e.g., Gertner & Fisher, 2012).
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BERT is a bidirectional Transformer trained on predicting tokens that are masked at random
during the preprocessing of the input, with some sentences seen multiple times with the same
masked tokens (i.e., static masking). It is also pretrained on predicting whether a sentence
follows another in the input (next sentence prediction), with the aim of capturing relations
between sentences that can be useful in Question Answering and Natural Language Inference
tasks. The model is pretrained on the BookCorpus (Zhu et al., 2015) and English Wikipedia.

RoBERTa is a modification of BERT that is trained without the next sentence prediction ob-
jective, which investigations found to be not effective for improving performance in down-
stream tasks (e.g., Liu et al. 2019; Yang et al., 2020). It is trained by receiving larger batches of
examples at every weight updating iteration. It is also trained on a larger corpus than BERT,
additionally including English news articles, web content, and stories. The model also uses
dynamic masking, which masks different tokens every time the same sentence is fed to the
model. Its scaled-down version, MiniBERT4, is pretrained on similar input (BookCorpus and
Wikipedia) but on a much smaller scale (see Table S1.1), with the configuration pretrained on
the smallest corpus (1M tokens) also reduced in model size.

GPT models are unidirectional Transformers trained on a language modeling objective,
namely sampling text from the input dataset and asking the model to predict the next token.
OpenAl GPT was pretrained on the BookCorpus, and subsequently fine-tuned with a series of
supervised language understanding tasks. GPT-2 was instead pretrained on a larger corpus of
web content, with no supervised fine-tuning.

Distilled models are compressed and faster versions of the above models, based on the same
architectures but with reduced number of layers. They undergo training that specifically tries
to reproduce the behavior of the (parent) larger model.

BabyBERTa is a scaled-down version of RoOBERTa with some key differences. Itis significantly
reduced in size (15x fewer parameters). It modifies the masked word prediction objective: In
BERT and RoBERTa, 10% of the tokens selected for masking are left unmasked; BabyBERTa
never allows unmasking. Itis also pretrained on much smaller (6000x fewer tokens) and qual-
itatively different corpora, either separately on transcribed child-directed speech, written
child-directed news articles, a small portion of Wikipedia, or a combination of the three.

ALBERT-v1 is a light version of BERT that was created with the main goal of reducing the
computational costs derived from using a large number of parameters. ALBERT-v1 uses two
techniques (factorization of parameters, and sharing all parameters across model layers)
which significantly reduce the number of parameters without significant drops in perfor-
mance in downstream tasks. Additionally, ALBERT-v1 modifies the next sentence prediction
objective performing sentence order prediction instead. A key difference between the two
objectives is that in next sentence prediction, the model is provided with positive examples
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of pairs of consecutive sentences coming from the same document, and negative examples
with the second sentence of the pair swapped with one coming from a different document.
The inefficiency of this task comes from the fact that negative examples contain sentences
coming from different documents, which likely contain text about different topics. This re-
sults in the model being able to easily learn from negative examples by just noticing differ-
ences in word occurrences (i.e., semantically different words are used when sentences refer
to different topics), focusing less on the more important aspect of discourse coherence be-
tween the two sentences. Therefore, with the new sentence order prediction objective, nega-
tive examples comprise sentence pairs coming from the same document, just swapped in or-
der. This forces the model to focus on the coherence of one sentence following the other. This
new objective significantly improved performance in downstream tasks compared to BERT.
ALBERT-v1 is pretrained on the same datasets used for BERT.

ALBERT-v2 is a modification of ALBERT-v1 that improves performance at downstream tasks
by using a different training regime (higher training steps and time) and by removing drop-
out, which is normally used to avoid that a model overfits the training dataset.

DeBERTa is a modification of RoOBERTa which improves performance in downstream tasks
by using mechanisms of disentangled attention and enhanced mask decoding, which essen-
tially allow the model to integrate both absolute and relative token positions in its vector rep-
resentations. DeBERTa is trained on the same corpora used for RoOBERTa but excluding Eng-
lish news articles.

DeBERTa-v2 is an optimized version of DeBERTa, which uses a larger vocabulary, larger pre-
training dataset, and larger model sizes. It shares parameters that track sentence content and
relative positions to reduce model complexity. It also integrates an additional layer in the
model to better learn knowledge about subword n-grams, with the aim of more precisely
tracking sentence local dependences. DeBERTa-v2 is pretrained on the same RoBERTa cor-
pora.

DeBERTa-v3 is a modification of DeBERTa-v2 that replaces the masked word prediction ob-
jective with a replaced token detection objective, which instead of randomly masking tokens
during training it replaces them with plausible (but incorrect) ones. This changes the objec-
tive of the model from having to generate plausible tokens to having to discriminate between
two semantically related tokens to decide which is the appropriate one in a sentence.
DeBERTa-v3 is pretrained on the same RoBERTa corpora.

Transformer-XL is a unidirectional model that uses a language modeling objective as GPT.
Transformer-XL introduces a recurrence mechanism in the Transformer architecture. Usu-
ally, Transformers process input in the form of text segments of a maximum length, which
results in the impossibility of modelling dependencies across segments (which are treated
independently). Transformer-XL uses a mechanism that recycles hidden states of previous
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segments and uses them as extended context for newly processed ones. Additionally, the
model introduces a new mechanism that can keep track of the relative position of tokens
across different segments. Recurrence and relative positional encoding allow Transformer-
XL to track short-range and long-range text dependencies, which can be used to generate very
long and relatively coherent articles. The model is pretrained on a small dataset of Wikipedia
articles (Merity et al., 2016).

CTRL is another unidirectional Transformer that uses a language modeling objective. How-
ever, in this model the objective is modified so that the model predicts the next token of a
sequence also taking into account specific codes present in the structure of the training data.
These codes give information such as the specific domain of the text being processed (e.g.,
Wikipedia, Books), the specific style used (e.g., Horror, Science), or the specific tasks being
processed (e.g., question answering, translation). These codes are extracted directly from
structural components of the training data, and ultimately allow the model to better constrain
its text generation process. CTRL is pretrained on a large corpus from Wikipedia, web content
including news articles and Amazon reviews, translation datasets from European parliament
and United Nations proceedings, and various question-answering datasets.

T5 is a bidirectional Transformer that uses an Encoder and a Decoder architecture similar to
the original Transformer (Vaswani et al., 2017). It is trained on a masked prediction objective
similar to BERT, representing both single (as in BERT) and sequences of tokens in the Encoder
and using learned representations to generate text in the Decoder. In our study, we only used
the Encoder part of the model. The model also uses a mechanism of relative positional en-
coding. The model is trained on the largest corpus considered in our study, which comprises
scraped content from the web.

XLNet is a bidirectional Transformer that modifies the BERT training objective using a per-
mutation modeling objective. In BERT, masked tokens within a text sequence are predicted
independently from one another. In XLNet the prediction also takes into account the relations
between masked tokens. Additionally, XLNet only uses a mechanism of relative positional
encoding. The model is trained on the same corpora used for BERT, with the addition of var-
ious corpora of web content and news articles.

ELMo is a bidirectional recurrent neural network model. Its mechanism of recurrence allows
to link current word representations to previous ones in a text sequence. This is achieved by
processing input at different timesteps, and feeding the output of previous timesteps to the
current one. The recurrence mechanism leads to contextualized representations that also en-
code information about word order. In ELMo, the input sequence is fed to the model from
left to right, and again from right to left. The two output vectors are then combined to obtain
a bidirectional representation. The model is trained on a corpus of News Crawl data (Chelba
etal., 2014).
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Table S1.1. Models included in the study, by pretraining size (gigabytes of text), model size
(million parameters), and family type.

Model Model size Pretraining size Family
distilbert-base-uncased 66 16 bert
bert-base-uncased 110 16 bert
bert-large-uncased 340 16 bert
bert-large-uncased-whole-word-masking 340 16 bert
distilroberta-base 82 40 roberta
roberta-base 125 160 roberta
roberta-large 355 160 roberta
roberta-med-small-1M-2 45 0.005 roberta
roberta-base-10M-2 125 0.05 roberta
roberta-base-100M-2 125 0.5 roberta
roberta-base-1B-3 125 5 roberta
albert-base-vl 11 16 albert-vl
albert-large-v1 17 16 albert-vl
albert-xlarge-vl 58 16 albert-vl
albert-xxlarge-vl 223 16 albert-vl
albert-base-v2 11 16 albert-v2
albert-large-v2 17 16 albert-v2
albert-xlarge-v2 58 16 albert-v2
albert-xxlarge-v2 223 16 albert-v2
deberta-base 140 80 deberta
deberta-large 400 80 deberta
deberta-xlarge 750 80 deberta
deberta-v2-xlarge 900 160 deberta-v2
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Table S1.1 (continued).

Model Model size Pretraining size Family
deberta-v2-xxlarge 1500 160 deberta-v2
deberta-v3-small 141 160 deberta-v3
deberta-v3-base 184 160 deberta-v3
deberta-v3-large 434 160 deberta-v3
babyberta-ao-childes 8 0.02 babyberta
babyberta-ao-newsela 8 0.02 babyberta
babyberta-wikipedia-1 8 0.02 babyberta
babyberta-ao-childes-ao-newsela-wikipedia-1 8 0.06 babyberta
distilgpt2 82 40 gpt
openai-gpt 116 3 gpt

gpt2 124 40 gpt
gpt2-medium 355 40 gpt
gpt2-large 774 40 gpt

gpt2-xl 1558 40 gpt
transfo-x1-wt103 284 0.4 transfo-x1
ctrl 1630 140 ctrl
t5-small 35 806 t5

t5-base 110 806 t5

t5-large 335 806 t5
xlnet-base-cased 117 126 xlnet
xlnet-large-cased 360 126 xlnet
elmo 93 4.2 elmo
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Appendix S2: Children’s Target Words and Additional Annotations

In this section, we report details about the target ambiguous words used and their corre-
sponding child-directed sentences. We used sentences from ChiSense-12 (Cabiddu et al.,
2022a), a collection 53 sense-tagged corpora of American and British English child-directed
speech from the CHILDES database (MacWhinney, 2000), involving 958 target children of up
to 4 years of age (59 months). We selected sentences referring to 9 of the 12 ambiguous words
present in the corpus, each in their dominant and subordinate sense. The remaining 3 words
(flower/flour, moose/mousse, sun/son) could not be used because they had different spelling,
creating no ambiguity for models’ processing. Table S2.1 provides information about the
number of sentences for each sense.

Some target words in the behavioral experiments were not covered by ChiSense-12. Thus, we
additionally tagged all not covered words for which 40 sentences per sense were available in
the same corpora used for ChiSense-12. This resulted in tagging 4 new ambiguous words (fish
= animal/food; lamb = animal/food; turkey = animal/food; card = playing card/greetings card).
In total, we covered 13/24 and 4/6 target words in Rabagliati et al. (2013) experiment 1 and 2
respectively, and 9/12 words from Cabiddu et al. (2022b). The sentence test items for each
experiment are available in the appendices of the two original papers (Cabiddu et al., 2022b;
Rabagliati et al., 2013), and in the file test_utterances.csv included in the R project folder of our
GitHub project. The complete sets of utterances from ChiSense-12 and the new annotated
words are available in the R folder of our project.

Loureiro et al. (2021) showed that a nearest neighbor approach for computing sense proto-
types is stable even when drastically reducing the number of examples for each target sense.
Given that we sampled a limited number of examples for each new target sense to keep the
annotation work manageable (n=40), we verified that Loureiro’s findings were supported in
our case. We repeated the three modeling experiments using only the 9 target words of
ChiSense-12, downsampling sentences for each sense before computing sense prototypes.
The procedure was repeated 10 times, each time sampling a subset (n = 40) of randomly se-
lected sentences for each sense. The results of the three experiments (Figure S2.1, S2.2, and
S2.3) showed that performance remained stable even when using only 40 random sentences
per sense, which justified the inclusion of the newly annotated words in our study.

Volume 5, Issue 1


https://doi.org/10.48550/arXiv.1906.08237
https://doi.org/10.48550/arXiv.1506.06724

Language Development Research 75

Specifically, all three experiments yielded high correlations between the mean performance
of each model across random samples and the performance using the full set of utterances:
Experiment 1 (Rabagliati et al., 2013) r; = .95; Experiment 2 (Rabagliati et al., 2013) r; = .95;
Experiment 1 (Cabiddu et al., 2022b) r; = .94.
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Figure S2.1. Percentage of dominant sense selections for experiment 1 of Rabagliati et al.
(2013), in dominant-plausible and subordinate-plausible conditions (legend), when disam-
biguation cues were included in current or prior context (left and right panel respectively).
Colored bars indicate performance of the models when the full sample of ChiSense-12 sen-
tences is used to compute sense prototypes (Table S2.1). Red points indicate mean perfor-
mance (across 10 runs) of models for which sense prototypes were computed using 40 ran-
dom sentences for each sense. Error bars indicate standard deviations.
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Figure S2.2. Percentage of dominant sense selections for experiment 2 of Rabagliati et al.
(2013), in dominant-plausible and subordinate-plausible conditions (legend). The plot
shows the comparison between dominant sense selection in models with prototypes com-
puted from the full ChiSense-12 (colored bars), and models for which prototypes were com-
puted by downsampling ChiSense-12 to 40 random sentences per sense (points and error
bars indicate mean and standard deviations across 10 runs).
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Figure S2.3. Percentage of dominant sense selections for Cabiddu et al. (2022b), in domi-
nant-plausible (Verb-lexical, Verb-event) and subordinate-plausible conditions (Control).
The plot shows the comparison between dominant sense selection in models with prototypes
computed from the full ChiSense-12 (colored bars), and models for which prototypes were
computed by downsampling ChiSense-12 to 40 random sentences per sense (points and er-
ror bars indicate mean and standard deviations across 10 runs).
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Table S2.1. For each target word, the table shows the raw number of utterances in which
dominant (D) and subordinate (S) senses appeared, as well as the percentage of utterances
in which dominant senses appeared (Dominance).

Word (D/S) N (D/S) Dominance
Band (Object/Music Group) 178/58 75%
Bat (Animal/Object) 247/130 66%
Bow (Knot/Weapon) 230/27 89%
Button (Electronic/Clothing) 568/285 67%
Chicken (Animal/Food) 1463/937 61%
Glasses (Eye/Drinking) 683/620 52%
Letter (Alphabet/Mail) 1446/946 60%
Line (Geometric/Row) 471/241 66%
Nail (Finger/Tool) 460/106 81%
MEAN (SD) - 69% (11%)
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Appendix S3: Randomly Initialized Models

We modelled the three experiments (Cabiddu et al., 2022; Rabagliati et al., 2013), running
base model versions 10 times using different random initializations. For a single run, the

Volume 5, Issue 1


https://aclanthology.org/2022.lrec-1.557
https://escholarship.org/uc/item/9kh29212
https://doi.org/10.48550/arXiv.2008.11608
https://doi.org/10.1037/a0026918

Language Development Research 79

same initialization was used to create both sense prototypes and vectors of test stimuli. None
of the models showed sensitivity to sentence context across experiments (Figure S3.1, S3.2,
and S3.3; i.e., same percentage of dominant sense selections across conditions), suggesting
that different patterns of connections among units did not influence models’ performance.
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Figure S3.1. Mean percentage of dominant sense selections in randomly initialized models
for experiment 1 of Rabagliati et al. (2013), in dominant-plausible and subordinate-plau-
sible conditions (legend), when disambiguation cues were included in current or prior con-
text (left and right panel respectively). Error bars indicate standard deviations over 10
model runs.
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Figure S3.2. Mean percentage of dominant sense selections in randomly initialized models
for experiment 2 of Rabagliati et al. (2013), in dominant-plausible and subordinate-plau-
sible conditions (legend). Error bars indicate standard deviations over 10 model runs.
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Figure S3.3. Mean percentage of dominant sense selections in randomly initialized models
for Cabiddu et al. (2022), in dominant-plausible (Verb-lexical, Verb-event) and subordi-
nate-plausible conditions (Control). Error bars indicate standard deviations over 10 model
runs.
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Appendix S4: Relative Difference Outcome Measure

In this section, we present the results concerning the evaluation of dominance sense prefer-
ence in Transformers, using child-based prototypes. This section additionally includes plots
illustrating the raw performance of each model in each of the three experiments considered.
Moreover, we report the output of statistical models, where the comparison between children
and models’ performance is made using a measure of relative difference as the outcome (see
main manuscript for details about this measure).
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Table S4.1. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the percentage of dominant senses selected across conditions of Ra-
bagliati et al. (2013) experiment 1. The predictors are log model size, log pretraining size,
and their interaction. Model family was used as random effect intercept. The Null model
only includes main and random effect intercepts. Subsequent models add one predictor at a
time. The table shows the number of model parameters (npar), Akaike (AIC) and Bayesian
(BIC) Information criterions, log-likelihood (logLik), deviance, Chi-square statistic (Chisq),
degrees of freedom (Df), and p value Pr(>Chisq).

npar AIC
Null model 3 313.52
+ Model size 4 304.41
+ Pretraining 5 293.23
+ Interaction 6 294.46

BIC

318.94
311.63
302.26

305.30

logLik
-153.76
-148.20
-141.61

-141.23

deviance
307.52
296.41
283.23

282.46

Chisq
11.11
13.18

0.76

Df

Pr(>Chisq)
0.001
0.000

0.382

Table S4.2. Output of the best model selected via model comparison in Table $4.1

Predictors

Estimates

“+ Pretraining” Model
Dominant sense preference

CI p

(Intercept) 60.89 53.53 - 68.26 <0.001

Model size [log] -1.47 -3.01 - 0.08 0.062

Pretraining size [log] -1.53 -2.30--0.75 <0.001
Random Effects

o? 25.86

Too family 12.47

ICC 0.33

N family 14

Observations 45

Marginal R? / Conditional R? 0.491/0.657
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Rabagliati et al. (2013) — Experiment 1

Rabagliati et al. (2013) - Experiment 1
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Figure S4.1. Percentage of dominant sense selections in models and children for experiment
1 of Rabagliati et al. (2013), in dominant-plausible and subordinate-plausible conditions
(legend), when disambiguation cues were included in current or prior context (left and
right panel respectively).
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Table S4.3. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the relative difference between models and children in Rabagliati et
al. (2013) experiment 1, see our main paper for more details about this outcome measure.
The predictors are condition (Prior or Current context), log pretraining size, log model size
, and their pairwise interactions. The random effect intercept is Model Family. The Null
model includes main and random effect intercepts. Subsequent models add one predictor at
a time. The table shows the number of model parameters (npar), Akaike (AIC) and Bayesian
(BIC) Information criterions, log-likelihood (logLik), deviance, Chi-square statistic (Chisq),

degrees of freedom (Df), and p value Pr(>Chisq).

npar AIC
Null model 3 807.62
+ Condition 4 803.09
+ Pretraining 5 771.98
+Model size 6 764.64
+ Pretraining*Condition 7 766.34
+ Size*Condition 8 768.04
+ Pretraining*Model size 9 769.64

BIC logLik
815.12 -400.81
813.09 -397.55
784.47 -380.99
779.64 -376.32
783.84 -376.17
788.04 -376.02
792.14 -375.82

deviance Chisq

801.62
795.09
761.98
752.64
752.34
752.04
751.64

NA
6.53
33.12
9.33
0.30
0.30
0.40

Df Pr(>Chisq)
NA NA

0.011
0.000
0.002
0.584

0.584

1
1
1
1
1
1 0.529

Table S4.4. Output of the best model selected via model comparison in Table $4.3.

‘+ Model size’ model
Rabagliati et al. (2013) - Experiment 1

Predictors Estimates  CI p

(Intercept) -43.49 -59.94 - -27.04 <0.001

Model size [log] 5.36 2.07 - 8.64 0.002

Pretraining size [log] 3.81 2.16 - 5.47 <0.001

Condition [Prior context] -9.98 -16.18 - -3.78 0.002
Random Effects

o? 218.67

Too family 85.81

ICC 0.28

N family 14

Observations 90

Marginal R? / Conditional R? 0.510/0.648
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Rabagliati et al. (2013) — Experiment 2

Rabagliati et al. (2013) - Experiment 2
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Figure S4.2. Percentage of dominant sense selections in models and children for experiment
2 of Rabagliati et al. (2013), in dominant-plausible and subordinate-plausible conditions
(legend).
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Table S4.5. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the relative difference between models and children in Rabagliati et
al. (2013) experiment 2, see our main paper for more details about this outcome measure.
The predictors are log pretraining size, log model size, and their interaction. The random
effect intercept is Model Family. The Null model includes main and random effect intercepts.
Subsequent models add one predictor at a time. The table shows the number of model pa-
rameters (npar), Akaike (AIC) and Bayesian (BIC) Information criterions, log-likelihood

(logLik), deviance, Chi-square statistic (Chisq), degrees of freedom (Df), and p value
Pr(>Chisq).

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

Null model 3 371.50 376.92 -182.75 365.50 - - -

+ Pretraining 4 372.70  379.93 -182.35 364.70 0.80 1 0.371
+ Model size 5 372.27 381.30 -181.13 362.27 2.44 1 0.119
+ Interaction 6 373.79 384.63 -180.89 361.79 0.48 1 0.489

Table S4.6. Although no model surpassed the Null model in Table S4.5, below we show the
output of the model including both main effects of model size and pretraining size, to ap-
preciate size of the estimates and variance explained.

‘+ Model size’ model
Rabagliati et al. (2013) - Experiment 2

Predictors Estimates CI p
(Intercept) -25.51 -43.38 - -7.63 0.006
Model size [log] 3.37 -0.35-7.09 0.075
Pretraining size [log] 0.12 -1.74-1.98 0.895

Random Effects
o? 146.43
Too family 79.91
ICC 0.35
N family 14
Observations 45
Marginal R? / Conditional R? 0.105/0.421
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Cabiddu et al. (2022)

Cabiddu et al. (2022)
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Figure S4.3. Percentage of dominant sense selections in models for Cabiddu et al. (2022), in
dominant-plausible (Verb-lexical, Verb-event) and subordinate-plausible conditions (Con-
trol).
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Table S4.7. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the relative difference between models and children in Cabiddu et al.
(2022), when considering performance in the Verb-Event structure condition. See our main
paper for more details about this outcome measure. The predictors are log pretraining size,
log model size, and their interaction. The random effect intercept is Model Family. The Null
model includes main and random effect intercepts. Subsequent models add one predictor at
a time. The table shows the number of model parameters (npar), Akaike (AIC) and Bayesian
(BIC) Information criterions, log-likelihood (logLik), deviance, Chi-square statistic (Chisq),
degrees of freedom (Df), and p value Pr(>Chisq).

npar AIC
Null model 3 390.69
+ Pretraining 4 390.37
+ Model size 5 381.28
+ Interaction 6 382.77

BIC

396.11
397.60
390.31
393.61

logLik
-192.34
-191.19
-185.64
-185.39

deviance Chisq Df Pr(>Chisq)

384.69 - - -

382.37 2.32 1 0.128
371.28 11.09 1 0.001
370.77 0.51 1 0.477

Table S4.8. Output of the best model selected via model comparison in Table S4.7.

‘+ Model size’ model
Verb-Event Condition

Cabiddu et al. (2022)

Predictors Estimates  CI p

(Intercept) -50.56 -69.91 - -31.20 <0.001

Model size [log] 7.57 3.48 - 11.67 0.001

Pretraining size [log] -0.30 -2.35-1.74 0.765
Random Effects

o? 188.50

Too family 76.42

ICC 0.29

N family 14

Observations 45

Marginal R? / Conditional R? 0.300/0.502
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Table S4.9. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the relative difference between models and children in Cabiddu et al.
(2022), when considering performance in the Verb-Lexical condition. See our main paper
for more details about this outcome measure. The predictors are log pretraining size, log
model size, and their interaction. The random effect intercept is Model Family. The Null
model includes main and random effect intercepts. Subsequent models add one predictor at
a time. The table shows the number of model parameters (npar), Akaike (AIC) and Bayesian
(BIC) Information criterions, log-likelihood (logLik), deviance, Chi-square statistic (Chisq),
degrees of freedom (Df), and p value Pr(>Chisq).

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

Null model 3 340.21 345.63 -167.10 334.21 - - -

+ Pretraining 4 341.21 348.43 -166.60 333.21 1.00 1 0.317
+ Model size 5 341.23 350.27 -165.62  331.23 1.97 1 0.160
+ Interaction 6 342.00 352.84 -165.00 330.00 1.23 1 0.267

Table S4.10. Although no model surpassed the Null model in Table $4.9, below we show the
output of the model including both main effects of model size and pretraining size, to ap-
preciate size of the estimates and variance explained.

‘+Model size’ model
Verb-Lexical Condition
Cabiddu et al. (2022)

Predictors Estimates CI p
(Intercept) -30.39 -42.47 - -18.31 <0.001
Model size [log] 1.73 -0.87 -4.34 0.186
Pretraining size [log] 0.16 -1.14-1.45 0.809

Random Effects
o? 81.87
Too family 22.74
ICC 0.22
N family 14
Observations 45
Marginal R? / Conditional R? 0.071/0.273
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Appendix S5: Euclidean Distance Outcome Measure

In this section, we report results of the three experiments using an alternative outcome meas-
ure. See details about this measure in the main manuscript. In Figure S5.1, we show an exam-
ple of how the measure is computed.

Euclidean Distance Calculation Example
Rabagliati et al. (2013) - Experiment 1

Current context
100 A Ao )=
sqrt( (85-81)"2 + (15-38)"2)=23
75
g
2
L
% Context-sense association
@ Dominant
o 501--- plausible
5 Subordinate
& plausible
g
£
£
o
[a)]
25
0

deberté-xlarge albert-lérge-vz Children

Figure S5.1. Example of calculation of the Euclidean Distance of deberta-xlarge and albert-
large-v2 from children’s scores in the Current Context condition of Rabagliati et al. (2013)
experiment 1. The measure looks at the exact match between model and children.
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Rabagliati et al. (2013) — Experiment 1
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Figure S5.2. Models’ Euclidean distance from children by model size (top row) and pre-
training size (bottom row), in current and prior context conditions. Model families are
shown in the legend. The black horizontal line (y=0) indicates child performance. The
dashed regression line with 95% confidence interval shows performance across models.
Colored regression lines are also shown for each model family, although only when exam-
ining model size as there is almost null variation in pretraining size within family.
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Table S5.1. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the Euclidean Distance between models and children in Rabagliati et
al. (2013) experiment 1. See our main paper for more details about this outcome measure.
The predictors are dominant bias, condition (current, prior context), log pretraining size,
log model size, and the pairwise interactions between model size, pretraining size, and con-

Language Development Research

dition. The random effect intercept is Model Family.

npar AIC
Null model 3 657.12
+ Dominant Bias 4 658.23
+ Condition 5 659.79
+ Pretraining 6 646.98
+Model size 7 647.70
+ Pretraining*Condition 8 641.30
+ Size*Condition 9 642.39

+ Pretraining*Model size 10

640.70

BIC

664.62
668.23
672.29
661.98
665.19
661.30
664.89
665.70

logLik
-325.56
-325.12
-324.89
-317.49
-316.85
-312.65
-312.19
-310.35

deviance Chisq

651.12
650.23
649.79
634.98
633.70
625.30
624.39
620.70

0.88
0.44
14.81
1.28
8.39
0.91
3.68

91

Df Pr(>Chisq)

e e e

0.347
0.505
0.000
0.257
0.004
0.339
0.055

Table S5.2. Output of the best model selected via model comparison in Table S5.1.

‘Pretraining * Condition’ model

Euclidean Distance
Rabagliati et al. (2013) - experiment 1

Volume 5, Issue 1

Predictors Estimates  CI p
(Intercept) 60.13 38.98 - 81.28 <0.001
Model size [log] -0.95 -2.61-0.71 0.259
Pretraining size [log] -1.03 -2.10-0.05 0.060
Condition [Prior context] 291 -1.31-7.12 0.173
Dominant bias -0.57 -0.90 --0.25 0.001
Pretraining size [log] * condition [Prior context] -1.54 -2.60 - -0.48 0.005

Random Effects
o? 56.96
To0 family 13.78
ICC 0.19
N family 14
Observations 90
Marginal R? / Conditional R? 0.271/0.413
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Rabagliati et al. (2013) — Experiment 2
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Figure S5.3. Models’ Euclidean distance from children by model size and pretraining size
in Rabagliati et al. (2013) experiment 2. Model families are shown in the legend. The black
horizontal line (y=0) indicates child performance. The dashed regression line with 95%
confidence interval shows performance across models. Colored regression lines are also
shown for each model family, although only when examining model size as there is almost
null variation in pretraining size within family.

Table S5.3. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the Euclidean Distance between models and children in Rabagliati et
al. (2013) experiment 2. The predictors are dominant bias, log pretraining size, log model
size, and the interaction between model size and pretraining size. The random effect inter-
cept is Model Family.

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

Null model 3 359.62 365.04 -176.81 353.62 - - -

+ Dominant Bias 4 361.55 368.78 -176.78 353.55 0.07 1 0.789
+ Pretraining 5 362.38 371.42 -176.19 352.38 1.17 1 0.280
+ Model size 6 363.65 374.49 -175.82 351.65 0.73 1 0391

+Model size * Pretraining 7 365.63 378.28 -175.82 351.63 0.02 1 0.895
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Table S5.4. Although no model surpassed the Null model in Table S5.3, below we show the
output of the model including the main effects, to appreciate size of the estimates and vari-
ance explained.

‘+ Model size’ model

. Euclidean Distance
Rabagliati et al. (2013) - Experiment 2
Predictors Estimates CI p
(Intercept) 27.14 -16.95-71.23 0.221
Model size [log] 1.41 -2.08 - 4.90 0.418
Pretraining size [log] -1.26 -3.23-0.70 0.202
Dominant bias -0.05 -0.73 - 0.62 0.876
Random Effects
o 120.55
Too family 59.86
ICC 0.33
N family 14
Observations 45
Marginal R? / Conditional R? 0.049/0.365
Cabiddu et al. (2022)
60 oV
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5 4 g
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Figure S5.4. Models’ Euclidean distance from children by model size and pretraining size,
when comparing verb-event vs. control conditions in Cabiddu et al. (2022).

Volume 5, Issue 1



Language Development Research 94

Table S5.5. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the Euclidean Distance between models and children in Cabiddu et
al. (2022) when comparing Verb-Event condition to Control. The predictors are dominant
bias, log pretraining size, log model size, and the interaction between model size and pre-
training size. The random effect intercept is Model Family. The Null model includes main
and random effect intercepts. Subsequent models add one predictor at a time. The table
shows the number of model parameters (npar), Akaike (AIC) and Bayesian (BIC) Infor-
mation criterions, log-likelihood (logLik), deviance, Chi-square statistic (Chisq), degrees of
freedom (Df), and p value Pr(>Chisq).

npar AIC
Null model 3 344.69
+ Dominant Bias 4 343.94
+ Pretraining 5 341.72
+Model size 6 343.04

+Model size * Pretraining 7

342.91

BIC

350.11

351.17

350.75

353.88

355.55

logLik
-169.34
-167.97
-165.86
-165.52

-164.45

deviance Chisq Df Pr(>Chisq)
338.69 NA NA NA

335.94 2.75 1 0.097
331.72 4.22 1 0.040
331.04 0.68 1 0.411

328.91 2.14 1 0.144

Table S5.6. Output of the best model selected via model comparison in Table S5.5.

‘+ Pretraining’ model
Euclidean Distance
Verb-Event vs. Control
Cabiddu et al. (2022)

Predictors Estimates CI p
(Intercept) 26.71 -1.86 - 55.28 0.066
Pretraining size [log] 1.54 0.01 - 3.07 0.048
Dominant bias -0.02 -0.54 - 0.49 0.929

Random Effects
o? 74.61
To0 family 39.70
ICC 0.35
N family 14
Observations 45
Marginal R? / Conditional R? 0.167/0.456

Volume 5, Issue 1



Language Development Research 95

® ®
L]
= 60 = 60+
o o ®
k=) Family k=l Family
S bert S ® bert
@ albert-v1 @ ® albert-v1
> altt))eré—VZ > 40 ° - - ® altt))ert—v2
[} roberta [} { roberta
B 40 deberta 3 Phd deberta
= deberta-v2 = - deberta-v2
© deberta-v3 s o0 ® deberta-v3
e babyberta 2 -’ - babyberta
s gpt XS] - v gpt
g transfo-x| g = - ® transfo-xI|
L]
= 20 %ﬂ = 204 A ° %ﬂ
o @ P
o} xInet o} L] xInet
= elmo 2 elmo
[&] o
o ® 4 Y
0 0
2 4 6 50 25 00 25 50
Model size (log million parameters) Pretraining size (log GB)

Figure S5.5. Models’ Euclidean distance from children by model size and pretraining size,
when comparing verb-lexical vs. control conditions in Cabiddu et al. (2022).

Table S5.7. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the Euclidean Distance between models and children in Cabiddu et
al. (2022) when comparing Verb-Lexical condition to Control. The predictors are dominant
bias, log pretraining size, log model size, and the interaction between model size and pre-
training size. The random effect intercept is Model Family. The Null model includes main
and random effect intercepts. Subsequent models add one predictor at a time. The table
shows the number of model parameters (npar), Akaike (AIC) and Bayesian (BIC) Infor-
mation criterions, log-likelihood (logLik), deviance, Chi-square statistic (Chisq), degrees of
freedom (Df), and p value Pr(>Chisq).

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)

Null model 3 390.83 396.25 -192.42 384.83 NA NA NA

+ Dominant Bias 4 389.72 396.95 -190.86 381.72 3.11 1 0.078
+ Pretraining 5 387.82 396.85 -188.91 377.82 3.90 1 0.048
+ Model size 6 389.03 399.87 -188.51 377.03 0.79 1 0.374

+Model size * Pretraining 7 389.61 402.26 -187.81 375.61 1.41 1 0.234
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Table S5.8. Output of the best model selected via model comparison in Table S5.7.

‘+ Pretraining’ model
Euclidean Distance
Verb-Lexical vs. Control
Cabiddu et al. (2022b)

Predictors Estimates  CI )4
(Intercept) 32.85 -13.44-79.14 0.159
Pretraining size [log] 2.28 -0.13 - 4.69 0.063
Dominant bias -0.08 -0.91-0.76 0.853

Random Effects
o? 242.72
T00 family 44.56
ICC 0.16
N family 14
Observations 45
Marginal R? / Conditional R? 0.158/0.289
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Appendix S6: Simulations using adult-based sense prototypes
This section presents supplemental results obtained by using adult-directed speech to com-
pute sense prototypes prior to testing the 45 Transformers in the word sense disambiguation

tasks.

We initially explain how adult-directed speech was sense-tagged. Subsequently, we present
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plots showing the raw performance on the three experimental tasks for each adult-based
Transformer.

This is followed by comparisons between adult-based models and the previously employed
child-based models. For these comparisons, a preliminary examination was conducted to de-
termine if adult-based models demonstrated superior performance than child-based models
at the condition level, specifically looking at the percentage of correct responses given by a
model in each experimental condition (note that this measure is independent of child perfor-
mance).

Finally, we examined whether the child-based models better fit the children’s data than the
adult-based models. We begin by demonstrating that adult-based models did not display any
dominance sense preference, thus highlighting the importance of using child-directed
speech to derive child-based sense prototypes that reflect sense frequencies in the child in-
put. We then show that child-based models better fit children’s data in coherent tasks but not
contrastive ones.

Sense Tagging the Spoken BNC

A question left open by previous analyses is whether the suboptimal performance of Trans-
formers in contrastive tasks might be due to the use of sense prototypes computed from
sense-tagged child-directed speech. Thus, it is possible that the models could perform better
when their prototypes are based on adult-directed speech. Alternatively, the models may face
difficulties with contrastive tasks for other reasons, such as a lack of real-world inference
skills or multimodal data.

To build adult-based prototypes, we sense-tagged 80 utterances for each target word used in
the study (40 utterances per sense). We extracted these utterances (available in our GitHub
page) from adult-adult conversations present in the spoken section of the British National
Corpus (BNC Consortium, 2007). One target word, turkey, had to be discarded because no ut-
terances were available for one of its senses. For an additional four words, the input con-
tained fewer than 40 utterances for one of the senses. Despite this, we used the number of
utterances available and retained these target words in order to maximize the sample of
items. In one case, a sense received a very low number of input utterances (n = 3). However,
this was still retained on the basis that n = 3 is considered the minimum acceptable number
to make sense prototypes functional in sense disambiguation (e.g., Loureiro et al., 2021). The
frequencies of each tagged sense in the new adult input are displayed below in Table S6.1.
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Table S6.1. For each target word's sense, the table displays the number of utterances tagged
from the Spoken BNC.

Target Word Sense n

band music_group 40
band object 40
bat animal 9

bat object 35
bow knot 34
bow weapon 3

button clothing 40
button tech 40
card note 40
card playing 40
chicken animal 34
chicken food 40
fish animal 40
fish food 40
glasses drinking 40
glasses eye 40
lamb animal 24
lamb food 40
letter alphabet 40
letter mail 40
line geometry 40
line order 40
nail body_part 40
nail object 40
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Plots of Dominant Sense Selection - Raw Performance of Adult-Based Models
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Figure S6.1. Percentage of dominant sense selections in adult-based models and children
for experiment 1 of Rabagliati et al. (2013), in dominant-plausible and subordinate-plau-
sible conditions (legend), when disambiguation cues were included in current or prior con-

text (left and right panel respectively).
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Rabagliati et al. (2013) - Experiment 2
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Figure S6.2. Percentage of dominant sense selections in adult-based models and children

for experiment 2 of Rabagliati et al. (2013), in dominant-plausible and subordinate-plau-
sible conditions (legend).
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Figure S6.3. Percentage of dominant sense selections in adult-based models for Cabiddu et

al. (2022), in dominant-plausible (Verb-lexical, Verb-event) and subordinate-plausible
conditions (Control).
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Examining Correct Responses in Adult-Based and Child-Based Models

After implementing prototypes based on adult speech and rerunning the Transformers on
the test stimuli, we examined the performance of the adult-based models in comparison to
those child-based. As can be observed in Figure S6.4, the percentage of correct responses is
remarkably similar across both age groups (adult-based models / child-based models) in each
experiment considered. This reaffirms that the lower performance of Transformers in con-
trastive tasks, as seen in the Rabagliati Experiment 2 and Cabiddu Experiment 1, was not a
consequence of deriving sense prototypes from child-directed speech.

It is important to note that this preliminary comparison does not take into account how
closely the adult-based and child-based models approximate child performance. We relate
the models' performance to child responses in the following section.

Rabagliati Rabagliati Cabiddu
Exp 1 Exp 2 Exp 1
4 s
Fepgahs = verb-lexical
prior unassociated . iH_?H
e - :
B Age Group
verb-event [ Adult-directed speech
| S [E Child-directed speech
Pt o
currenty associated [
- o L,
N
O P e S O P S LS O P ® oS

Correct responses (Mean %)

Figure S6.4. Mean percentage of correct responses (x-axis) in adult-based and child-based
models (legend) for every condition (y-axis) in the behavioral experiments (panels). Error
bars represent standard deviations around the mean percentages. Data points indicate per-
formance for individual models in each condition.

Relating adult-based and child-based models’ performance to child responses
Dominant Sense Preference
First, we investigated whether the models based on adult speech showed any preference for

dominant senses (e.g., elastic band) or a subordinate sense (e.g., music band) in the initial ex-
periment, which used coherent sentences (Rabagliati et al., 2013; Study 1).
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In the experimental study involving both adults and children (Cabiddu et al., 2022), domi-
nance had a more pronounced effect on child performance compared to adult performance.
One hypothesis suggested that the distribution of sense frequencies might not be identical in
adult-directed speech as it is in child-directed speech. If this hypothesis were correct, we
would anticipate that Transformers would exhibit a weak or null dominance bias when their
prototypes are derived from adult input. As shown in the figure S6.5, a visual comparison
between adult-based and child-based dominance preference supports this expectation: The
models did not display a dominance preference when using prototypes based on adult data.
Further, we found a significant difference in dominance preference between adult-based and
child-based models, in interaction with both model size and pretraining size (see Table S6.2
and S6.3). This finding supports the hypothesis that the dominant bias identified in the mod-
els based on child data was likely a result of employing sense-tagged child-directed speech.

Table S6.2. Model comparison between nested linear mixed-effect models via likelihood ratio
test. The outcome is the percentage of dominant senses selected across conditions of Ra-
bagliati et al. (2013) experiment 1. The predictors are age group (adult-based model/child-
based model), log pretraining size, log model size, and their interactions. Model family was
used as random effect intercept. The Null model only includes main and random effect inter-
cepts. Subsequent models add one predictor at a time. The table shows the number of model
parameters (npar), Akaike (AIC) and Bayesian (BIC) Information criterions, log-likelihood
(logLik), deviance, Chi-square statistic (Chisq), degrees of freedom (Df), and p value
Pr(>Chisq).

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
Null model 3 629.94 637.44 -311.97 623.94 NA NA NA
+ Age group 4 621.44 631.44 -306.72 613.44 10.50 1 0.001
+ Pretraining 5 613.08 625.58 -301.54 603.08 10.36 1 0.001
+ Model size 6 614.54 629.54 -301.27 602.54 0.54 1 0.461
+Age groupx 7 590.41 607.91 -288.21 576.41 26.13 1 0.000
Model size
+Age groupx 8 587.07 607.07 -285.53 571.07 5.34 1 0.021
Pretraining
+ Pretraining x 9 589.05  611.55  -285.52  571.05 0.02 1 0.884
Model size
+Age groupx 10 587.48 612.47 -283.74 567.48 3.57 1 0.059
Pretraining x
Model size
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Table S6.3. Output of the best model selected via model comparison in Table S6.2.

Dominant Sense Preference

‘+ Age group * Pretraining’ model

Predictors Estimates CI p
(Intercept) 39.67 32.69 - 46.65 <0.001
Age group [Child-directed speech] 23.82 15.26 - 32.38 <0.001
Model size [log] 1.29 -0.23 -2.80 0.096
Pretraining size [log] -0.35 -1.10-0.40 0.354
Age group [Child-directed speech] x -3.34 -5.28 - -1.39 0.001

Model size [log]

Age group [Child-directed speech] x -1.08 -2.03--0.14 0.025
Pretraining size [log]

Random Effects
o’ 31.66
T0o family 6.36
ICC 0.17
N family 14
Observations 90
Marginal R? / Conditional R? 0.428 / 0.524

Volume 5, Issue 1



Language Development Research 105

100 100

75 Family

€ bert

< albert-v1

< albert-v2
roberta
deberta

“ deberta-v2

€ deberta-v3
babyberta

< gpt

< transfo-x

75 Family

® bert
albert-v1
O albert-v2
roberta
deberta
deberta-v2
® deberta-v3
babyberta
@® gpt
transfo-x|
© ctrl
t5
25 xInet
elmo

50

Dominant sense selections (%)
Dominant sense selections (%)

25 “ xlnet

2 4 6 -5.0 25 0.0 25 5.0

Model size (log million parameters) Pretraining size (log GB)

Figure S6.5. The percentage of dominant sense selections by adult-based models, in Ra-
bagliati et al. (2013; Study 1), is randomly distributed around 50% and never reaches the
level of child dominance bias (indicated by the dashed horizontal line). Furthermore, the
selections of dominant senses do not change as a function of either the model size or the
pretraining size. The solid lines display the dominant sense selection patterns in the child-
based models for a visual comparison.

Euclidean Distance Measure

In this section, we examined whether child-based models fit children's responses better than
adult-based models in each of the three experiments. We used the measure of Euclidean Dis-

tance that, as presented in Appendix S5, evaluates the exact match between the model and
the child.

To foresee, the only significant difference between adult-based and child-based models was
found when examining performance in resolving coherent stories (Rabagliati et al., 2013;
Study 1).

In Figure S6.6, we show that child-based models performed more closely to child perfor-
mance than the adult models did in the first experiment. This can be observed by examining
the differences between adult-based dashed regression lines and child-based solid regression
lines, with child-based models' regression lines being closer to child performance (y =0). The
difference in Euclidean distance from children between adult-based models and child-based
models was significant, as shown in table S6.4 and S6.5.
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For what concerns the contrastive tasks, instead, tables S6.6 to S6.11 show non-significant
differences between adult-based models and child-based models at capturing child perfor-

mance.
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Figure S6.6. Models’ Euclidean distance from children by model size (top row) and pre-
training size (bottom row), in current and prior context conditions of Rabagliati et al.
(2013), experiment 1. Model families are shown in the legend. The black horizontal line
(y=0) indicates child performance. The dashed regression line with 95% confidence inter-
val shows performance across adult-based models. The solid regression line with 95% con-
fidence interval shows performance across child-based models. Colored regression lines
are also shown for each adult-based model family, although only when examining model
size as there is almost null variation in pretraining size within family. Colored data points
refer to the adult-based dataset. Data points from child-based dataset are omitted for sim-

plicity.
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Table S6.4. Model comparison between nested linear mixed-effect models via likelihood ratio
test. The outcome is the Euclidean Distance between models and children in Rabagliati et al.
(2013) experiment 1. See our main paper for more details about this outcome measure. The
predictors are age group (adult-based model/child-based model), condition (current, prior
context), log pretraining size, log model size, and their two-way and three-way interactions.
The random effect intercept is Model Family. The Null model includes main and random ef-
fect intercepts. Subsequent models add one predictor at a time. The table shows the number
of model parameters (npar), Akaike (AIC) and Bayesian (BIC) Information criterions, log-
likelihood (logLik), deviance, Chi-square statistic (Chisq), degrees of freedom (Df), and p
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value Pr(>Chisq).

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
Null model 3 1333.28 1342.86 -663.64 1327.28 NA NA NA
+ Age group 4 1329.41 1342.19 -660.71 1321.41 5.87 1 0.015
+ Condition S 1330.94 1346.90 -660.47 1320.94 0.47 1 0.491
+ Pretraining 6 1324.41 1343.56 -656.20 1312.41 8.53 1 0.003
+ Model size 7 1325.45 1347.80 -655.73 1311.45 0.95 1 0.329
+Age groupx 8 1327.42 1352.97 -655.71 1311.42 0.03 1 0.862
Condition
+Age groupx 9 1324.78 1353.52 -653.39 1306.78 4.64 1 0.031
Model size
+Age groupx 10 1326.43 1358.36 -653.22 1306.43 0.35 1 0.556
Pretraining
+ Conditionx 11 1317.48 1352.60 -647.74 1295.48 10.95 1 0.001
Pretraining
+ Conditionx 12 1314.56 1352.88 -645.28 1290.56 4.92 1 0.027
Model size
+ Pretraining x 13 1315.14 1356.65 -644.57 1289.14 1.42 1 0.233
Model size
+Agegroupx 14 1317.05 1361.75 -644.52 1289.05 0.09 1 0.759
Condition x
Pretraining
+Age groupx 15 1317.95 1365.85 -643.98 1287.95 1.09 1 0.296
Condition x
Model size
+Age groupx 16 1319.94 1371.02 -643.97 1287.94 0.02 1 0.891

Pretraining x

Model size
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Table S6.5. Output of the best model selected via model comparison in Table S6.4.

‘Condition x Model size’ model
Euclidean Distance
Rabagliati et al. (2013) - experiment 1

Predictors Estimates CI p
(Intercept) 31.32 21.92 - 40.71 <0.001
Age group [Child-directed speech] -13.22 -22.68 - -3.77 0.006
Condition [Prior context] 12.38 2.93-21.84 0.011
Model size [log] -0.67 -2.67 -1.32 0.506
Pretraining size [log] -0.30 -1.28 - 0.69 0.554
Age group [Child-directed speech] x -0.46 -5.48 - 4.57 0.858

Condition [Prior context]

Age group [Child-directed speech] x -0.31 -1.31-0.70 0.548
Pretraining size [log]

Age group [Child-directed speech] x 2.29 0.22 - 4.37 0.030
Model size [log]

Condition [Prior context] x Pretraining size [log] -0.80 -1.81-0.20 0.116

Condition [Prior context] x Model size [log] -2.29 -4.36 - -0.21 0.031
Random Effects

o? 72.92

Too family 16.61

ICC 0.19

N family 14

Observations 180

Marginal R? / Conditional R? 0.195/0.345
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Figure S6.7. Models’ Euclidean distance from children by model size and pretraining size
in Rabagliati et al. (2013) experiment 2. Model families are shown in the legend. The black
horizontal line (y=0) indicates child performance. The dashed regression line with 95%
confidence interval shows performance across adult-based models. The solid regression
line with 95% confidence interval shows performance across child-based models. Colored
regression lines are also shown for each adult-based model family, although only when ex-
amining model size as there is almost null variation in pretraining size within family. Col-
ored data points refer to the adult-based dataset. Data points from child-based dataset are
omitted for simplicity.
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Figure S6.8. Models’ Euclidean distance from children by model size and pretraining size
in Cabiddu et al. (2022), Verb-Event condition. Model families are shown in the legend. The
black horizontal line (y=0) indicates child performance. The dashed regression line with
95% confidence interval shows performance across adult-based models. The solid regres-
sion line with 95% confidence interval shows performance across child-based models. Col-
ored regression lines are also shown for each adult-based model family, although only
when examining model size as there is almost null variation in pretraining size within fam-
ily. Colored data points refer to the adult-based dataset. Data points from child-based da-

taset are omitted for simplicity.

Volume 5, Issue 1



Language Development Research 110

Table S6.6. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the Euclidean Distance between models and children in Rabagliati et
al. (2013) experiment 2. See our main paper for more details about this outcome measure.
The predictors are age group (adult-based model/child-based model), log pretraining size,
log model size, and interactions. The random effect intercept is Model Family. Subsequent
models add one predictor at a time. The table shows the number of model parameters (npar),
Akaike (AIC) and Bayesian (BIC) Information criterions, log-likelihood (logLik), deviance,
Chi-square statistic (Chisq), degrees of freedom (Df), and p value Pr(>Chisq).

npar AIC BIC logLik deviance Chisq Df Pr(>Chisq)
Null model 3 693.46 700.96  -343.73 687.46 NA NA NA
+ Age group 4 695.33 705.33  -343.66 687.33 0.13 1 0.716
+ Pretraining S 697.21 709.71  -343.60 687.21 0.12 1 0.728
+ Model size 6 698.79 713.79  -343.40 686.79 0.41 1 0.520
+ Age group x Model size 7 700.79 718.29  -343.40 686.79 0.00 1 0.983
+ Age group x Pretraining 8 702.32 722.31  -343.16 686.32 0.48 1 0.490
+ Pretraining x Model size 9 703.57 726.07  -342.78 685.57 0.75 1 0.387
+ Age group x Pretraining x 10 704.57 729.57  -342.29 684.57 0.99 1 0.319

Model size

Table S6.7. Although no model surpassed the Null model in Table S6.6, below we show the
output of the model including the main effects, to appreciate size of the estimates and vari-
ance explained.

‘+ Model size’ model - Euclidean Distance
Rabagliati et al. (2013) - Experiment 2

Predictors Estimates CI p
(Intercept) 24.31 12.79 - 35.83 <0.001
Age group [Child-directed speech] 0.77 -3.51 - 5.05 0.721
Model size [log] 0.70 -1.58 - 2.99 0.542
Pretraining size [log] -0.32 -1.47 -0.83 0.581

Random Effects
o’ 104.19
Too family 4462
ICC 0.30
N family 14
Observations 90
Marginal R* / Conditional R* 0.007/0.305
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Table S6.8. Model comparison between nested linear mixed-effect models via likelihood ra-
tio test. The outcome is the Euclidean Distance between models and children in Cabiddu et
al. (2022) Verb-Event condition. See our main paper for more details about this outcome
measure. The predictors are age group (adult-based model/child-based model), log pre-
training size, log model size, and interactions. The random effect intercept is Model Family.
The Null model includes main and random effect intercepts. Subsequent models add one pre-
dictor at a time. The table shows the number of model parameters (npar), Akaike (AIC) and
Bayesian (BIC) Information criterions, log-likelihood (logLik), deviance, Chi-square statis-
tic (Chisq), degrees of freedom (Df), and p value Pr(>Chisq).

npar
Null model 3
+ Age group 4
+ Pretraining 5
+ Model size 6
+ Age group x 7
Model size
+ Age group x 8
Pretraining
+ Pretraining x 9
Model size
+ Age group x 10
Pretraining x
Model size

AIC

678.16

680.02

675.80

676.18

675.29

675.34

673.64

675.63

BIC

685.66

690.02

688.30

691.18

692.79

695.34

696.14

700.63
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logLik

-336.08

-336.01

-332.90

-332.09

-330.64

-329.67

-327.82

-327.81

deviance

672.16

672.02

665.80

664.18

661.29

659.34

655.64

655.63

Chisq

NA

0.14

6.22

1.62

2.89

1.94

3.71

0.01

Df

NA

Pr(>Chisq)

NA

0.706

0.013

0.203

0.089

0.163

0.054

0.918
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Table S6.9. Output of the best model selected via model comparison in Table S6.8.

‘+ Pretraining’ model -Euclidean Distance
Verb-Event Condition -Cabiddu et al. (2022)

Predictors Estimates CI p
(Intercept) 25.80 20.83 - 30.77 <0.001
Age group [Child-directed 0.71 -3.08 - 4.51 0.710
speech]

Pretraining size [log] 1.25 0.32-2.18 0.009

Random Effects
o’ 82.01
Too family 3336
ICC 0.29
N family 14
Observations 90
Marginal R? / Conditional R? 0.110/0.367
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Figure S6.9. Models’ Euclidean distance from children by model size and pretraining size
in Cabiddu et al. (2022), Verb-Lexical condition. Model families are shown in the legend.
The black horizontal line (y=0) indicates child performance. The dashed regression line
with 95% confidence interval shows performance across adult-based models. The solid re-
gression line with 95% confidence interval shows performance across child-based models.
Colored regression lines are also shown for each adult-based model family, although only
when examining model size as there is almost null variation in pretraining size within fam-
ily. Colored data points refer to the adult-based dataset. Data points from child-based da-

taset are omitted for simplicity.
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Table S6.10. Model comparison between nested linear mixed-effect models via likelihood
ratio test. The outcome is the Euclidean Distance between models and children in Cabiddu
et al. (2022) Verb-Lexical condition. See our main paper for more details about this outcome
measure. The predictors are age group (adult-based model/child-based model), log pre-
training size, log model size, and interactions. The random effect intercept is Model Family.
The Null model includes main and random effect intercepts. Subsequent models add one pre-
dictor at a time. The table shows the number of model parameters (npar), Akaike (AIC) and
Bayesian (BIC) Information criterions, log-likelihood (logLik), deviance, Chi-square statis-
tic (Chisq), degrees of freedom (Df), and p value Pr(>Chisq).

npar
Null model 3
+ Age group 4
+ Pretraining 5
+ Model size 6
+ Age group X 7
Model size
+ Age group X 8
Pretraining
+ Pretraining x 9
Model size
+ Age group X 10
Pretraining x
Model size

AIC

755.38

757.29

752.51

746.59

748.52

749.62

748.72

750.33

BIC

762.88

767.29

765.01

761.59

766.02

769.62

771.22

775.33

logLik

-374.69

-374.65

-371.26

-367.29

-367.26

-366.81

-365.36

-365.17

deviance

749.38

749.29

742.51

734.59

734.52

733.62

730.72

730.33
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Chisq

NA

0.09

6.78

7.92

0.06

0.90

2.90

0.39

Df

NA

Pr(>Chisq)

NA

0.760

0.009

0.005

0.800

0.343

0.088

0.534
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Table S6.11. Output of the best model selected via model comparison in Table $6.10.

‘+ Model size’ model -Euclidean Distance
Verb-Lexical Condition
Cabiddu et al. (2022)

Predictors Estimates CI p
(Intercept) 7.66 -8.10 - 23.42 0.336
Age group [Child-directed 0.91 -4.54 - 6.36 0.742
speech]

Model size [log] 4.80 1.76 - 7.83 0.002
Pretraining size [log] 0.86 -0.68 - 2.39 0.270

Random Effects
o’ 168.96
Too family 110.41
ICC 0.40
N family 14
Observations 90
Marginal R? / Conditional R? 0.214/0.524
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Introduction

Using neural language models for language development research dates back to Elman
(1993) simulating language acquisition with recurrent neural networks and conceiving
the theory of “the importance of starting small”. Similarly, Harris (1954)’s distribu-
tional structure has motivated word embeddings - a seminal work showing that the
semantic relationship between words can be learned without supervision from text
data alone (Goth, 2016; Mikolov et al., 2013). These are just some examples of where
machine learning has already influenced the development and testing of linguistic
theories, showcasing a thriving relationship between the two disciplines (Baroni, 2021,
Contreras Kallens et al., 2023; De Seyssel et al., 2023; Dupoux, 2018). The unprecedented
success of language models in recent years (Bahdanau et al., 2015; Brown et al., 2020;
Devlin et al., 2019; Raffel et al., 2020; Vaswani et al., 2017) provides many opportunities
to further advance our understanding of human language learning.

A growing body of work has found similarities between large language models and
humans (Dasgupta et al., 2022; Schrimpf et al., 2021; Srikant et al., 2022; Webb et al.,
2023; Wei et al., 2022), showing that approximate representations of the outside world
can be learned from statistical patterns found in linguistic input alone (Abdou et al.,
2021; B. Z. Li et al., 2021; K. Li et al., 2023; Patel & Pavlick, 2022), and manifesting the
usefulness of large language models for other disciplines such as psychology (Demszky
et al., 2023). However, a so far open issue is the fact that language models are exposed
to different input modalities (i.e., mainly text) and have much more data available for
training than humans (De Seyssel et al., 2023; Warstadt & Bowman, 2022). Resolving
the discrepancy by which language models require much more data than a human
child is of high interest to both cognitive science (with the goal of more representative
models) and natural language processing researchers (with the goal of more efficient
models). Notably, there are ongoing efforts to train language models from similar input
as available to a human child, e. g., as in BabyBERTa (Huebner et al., 2021), and the
BabyLM challenge! (Warstadt et al., 2023).

To promote a deeper understanding of how large language models may be useful for
language development research, we suggest to take inspiration from the field of emer-
gent machine-to-machine communication - where two or more neural network agents
without exposure to an existing language need to engage in a communication game
with the goal of successfully understanding each other (Foerster et al., 2016; Kottur
et al., 2017; Lazaridou & Baroni, 2020; Lazaridou et al., 2017). Specifically, emergent
communication simulations explore what happens when artificial neural networks
(on which also large language models are based) need to create their own languages
from scratch, i.e., without first being pre-trained on natural language corpora: do they
create human-like languages by-default, or are there specific biases and constraints that
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need to be introduced in order to replicate human behavior? By attempting to simulate
phenomena previously observed in humans, research on emergent communication has
provided valuable insights into the processes and pressures that shape the evolution of
human language, and has allowed researchers to effectively scrutinize, identify, and
tease apart the relevant learning biases and conditions that underlie the communica-
tive behaviors of artificial neural networks when they are made to communicate by
themselves.

Although the setting of emergent communication is typically motivated for studying
the evolution of language (see Lazaridou & Baroni, 2020; Lian et al., 2023, inter alia),
language learning and language evolution are intrinsically linked: As languages are
passed from generation to generation in a repeated cycle of transmission, imitation,
and use, their structure is continuously shaped by the pressures and biases introduced
by learners during the process of language acquisition - with such learning biases effec-
tively shaping the evolution of languages on a longer timescale (Chater & Christiansen,
2010; Kirby et al., 2014; Smith, 2022). As such, constraints and pressures associated with
learning can causally affect (and, in fact, create) the universal properties of languages,
including their most fundamental structural features (Kirby, 2002, 2017; Kirby et al.,
2004). As such, we believe that the field of emergent communication provides an ideal
testbed for exploring the learning pressures neural networks are exposed to in the
process of language learning and use, and can help shed light on (some of) the criticial
inductive biases needed for replicating human linguistic behavior.

Since the theoretical usefulness of a model is dependent on its resemblance to the target
entity (Zeigler et al., 2000), identifying the relevant learning pressures and biases that
govern language creation in neural network models can in turn make neural language
models more behaviorally plausible, and consequentially a more robust scientific tool
for the language sciences. Here, we review the emergent communication literature
and identify underlying learning pressures, while contrasting those with the learning
pressures at play when training large language models. Thereby we shed new light on
the learning dynamics of neural language models and contribute to the development of
more behaviorally plausible language models for language acquisition research.

In the following, we offer a comparative perspective on humans, large language models,
and deep learning agents engaging in communication games by reviewing similarities
and differences in observed phenomena, discussing how mismatches in the behavior
of humans and neural agents can be resolved through appropriate inductive biases, and
determining the underlying learning pressures at play. We first provide a brief overview
of the emergent communication literature, and then showcase initial mismatches be-
tween neural agents and humans with respect to multiple linguistic phenomena: Zipf’s
law of abbreviation, the benefits of compositional structure, and social factors shaping
linguistic diversity (e.g., population size effects). For each of these phenomena, we de-
scribe how the initial mismatch between humans and neural network models has been
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resolved, and identify the underlying learning pressures giving rise to these patterns.
In particular, we identify four cognitive and communicative pressures underlying both
language acquisition and language evolution, and discuss whether they are inherent
to the training objective (i.e., present by default given the learning environment and
objective) or whether they need to be artificially incorporated into the models as in-
ductive biases to elicit the desired outcome. We then contrast the identified pressures
and biases with those present in the training of large language models, with the goal of
promoting knowledge transfer between machine learning and language sciences. We
conclude with concrete suggestions for future directions, aimed at developing more
cognitively plausible language models for both language development and language
evolution research.

Emergent communication, initial mismatches, and their resolution
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[l [ ]

000 Message 000
< 2
Sender Receiver

Figure 1. Schematics of a simple communication game. The sender sees an object and
has to compose a message to describe it. The receiver only sees the message and has to
discriminate the object against distractors, or fully reconstruct it.

Computational modeling has long been used to study language evolution by simulating
the process of communication and transmission between artificial agents, typically
Bayesian learners (Dale & Lupyan, 2012; Gong et al., 2008; Kirby, 2002; Kirby et al.,
2004; Kirby et al., 2015; Perfors & Navarro, 2014; Smith et al., 2003; Smith & Kirby,
2008; Steels, 2016). The emergence of new communication systems is similarly studied
using deep neural network models (Lazaridou & Baroni, 2020), and in experimental
work with human participants (Kirby et al., 2008; Raviv et al., 2019b; Selten & Warglien,
2007; Winters et al., 2015). Regardless of whether the subjects of these experiments are
humans, Bayesian agents, or deep neural networks, they all share the same methodolog-
ical framework, namely, sender-receiver communication games: One agent describes
an input (e. g., an object or a scene), and transmits a message to another agent, that
then has to guess or fully reconstruct the sender’s input (see Figure 1). The agents in
emergent communication experiments are typically based on deep neural networks,
similar to those used in large language models.
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Table 1: Observed phenomena from humans in agents from emergent communication
simulations

Phenomenon in Hu-
mans

Mismatch in Emergent Com-
munication agents

Resolution

Zipfian distribution in
utterance length (fre-
quent meanings are
described by shorter
utterances)

Sender agents exploit the
full channel capacity because
longer messages are easier
to distinguish by receiver
agents.

Introducing a penalty on
long utterances (simulating
"laziness") restores the Zip-
fian distribution on utterance
length.

Compositional struc-
ture reliably emerges
during  communi-
cation and cultural
transmission, and
is beneficial for lan-
guage learning and
generalization

Inconsistent emergence of
compositional structure in
neural agents, and seemingly
no advantage of more compo-
sitional protocols for general-
ization

Periodically resetting agents’
parameters (simulating gen-
erational turnover) gives rise
to compositional protocols,
which are easier to learn for
neural network agents

Population size af-
fects the emergence
of compositional
structure (larger
communities create
more systematic
languages)

Larger populations of neural
agents do not create more
compositional protocols

Introducing population
heterogeneity (simulating
individual differences) or
production-comprehension
symmetry (simulating role
alternation in language use)
leads to larger populations
creating more systematic
protocols
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In a typical communication game, the sender acts as a conditioned-generation model,
taking a target input (for example, an image or a set of attribute values) and produces a
message consisting of multiple symbols. The symbols of the message are generated one
by one without any pre-defined vocabulary. The generated message is then transmitted
to the receiver. The receiver is trained to infer the sender’s input based on the message,
by selecting the correct object among distractors or by fully reconstructing it.

Emergent communication models start with randomly-initialized parameters, without
any pre-defined list of words or look-up table. Thus, the messages start out as random,
and only over the course of training and interaction do the models develop a communi-
cation protocol. In fact, it is the central assumptions of emergent communication that
the agents are not seeded with some initial language or communication protocol, but
that they develop the communication system on their own during interaction. Thus,
agents start from scratch and are guided primarily by communicative success. Yet,
there is room for inductive biases, i. e., additional biases that are imposed on the learn-
ing system to promote desired behaviours (Mitchell, 1980). While cognitive biases in
biological learning systems occur naturally, inductive biases in machine learning are
artificially introduced to guide the learning dynamics. For a profound overview of the
emergent communication literature, we refer to recent review and survey papers by
Lazaridou and Baroni (2020), Galke et al. (2022), and Brandizzi (2023).

Notably, methods from the field of emergent communication and from the closely
related field of reinforcement learning (see Kosoy et al., 2020; Kosoy et al., 2022, inter
alia) have already been used for language development research (see Ohmer et al., 2020;
Portelance et al., 2021, inter alia), for example, to study the emergence of a mutual
exclusivity bias with pragmatic agents.

While emergent communication simulations hold a great potential for advancing our un-
derstanding of how languages emerge, we can only expect insights gained with deep neu-
ral networks to inform language evolution research if the resulting languages actually
show the same properties as natural languages (Galke et al., 2022). Consequently, most
emergent communication simulations try to compare the properties of their emerging
communication protocols to the properties found in natural languages (Havrylov &
Titov, 2017; Kottur et al., 2017; Lazaridou et al., 2017). By following this approach, the
field has unveiled substantial differences between humans and machines in how they
learn to communicate and what kinds of languages they develop.

Crucially, although the emergent languages of neural networks initially did not exhibit
many of the linguistic properties typically associated with human languages, most
of these differences could be reconciled by adding adequate inductive biases, such
as laziness and impatience - which, when introduced, recovered the effects found in
humans. Notably, some linguistic phenomena such as the word-order/case-marking
trade-off seem to occur in communicating neural networks without specific inductive
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biases (Lian et al., 2023). Below we review selected properties of human languages in
which initial mismatches between humans and neural network agents were resolved
and discuss the inductive biases that were necessary for their recovery. Table 1 provides
an overview of the three phenomena and their occurrence in neural simulations.

Zipfian distribution in utterance length

Perhaps the most illustrative example of mismatches between the languages devel-
oped by humans and machines was the initial absence of Zipf’s law of abbreviation in
machine learning simulations. According to Zipf’s law of abbreviation, the relation-
ship between word frequency and word length follows a power law distribution, such
that more frequent words are typically shorter while less frequent words are typically
longer (Newman, 2005; Zipf, 1949). Zipf (1949) suggested that this effect is caused by the
principle of least effort, i.e., since frequent words are produced often, and shorter words
are easier to produce. Critically, Zipf’s law has important implications for language
evolution (Kanwal et al., 2017) and language acquisition (Ellis & Collins, 2009), with
active restructuring of lexicon towards more efficient communication (Gibson et al.,
2019).

Initial findings in emergent communication showed that Zipf’s Law of Abbreviation
is absent from the languages developed by neural agents, which was dubbed as ’anti-
efficient coding’ (Chaabouni et al., 2019). This was because neural senders were not
under any pressure to communicate efficiently or to reduce effort. In fact, longer
messages were easier for the receiver agent to process because they allowed for more
opportunities to differentiate between meanings: for a 1-symbol utterance, the sender
can select only 1 item from the alphabet of size k, but for a n-symbol utterance, the
sender can produce k" different combinations. The more distinct utterances are from
another, the easier it is for the receiver to distinguish the target meaning from other pos-
sible meanings. Thus, longer utterances are advantageous for conveying the meaning
correctly - especially when there is no penalty for utterance length.

The mismatch with human language was resolved by adjusting the optimization objec-
tive in a direction that made sender agents “lazy” (i.e., longer messages were penalized)
and receiver agents “impatient” (i.e., receivers tried to infer the meaning as early as
possible in a sequential read) (Rita et al., 2020). This inductive bias, which aims at
mimicking real human behavior during language production and comprehension, has
recovered Zipf’s Law of Abbreviation in emergent communication simulations - show-
ing that when such biases for efficiency are introduced, communication protocols
developed by neural agents do show a similar frequency-length relationship as found
in natural languages.
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The emergence of compositional structure and its benefits for learning and general-
ization

Compositional structure is considered a hallmark feature of human language (Hockett,
1960; Szabd, 2022): there is a systematic mapping between linguistic forms (e.g., words,
morphemes) and their meanings (e.g., concepts, grammatical categories), such that
the meaning of a complex expression can be typically derived from the meanings its
constituent parts. For example, the meaning of the phrase "small cats" is directly derived
from the meanings of the words "small", "cat", and the marker "-s" (denoting plurality).
The presence of such compositional structure underlies the infinite expressive and
productive power of human languages, allowing us to describe new meanings in a
way that is transparent and understandable to other speakers (Kirby, 2002; Zuidema,
2002).

In experiments simulating the evolution of languages in the lab using sender-receiver
communication games, the need to communicate over a growing number of different
items or in an open-ended meaning space leads to the emergence of compositional
languages (Nolle et al., 2018; Raviv et al., 2019a). Crucially, the degree of compositional
structure in linguistic input then predicts adults’ learning and generalization accuracy,
such that, compared to languages with little to no compositionality, languages with
more compositional structure are learned better and faster and result in better (i.e.,
more transparent and systematic) generalizations to new meanings, which are also
shared across different individuals who never interacted before (Raviv et al., 2021).
Thus, the evolution of more compositional and systematic linguistic structure allows
for more productive generalization and facilitates communication and convergence
between strangers.

The learning advantage of more compositional structure for adult participants is also
echoed in numerous iterated learning studies, which have shown that artificial lan-
guages become more compositional and consequently easier to learn over the course
of cross-generational transmission (Beckner et al., 2017; Carr et al., 2017; Kirby et al.,
2008; Kirby et al., 2014).

Testing the limits of our imagination, neural networks seemed to generalize well even
without compositional communication protocols (Chaabouni et al., 2020; Lazaridou
et al., 2018). Specifically, Chaabouni et al. (2020) found that, after many repetitions
of an emergent communication experiment, all compositional languages generalized
well, but so did non-compositional languages. This finding spurred numerous follow-
up studies that aimed at improving the learning dynamics through inductive biases
or by making the communication game more difficult (more complex stimuli, larger
alphabet, longer messages, more agents) to successfully promote the emergence of
compositional structure (Chaabouni et al., 2022; Rita, Tallec, et al., 2022). However, the
lack of correlation between the degree of compositional structure - as measured by
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topographic similarity (Brighton & Kirby, 2006) - and generalization performance had
remained.

The most reliable way to promote the emergence of compositional languages is period-
ically resetting the parameters of the neural network agents (Chaabouni et al., 2022;
F. Li & Bowling, 2019; Zhou et al., 2022), similar to Kirby et al. (2014)’s iterated learning
paradigm - leading to the hypothesis that compositional languages have a learnability
advantage (Chaabouni et al., 2020; Chaabouni et al., 2022; Guo et al., 2019; F. Li &
Bowling, 2019). However, these attempts did not directly test language learnability in a
purely supervised fashion.

Recently, Conklin and Smith (2022) have re-analyzed the setting of Chaabouni et al.
(2020) and found that, in fact, the lack of correlation between compositionality and
generalization performance in the original simulation was caused by a fallacy of the
topographic similarity metric that had been used to measure compositionality. For
instance, homonyms (different forms for same meaning) obscure compositionality
under the topographic similarity measure. When taking this variation into account,
compositional structure does reliably emerge and is beneficial for generalization. In
other words, it is probably the case that there was not really a mismatch between
humans and neural agents in the first place.

Supporting this view, Galke et al. (2023) have replicated a large-scale language learning
study originally conducted with human participants (Raviv et al., 2021) with deep neural
networks and have confirmed the advantage of compositional structure for learning
and generalization in neural networks. The results showed similar pattern across three
learning systems - humans, small-scale recurrent neural networks trained from scratch,
and the large pre-trained language model GPT-3 - with compositional structure being
advantageous for all types of learners. Specifically, the results showed that neural net-
works benefit from more structured linguistic input, and that their productions become
increasingly more similar to human productions when trained on more structured
languages. This structure bias can be found in the networks’ learning trajectories and
their generalization behavior, mimicking previous findings with humans: although
all languages can eventually be learned, languages with a higher degree of composi-
tional structure were led to better and more human-like generalization to new, unseen
items.

Population size effects

Socio-demographic factors such as population size have long been assumed to be impor-
tant determinants of language evolution and variation (Lupyan & Dale, 2010; Nettle, 2012;
Wray & Grace, 2007). Supporting this idea, global cross-linguistic studies report that big-
ger communities tend to have languages with more regular and transparent structures
(Lupyan & Dale, 2010). Similarly, in experimental work, larger groups of interacting
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participants generally develop languages with more systematic (i.e., compositional)
grammars (Raviv et al., 2019b). These findings are typically attributed to compressibil-
ity pressures arising during communication: remembering partner-specific variants
becomes increasingly more challenging as group size increases and shared history
decreases, which lead larger groups to prefer easier-to-learn-and-generalize variants
and thus converge on more transparent and systematic languages.

Tieleman et al. (2019) has investigated populations of autoencoders. Autoencoders are
neural network models composed of an encoder module and a decoder module that
learn to “good” representations (the code) by reconstructing their own input. Now Tiele-
man et al. (2019) have decoupled encoder and decoders and exchanged them throughout
training - while communicating in a continuous channel. There, larger communities
produced representations with less idiosyncrasies and lead to better convergence among
different agents. While a promising starting point, the communication was modeled as
exchanging continuous vectors and training the encoder decoder modules together, as
if they were one model. This is arguably natural communication paradigm for neural
networks because it is optimized in the same way as the communication between layers
in a single neural network. However, this continuous channel stands in contrast with
the discrete nature of human communication (Hockett, 1960). Most other approaches
in emergent communication, however, do consider a discrete channel (Galke et al.,
2022).

While Chaabouni et al. (2022) argued that it is necessary to scale up emergent commu-
nication experiments in different aspects including population size in order to better
align neural emergent communication with human language evolution, they have not
found a consistent advantage of population size in generalization and ease-of-learning
(in contrast with (Tieleman et al., 2019)). Similarly, Rita, Strub, et al. (2022) found that
language properties are not enhanced by population size alone.

While emergent communication in populations of agents has been investigated ear-
lier (Fitzgerald, 2019; Graesser et al., 2019; Lowe et al., 2019, e.g.), the effect of popu-
lation size on structure with groups of more than two agents has only recently been
analyzed (Chaabouni et al., 2022; Michel et al., 2023; Rita, Strub, et al., 2022). Out
of these, two studies aimed to recover the group size effect in populations of neural
network agents by introducing population heterogeneity (Rita, Strub, et al., 2022) and
manipulating sender-receiver ties (Michel et al., 2023).The first study by Rita, Strub,
et al. (2022) modeled population heterogeneity by giving each agent a different random
learning rate While previous simulations used populations of identical agents, Rita et
al. modeled population heterogeneity by giving each agent a different random learning
rate. Results showed that in this scenario, group size effects could be partially recovered.
Notably, the authors found that it is important to give sender agents having (much)
higher learning rates than receivers.
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Secondly, while most emergent communication simulations keep senders and receivers
distinct (i.e., agents that produce never comprehend, and vice versa), there is also
work that emphasizes linking production and comprehension components within the
agents (e.g., by sharing some of the model parameters) (Graesser et al., 2019; Portelance
et al., 2021). Galke et al. (2022) argue that this naturalistic property of alternating
between sending and receiving (i.e., engaging in both production and comprehension in
typical language use) may be a crucial ingredient to ensure more linguistically plausible
learning dynamics - and could lead to recovering the group size effect. Subsequently,
Michel et al. (2023) have introduced sender-receiver ties via gradient blocking, such that
a sender and a receiver together form a single agent and each receiver is only optimized
for its corresponding sender. This change indeed led to a recovery of the group size
effect, with larger population of agents creating more compositional protocols. Another
promising approach is to have agents model other agents’ knowledge, allowing them
to communicate differently with different agents - something that has been implied to
underlie group size effects in humans (Lutzenberger et al., 2021; Meir et al., 2012; Mudd
et al., 2020; Thompson et al., 2020). While such "theory of mind" is generally absent
from emergent communication simulations in populations, the ability to infer other
agents’ beliefs has been successfully implemented in various reinforcement learning
setups, e.g., (Filos et al., 2021; Ohmer et al., 2020).

Underlying learning pressures and inductive biases

In general, there are two types of learning biases and pressures. First, some biases
and pressures seem to be present naturally, or universally, across all different learning
systems investigated here, including deep learning agents. An example for this is the
structure-bias, i.e., the learnability and generalization advantage of more compositional
communication protocols (Galke et al., 2023) (see above). This structure-advantage
seems to be present for both humans and neural networks, even without specific
inductive biases. In contrast, some biases need to be artificially introduced in order
to recover the effects found in humans. These include, for example, adding a length-
penalty for senders, which effectively makes agents "lazy". In the above examples,
we demonstrated the flexibility and adaptive nature of neural simulations and how
they can be tweaked to replicate human behavioral patterns. While many features
associated with natural languages were initially absent from such simulations, these
mismatches have been fully or partially resolved by introducing theory-driven and
human-inspired cognitive biases and learning pressures to the learning system - and
these inductive biases have consequentially led to better alignment between neural
agents and humans. Below, we outline on a more fine-grained level what pressures are
relevant for language learning and evolution in neural networks, contrasting them with
the pressures to which current large language models are exposed, and to what extent
incorporating the pressures may promote the relevance of large language models for
developmental research. Table 2 provides an overview of the comparison of learning
pressures in emergent communication agents and large language models. Notably,
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Table 2: Pressures derived from emergent communication simulations and their opera-
tionalization in neural agents and large language models

Derived Pressure

Emergent Communication
Agents

Large Language Models

Pressure for success-
ful communication

The main training objective
in communication games

Absent in pre-training and
fine-tuning. Only introduced
when learning from human
preferences in RLHF.

Pressure for learnabil-
ity

Can be artificially introduced
through parameter reset and
iterated learning

Neural networks underlying
large language models have a
tendency to find the simplest
solution first

Pressure to reduce
production effort

Can be artificially introduc-
ing, e.g., through a penalty
term for long messages

Production length is learned
from LLM’s training data and
human feedback in RLHF.

Memory constraints

Absent because the high ca-
pacity of neural agents is suf-
ficient to memorize even un-
structured mappings

Huge capacity due to ex-
tremely high amount of pa-
rameters, yet “working mem-
ory” for in-context learning
is limited by context window
(how many tokens the mod-
els can process at a time)

Production- Can be artificially introduced | By design - LLMs employ the
comprehension by linking sender and re-| same neural network mod-
symmetry ceiver modules ules and parameters for com-
prehension and production
Modeling other | Can be modeled explicitly, | In the RLHF training stage, a

agents’ internal states

e.g., for pragmatic reasoning

reward model is trained and
consulted to estimate human
preferences.
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this is not an exhaustive list - it focuses on the specific pressures that underlie the
phenomena described above, but do not consider many other important aspects that
govern natural language learning, such as grounding, a noisy environment, multi-modal
communication, or referential and iconic signs.

Pressure for successful communication

In order to achieve successful communication, language users need distinguish between
a variety of meanings. This expressivity pressure is hypothesized to underlie human
language evolution, and serves as a "counter pressure" for simplicity/compressibility
(i.e., the idea that languages should be as simple and as learnable as possible) (Kirby
etal., 2015). The pressure for communicative success, e. g., to accurately reconstruct the
meaning of referents from a message during interaction, is the most straight-forward
pressure found in collaborative communication games (and, arguably, in real-world
interaction). In emergent communication with deep neural networks, this pressure is
encoded right in the optimization objective of the neural networks.

In contrast, for large language models such as GPT-3.5, the main objective during pre-
training is not communication success. The standard language modeling objective used
during pre-training of large language models instead optimizes for utterance completion
(i. e., learning to predict words from their context). While this language modeling
objective leads to tremendous success regarding language competence other emergent
abilities (Devlin et al., 2019; Wei et al., 2022), it is clearly a different training objective
than optimizing for communicative success, as in emergent communication simulations.
After large-scale pre-training, large language models are fine-tuned using small datasets
of human-generated pairs of instructions and their corresponding responses, usually
with the same training objective as in pre-training. In other words, the models are made
tolearn from interactions by completing utterances from human-generated interactions,
but not by interacting themselves. Only during the last stage of training, the models are
trained via Reinforcement Learning from Human Feedback (RLHF), where a reward
model estimates human preferences based on human ratings of different machine-
generated responses (Ouyang et al., 2022; Schulman et al., 2017). Only in this final
RLHF training stage of LLMs, the models are optimized for successful communication.
Yet, this stage is important to turn base models into chat assistants that engage in
conversations with humans (OpenAl, 2023; Ouyang et al., 2022).

In general, while emergent communication simulations are tuned for communicative
success by design, this is in fact an extra step in large language models after pre-training
on utterance completion. Thus, the learning paradigms of fine-tuning and subsequent
learning from human feedback are worth further exploration for the goal of having
language models being more representative of human behavior. For instance, a recent
study has showcased that fine-tuning large language models on data from psychological
tests turns them into useful cognitive models (Binz & Schulz, 2023).
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Pressure to reduce production effort

Humans constantly strive to reduce effort during interaction (Gibson et al., 2019). For
instance, this is demonstrated by our tendency to shorten or erode highly frequent
words (Kanwal et al., 2017; Zipf, 1949). However, the pressure to communicate with least
effortis absent in neural networks, and is usually not reflected in their training objective.
In other words, it simply does not cost more “effort” for a neural network to generate
a longer message. By introducing a bias for more efficient communication, Rita et al.
(2020) have shown that typical human behavior can be recovered. Since language models
similarly don’t have an 'innate’ pressure to reduce effort, it may be worth considering
integrating such a pressure for efficient communication into these models for the sake of
mimicking human behavior with respect to language development. However, one needs
to strike a balance, as imposing a least-effort bias could also lead to communication
failure in emergent communication scenarios (Lian et al., 2021), calling for further
investigation of how a least-effort bias is best incorporated.

In large language models, there is no pressure to reduce production effort: LLMs are
trained on next-token production over large corpora of text data, which is being piped
through the model in a batched fashion to maximize throughput (see for instance
Brown et al., 2020; Touvron et al., 2023, inter alia). Thus, the main driver for production
length is simply the utterance length in data, and the placement of specific separator
tokens, e.g., at the end of each unit of consecutive text during training. Moreover, the
RLHEF stage of training large language models (Ouyang et al., 2022; Schulman et al.,
2017), which is supposed to align LLMs with human preferences, even promotes the
generation of longer utterances, as they are deemed to be more “helpful” by (instructed)
human annotators (Singhal et al., n.d.).

At inference time, when the LLM is prompted to generate text, a hard cut-off on the
number of tokens or a soft length penalty may be introduced - the details of these
techniques, however, are often not publicly available. Regardless, the training procedure
itself does usually not include a length penalty, which needs to be taken into account
when planning to use large language models for language development research.

Pressure for learnability

Based on our review, a pressure for learnability (or continual re-learning) also governs
the development of communication protocols between neural network agents. That
is, agents should prioritize communication protocols (or single variants) that are eas-
ier to learn, and such protocols should in turn boost performance. This learnability
pressure is strongly connected to the fact that languages must be transmitted, learned,
and used by multiple individuals, often from limited input and with limited exposure
time (Smith et al., 2003). Yet, there is a subtle difference to strict transmission chains
of iterated learning, as it is sufficient with neural networks to reset only some of the
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agents (F. Li & Bowling, 2019), or only parts of a single agent (Zhou et al., 2022). In
numerous different settings, it has been shown that learnability pressures are crucial
for compositional structure to emerge (Chaabouni et al., 2022; F. Li & Bowling, 2019;
Zhou et al., 2022).

This also suggests that under repeated learning, either in Iterated Learning with human
participants or with parameter reset in neural networks, weak learning biases can get
amplified in the process of cross-generational transmission (Reali & Griffiths, 2009).
But what are these learning biases exactly? How can they be operationalized? And how
do they actually translate into language learning in the real-world? For example, do
these biases differ between children and adults, or between different levels of linguistic
analyses (e.g., vocabulary vs. syntax)? At the moment, these are still open questions.
However, they highlight the need to seriously consider the meaning and implications
of different modeling choices when simulating language acquisition using language
models and deep neural networks.

As for large language models, Chen et al. (2024) have made relevant findings by an-
alyzing the learning dynamics: language models pick up grammar as the simplest
explanation for the data very early on during training (structure onset), and only shortly
thereafter, general linguistic capabilties arise. In addition, when suppressing grammar
as a possible way to explain the data, the models learn other strategies, but do not go
back to grammar when the constraint is removed later in training.

This finding connects well with more general findings of simplicity bias in neural net-
works (Geirhos et al., 2020). In addition, it also connects with the findings of emergent
communication in emphasizing that re-learning (e. g., through parameter reset) is im-
portant for compositional structure to emerge (F. Li & Bowling, 2019). Our hypothesis
is that, if there was no pressure for re-learning, then agents would fall for the earliest
successful strategy and do not consider alternatives - stressing the importance of the
learnability pressure.

Memory constraints

Human language learning is governed by cognitive constraints such as a limited memory
capacity. These, in turn, affect processes of language evolution and promote greater
convergence to a common language within a community: once groups become too big,
it becomes hard to maintain unique communication protocols with different partners
(i.e., idiolects) (Wray & Grace, 2007).

Such constraints have been shown to underlie patterns of cross-linguistic diversity,
whereby larger populations develop more structured and less variable languages (Raviv
et al., 2019Db). Yet, neural networks have virtually no memory constraints because they
are commonly heavily over-parametrized. Due to this over-parametrization, neural
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networks have no problem to keep a large number of different partner-specific variants
in their memory, and have little need to converge on a single shared language. However,
simply reducing the number of model parameters to the theoretical minimum is not
feasible either, as explored in emergent communication by Resnick et al. (2020). This is
because over-parametrization is, in fact, a critical ingredient for the success of deep
neural networks (Arora et al., 2019; Cybenko, 1989; Nakkiran et al., 2021; Zhong et
al., 2017). But given the importance of such memory constraints for human language
learning and evolution, it may be worth considering how such pressures can nonetheless
be mimicked or introduced as inductive biases when employing deep neural networks
as models for language development research.

While large language models have even higher model capacity with billions of learnable
parameters, there is an interesing conceptual connection with working memory: As
the model parameters are not updated at inference time (when the model is prompted
with a specific input), the model can only base its generation on what is available in
the prompt, which is limited by the LLMs’ context window of how many tokens can
be processed at a time. Although also these context windows grow larger and larger
with the development of new models (OpenAl, 2023), it allows researchers to explicitly
control what information is available to the model at a specific point in time.

Production-comprehension symmetry

In addition, in naturalistic settings with proficient language users, every person ca-
pable of producing a language is also capable of understanding it (Hockett, 1960) - a
property that was typically absent from emergent communication simulations (Galke
et al., 2022). Indeed, introducing an inherent connection between production and
comprehension in neural networks has led to an increase in the desirable properties of
emergent languages (Michel et al., 2023). Interestingly, comprehension and production
are intrinsically linked in autoregressive large language models as the same model
parameters are used for processing and for generation (Radford et al., 2019). Such
results again underscore the importance of keeping seemingly basic psycholinguistic
features in mind when using large language models and neural networks as models for
human language learning and use.

Modeling other agents’ internal states

Furthermore, another intriguing direction is to explicitly model other agents’ internal
states. For instance, Ohmer et al. (2020) integrates pragmatic reasoning into the agents,
leading to accelerated learning - an effect that is even stronger with Zipfian input dis-
tributions compared to uniform input distributions. Explicitly modeling other agents
internal states and social learning has been shown to be successful in other reinforce-
ment learning scenarios, where agents can cooperate or compete about resources (Filos
et al., 2021; Ndousse et al., 2021). Interestingly, these ideas of explicitly modeling the
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internal state of the interlocutor are already present in the final training stage of large
language models, when optimizing for human preferences via RLHF (Ouyang et al.,
2022; Schulman et al., 2017): the common procedure is to learn a specific reward model
that estimates human preferences on new data, which is then be employed for steering
the generations of the language model in a particular direction - here the reward model
is specifically designed to estimate to what extent humans would prefer one genera-
tion over the other, which is closely resembles the idea of modeling other agents’ (or
humans’) internal states.

Discussion

Several important mismatches between humans and neural agents with respect to
language emergence can be explained by the absence of key cognitive and communica-
tive pressures, such as memory constraints and production-comprehension symmetry,
which drive language evolution. Here, we demonstrated how including these factors in
neural agents can resolve said mismatches, and lead to more accurate simulations that
mimic the settings and pressures operating during human language learning and use -
and consequentially resulting in emergent neural communication protocols that are
more linguistically plausible. Notably, additional psycho- and sociolinguistic factors
may affect language evolution and learning, and might also play a role in explaining
further discrepancies in behavioral patterns across learning systems.

In the current paper we presented a number of initial mismatches between humans and
agents engaging in communication games - and demonstrated how they could be re-
solved through inductive biases. So far, there is no unified approach that consolidates all
of the resolutions mentioned above. We deem this a promising direction of future work
- e. g., merging the techniques of population heterogeneity, laziness and impatience,
and sender-receiver ties, which have so far only been evaluated independently.

As exemplified by recent work, it is promising to keep up and nourish the knowledge
exchange between researchers working on human languages and those working on com-
putational simulations of language, e. g., via theory diffusion from language studies into
machine learning and vice versa. A famous example is cultural evolution (Tomasello,
2008) and the iterated learning paradigm (Kirby et al., 2008; Kirby et al., 2014), which
sparked the idea of iteratively training neural networks while resetting some of the
networks’ parameters (Frankle & Carbin, 2018; F. Li & Bowling, 2019; Nikishin et al.,
2022; Zhou et al., 2022). This idea has, for instance, advanced our understanding of
neural networks (their reliance on sparse sub-networks) and led to favorable learning
dynamics that cause better and more systematic generalization beyond the training
distribution. Similarly, the discrete and compositional structure of natural languages
inspired researchers to incorporate discrete representations into neural network ar-
chitectures in order to advance the models’ generalization performance and continual
learning capabilities (Liu et al., 2021; Trauble et al., 2023).
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In conclusion, The emergent communication literature provided the opportunity to
assist in developing linguistic theories in the spirit of Elman (1993), while, conversely,
reflecting on how phenomena and biases known from humans may ultimately enhance
neural networks, as in lifelong and open-world learning, which is still a major open
problem in machine learning. For making use of large language models in language
development research, we consider it a promising direction for future work to take
inspiration from the emergent communication literature, and see which inductive
biases (such as the ones sketched here) have helped to recover patterns from human
language learning. Concretely, this would entail ingesting a training objective for
communicative success earlier in language model training, and integrating a pressure
to keep utterances as short as possible. Integrating these biases into large language
models may very well lead to more cognitively plausible models for gaining new insights
on how children acquire their first language.
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Introduction

This passion of our kind
For the process of finding out
Is a fact one can hardly doubt,
But I would rejoice in it more
If I knew more clearly what
We wanted the knowledge for...

- W.H. Auden, 1962

Like any story that is old enough, it was only a matter of time until the connection-
ism/symbolism debate was deemed fit for rebooting. However, this time, the perfor-
mance criticism seems wholly irrelevant, as these transformer-based Large Language
Models (LLMs) are capable of generating grammatical and seemingly relevant sen-
tences. Since these debates are complicated by the many potential points of disagree-
ment (e.g., the Whorfian question) that can pop up while discussing any specific topic
(e.g., conceptual structure), it is important to be clear that this paper by no means
aims at exhaustively reviewing all questions that LLMs have been argued to be rele-
vant to in the philosophy of language. While various positions on LLMs and learning
and meaning may sometimes cluster, they do not neatly separate into two stable
camps. Though I believe these models also fail to move the needle in debates in other
areas of developmental psycholinguistics, this paper will not discuss whether LLMs
strike down poverty of the stimulus arguments or whether they prove anyone wrong
or right (Kodner, Payne, & Heins, 2023; Katzir, 2023; Rawski & Baumont, 2023; Mil-
way, 2023) or whether their mechanisms are biologically plausible as connectionist
naming conventions have at times suggested (Yang & Wang, 2020). While these ques-
tions are relevant to word-learning researchers, they would greatly extend the length
of the present paper. Instead, this paper will focus on meaning and learning the
meanings of words because it is my focus and because most people were not excited
about GPT because it could produce grammatical sentences.! No, it is because GPT-
n’s outputs go beyond grammaticality to seem relevant and, as a result, seem “mean-
ingful” to users. This has led many to argue that such models exhibit some kind of
understanding (see Mitchell & Krakauer, 2023 for a review of such claims), and its
outputs are therefore meaningful much like ours. So, this paper will ask: how do
LLMs come to represent words, and what do they represent about them? Do humans
do things similarly, and therefore, could LLMs provide insight into how children
learn words? Have any long-standing problems truly been settled by LLMs? Often,
word learning researchers break things down into two broad questions: 1) how words
are paired with meanings, and 2) how those meanings are structured. The former is a
question of Cross-Situational Word Learning (CSWL), and the latter is one of concep-
tual content. I aim to argue that, in both cases, 1) LLMs do not present radically new
theoretical approaches as they 2) still seem to possess the same issues as those

! Impressive as this may be to us experts.
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previous, similar approaches when inspected closely and therefore 3) do not resolve
any long-known issues.

This paper will argue that these performance improvements, while very impressive,
are still data-dependent. Like their ancestors, LLMs struggle to generalize beyond the
datasets they are trained on. However, proving this has become much more challeng-
ing. This is not just because they are trained on immense amounts of data but also
because current LLMs are products sold by businesses that have deemed details about
training data proprietary to maintain a competitive advantage (e.g., see OpenAl,
2023a). Ultimately, this paper aims to caution developmental psycholinguists against
using extant LLMs, which are first and foremost products. This is especially true if
one lacks clear motivation and plans for interpretation (i.e., not just “to see what it
can do” and publish it). Importantly, this is to say that I am not cautioning against the
exploration of emerging modeling approaches and architectures (like transformers)
to see if they address any of of the problems reviewed in Too Holistic and Too Global
unless doing so requires paying the same costs to privacy, labor, and the climate that
are outlined in Too Costly.

Roadmap

I will begin by clarifying what is being critiqued and what is not, then introduce the
notion of compositionality and explain why it is still relevant today. Based on a range
of tasks with compositional systems (primarily math and language), LLMs still strug-
gle to generalize beyond their experience in a manner comparable to human beings
and this is to be expected given where they may fit into these debates. In the case of
semantics, I will first argue that LLMs as cognitive theories of language are too holistic
an approach to meaning (a Conceptual Role Theory (CRT) to semantics; Piantadosi &
Hill, 2022; Block, 1986; Block, 2016; Fodor & Lepore, 1992), and, in the case of early
CSWL, that they are too global an algorithm of CWSL (Stevens et al., 2017). In neither
case should any critique presented be read as suggesting that there is no space for
connectionist or interactive approaches in CWSL or semantics and that the answer to
such questions will necessarily be purely symbolic, modular, domain-specific innate,
etc. Instead, the primary goal of the critiques presented is to situate LLMs within long-
standing debates and note potential limitations associated with the approaches LLMs
have been likened to. This allows us to then ask whether LLMs have resolved any of
the existing issues of the approaches they have been likened to. In other words, if
LLMs instantiate (or are otherwise similar to) global CSWL models or CRTs, do they
resolve standing critiques that have been made of those approaches? Would LLMs do
well in the sorts of situations that these frameworks have historically struggled to ac-
commodate? As a consequence, the focus will be on explaining the critiques rather
than giving an exhaustive review of both early CSWL and compositionality, as suc-
cessfully reviewing both sides of both debates would require much more than a single
article. Suffice it to say there is much debate on both sides in the realm of how central
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compositionality is to language (see chapters in Calvo & Symons, 2014 for arguments
that compositionality is irrelevant to contemporary researchers) and how many word
learning mechanisms there are, how much they vary across individuals, tasks, devel-
opment, and so on (Roembke et al., 2023). The critical point is not that the critiqued
positions are uncontroversially wrong and some others are uncontroversially correct
- but rather that such controversies remain despite the development and success of
LLMs and are likely to remain.

The paper will also additionally spend some time on the issues LLMs pose to interpre-
tation (Practical Meta-Theoretical Concerns), which further limit their potential to
resolve any existing controversial debates straightforwardly. That is what has re-
mained the same, but what has changed is the social and legal context surrounding
the production of these models. To that end, the paper will end with a brief but critical
discussion of how these models are produced and governed solely by an industry that
operates with little oversight. This section will discuss the consequences of the fact
that their development and continued maintenance require immense amounts of in-
frastructure that is mainly made invisible to end-users (Birhane, 2020; McQuillan,
2022). Bringing all of that together, I plan on arguing that Large Language Models
(LLMs) are too much: Too global, too holistic, and yet still not systematic enough
(Fodor & Pylyshyn, 1988; Fodor & Lepore, 1992), and as such they fail to settle any
long-standing debates decisively. I will finish by arguing that the current social con-
text should make us think twice about integrating these models into how we do sci-
ence and that the costs of using these models should be seriously considered before
employing.

How LLMs M Ls

LLMs are not justlarge; they are also (at least so far) transformer-based architectures.
The attention mechanism which transformers implement introduced two primary ad-
vantages over previous approaches (e.g., RNN, LSTM models): 1) transformers can
conduct some computations in parallel, and 2) they have a better “memory.” Their
increased efficiency due to (1) allows these models to be trained on larger datasets
more quickly. As for (2), this is because transformers are not as limited as prior mod-
els have been in their ability to access previous states of the model (e.g., facts about
the state of parameters x sentences ago). Both (1) and (2) are thanks to features of the
attention mechanism. Before discussing attention, however, it is important to note
that transformer-based architectures also inherit familiar features from past connec-
tionist approaches. Weights are still randomly set at the start of training (though now,
there are additional weights since there are more components). LLMs still tokenize
words into subword tokens to approach something more like a morphemic
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representation (e.g., birdhouse > bird, house?). They even regularly include multi-layer
perceptrons (Radford et al., 2019; Vaswani et al., 2017; Brown et al., 2020; Linzen &
Baroni, 2021).

The primary difference from previous models is therefore the presence of a decoder
or encoder, which implements similar but distinct attention mechanisms. At its most
basic, attention allows a model to consider a string (“The rats the cat chased hate
themselves.”) and for each word (rats), identify the other words that are likely related
(The, hate, themselves) without being as heavily biased by recency (e.g., by being biased
towards cat in guessing the number agreement for hate simply because it came later
than rat; Galassi et al., 2021). Attention allows for the model to track more information
about each token than previous approaches and pass this more detailed information
onto other layers (e.g., to a feedforward neural network). Most transformer-based
models employ layers of various attention “heads.” As a consequence of these fea-
tures of transformers, aspects of training® have also changed. Unlike previous mod-
els, which were solely tasked with “predicting the next word,” some transformer-
based architectures could be more aptly said to “predict the missing word.” Because
these models use positional encoding, “predicting the missing word” allows them to
use more than just the preceding tokens in translating a text. This is accomplished by
randomly masking a certain percentage of words and asking the model to guess the
missing word using context “from the future” (e.g., “the best lack all conviction”
might become “the MASK lack all conviction” rather than guessing what would come
after the). Some transformer-based models, especially those tasked with machine
translation, employ attention in two kinds of layers: an encoder and a decoder. How-
ever, encoder-decoder models require more computation (you have to train an en-
coder) and more annotated data (paired sentences in source vs. target language).
While the ability to conduct masked training is a clear benefit from an engineering
perspective, itis not clear whether this is a motivated model of human language learn-
ing (i.e., accurate to the time course of early cross-situational word learning). But,
more practically for this paper, many of the widespread LLMs today do not use de-
coder-encoder architectures, often opting for just a decoder (Fu et al., 2023). In the
case of decoders, “future” information (that is, words one has not yet encountered) is
negatively weighted, so it does not meaningfully affect the output. As such, whether
a model can be said to “predict the next word” or “to predict the missing word(s)”
depends on the model and cannot be generalized to a claim about how all LLMs are
trained.

*The following conventions will be adopted: italics will be used for mentions of words, caps lock will
be used as a shorthand for concepts (meanings), such that I would say pink means PINK. Double quotes
will be used for sentences, whether spoken by another or not. Furthermore, examples will always use
English words for ease of reading, even though LLMs operate at a subword level.

*Training will be used interchangeably with pre-training when discussing LLMs, except for in particular
cases where questions about continued training arise (e.g., in Too Costly when considering environ-
ment costs).
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As the success of LLMs is often credited to the development of transformers and the
attention mechanism, a critique of current LLMs may, therefore, also seem to be a
critique of transformers, but that is not the goal of the present paper. Transformers,
like n-grams or Bayesian approaches, may be an interesting and useful addition to the
modeler’s toolkit when investigating particular questions. Based on features shared
by things currently called LLMs, as well as the ethical questions discussed, I will cau-
tiously suggest that the present critique primarily applies to 1) transformer-based ar-
chitectures 2) with an immense number of parameters that are 3) trained on an im-
mense amount of data, and that likely 4) have no specialized subsystems which bake
in rules.* While it is possible that the issues LLMs face are or may become relevant to
other models that do not perfectly satisfy those conditions (e.g., hybrid approaches,
yet-to-come approaches that are not transformer-based but meet 2-4), that will re-
quire more specific details about the model in question.®

Too Holistic

We are already® a bit into GPT-4 (Achiam et al., 2023), and like any good reboot, the
stakes have increased. The audience demands that much more than just the local
hamlet is in danger, and so the claim is that we are seeing “sparks of artificial general
intelligence” (Bubeck et al., 2023). The new model can seemingly write code and, per-
haps most shockingly, is capable of Theory of Mind. Now, of course, there are some
practical caveats we should attend to: descriptions of theory of mind tasks and others
are very likely present in its training set (in code, Narayanan & Kapoor, 2023; and in
logic, Liu et al., 2023), passing any task is not proof of some capacity without auxiliary
assumptions (Guest & Martin, 2022), greater care should be taken in applying “rich”
psychological terms to AI (Shevlin & Halina, 2019), and so on. However, momentarily
running with the claim that GPT-4 may be able to reason about minds, it is bewilder-
ing in light of all these social and general task-based competencies that it struggles so
much with mathematical and logical reasoning (related issues hold for earlier

*This is because, for example, GPT-4 performing well with arithmetic prompts when given access to
the Wolfram Alpha plugin likely says less about GPT-4 than Wolfram Alpha, and at the very least com-
plicates the question of which to credit.

°T ask that the reader keep in mind that LLM is a marketing term referring primarily to size rather than
a term with clearly defined formal or cognitive commitments (Portelance & Jasbi, 2023). Most current
LLMs are mostly transformer-based, but that does not guarantee this word will always be used to de-
scribe only transformer-based models. It does not even guarantee that future transformer-based mod-
els in this vein are guaranteed to be called LLMs, for example, if the term were to become skunked.
This means it is difficult, if not outright impossible, to provide any truly in-principle critique of LLMs,
as it seems unlikely the LLM refers to a principled category (e.g., as opposed to n-gram).

®At the time this was originally written and submitted.
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models; see Lake & Murphy, 2021). Dziri et al. (2024) found that both chatGPT and
GPT-4 achieve 55% and 59% accuracy on multiplication problems that involve two
three-digit numbers (e.g., 123 times 456). For context, Adults typically performing
near ceiling on comparable tasks (Miller et al., 1984; Geary et al., 1993; LeFevre et al.,
1996). Work published since the submission of this article has found that even newer
models display stark fragility in mathematical reasoning task, with accuracy varying
both when information critical to the problem (i.e., number) as well as superficial
information (i.e., name) are changed (Mirzadeh et al., 2024).’

Failures on these mathematical tasks should concern those hoping for a semantic the-
ory, as it suggests that LLMs do not systematically understand the tokens underlying
these digits - what else could explain the effect of linear order? Indeed, Dziri et al.
(2024) suggest that such tasks are accomplished through linearized subgraph match-
ing, rather than compositionally (i.e., by combining symbols according to rules to
create/understand novel descriptions in a systematic manner, but see next section for
extended discussion of compositionality). Regardless of how they try to do it, if an
LLM were able to capture compositionality, then it should certainly be able to do sim-
ple arithmetic on unfamiliar sequences, at the very least to the same extent that peo-
ple do based on their limited experience with infinity. Currently, they do not, and
present research suggests that this may be an issue that scale cannot resolve but may
rather serve primarily to obfuscate. LLMs struggle with logical reasoning (Liu et al.,
2023; Arkoudas, 2023) and coding (Narayanan & Kapoor, 2023) when tested on bench-
marks outside of the training set. Training models on more and more data may create
an illusion of competency, as it reduces the chance that users (both academics and
non-) will encounter failures in compositionality in typical use. Some may respond
that people are not all equally great and regular at math/logic either; they may strug-
gle when multiplying large numbers or interpreting a sentence with multiple nega-
tions. Is this because their representational systems are non-compositional? No, what
makes people vary in math performance (aside from access to math education) prob-
ably has little to do with their syntactic and semantic representations of the rules of
arithmetic. Instead, it is easily explained by performance factors (e.g., misremember-
ing/forgetting, limited memory, being tired, being in alternate states of experience).
The reason we struggle with larger numbers likely has more to do with the fact that
as more operations need to be completed, there is more opportunity for a host of er-
rors to occur rather than not having observed the multiplication of enough, e.g., 5-
digit numbers before. Or alternatively, humans may exhibit errors as the result of
testing different strategies. Indeed, some have pointed out that many of the errors
exhibited in children learning arithmetic are “rational” errors - that is, applying a rule
incorrectly (e.g., always subtracting the smaller digit from the larger (e.g., 202-133
=131 rather than 69 because 2-1=1 3-0=3 and 3-2=1; see VanLehn, 1990; Ben-Zeev,

’As suggested by earlier findings on the effect of irrelevant information on LLM mathematical perfor-
mance (Shi et al., 2023).
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2012). However, as mentioned earlier, these errors are eventually overcome as adults
near ceiling (Miller et al., 1984; Geary et al., 1993; LeFevre et al., 1996). It is not shock-
ing that LLMs do better at things in the training set, nor perhaps things within a cer-
tain distance from it (were there a straightforward way to quantify that for such open-
ended tasks). The trouble is that the productivity of language means we may never
approximate its systematicity solely by gathering more and more data or adding more
parameters. These issues are clearer (and more down to Earth) when considering im-
age-from-text models that incorporate LLMs into their architecture, like DALL-E 2
(Ramesh et al., 2022) and 3 (Betker et al., 2023), Stable Diffusion (Rombach et al., 2022)
as well as multi-modal models like GPT-4 (Achiam et al., 2023) and Gemini (Team et
al, 2023). The issues faced by image generation models perhaps more clearly demon-
strate the ways these approaches struggle with composition, and it additionally allows
us to consider whether adding more modalities resolves long-standing similar ques-
tions in the philosophy of language and concept literature. Before relating these is-
sues to known criticisms of theories LLMs have been likened to, it will help to briefly
discuss why these issues with simple compositional systems might suggest that LLMs
are notlearning in a manner that meaningfully generalizes from the training data and
that their impressive performance may be largely due to their sheer coverage and the
amount of information it can store.

Compositional systems assume regularity to represent discrete combinatorial infinity
(i.e., no largest number, no longest sentence). This makes it easy for researchers to
generate data for training and testing by controlling for features that are irrelevant to
some given formalism. For example, linear order does not matter in summation as it
is commutative; therefore, a system trained on a single-digit addition dataset in which
the larger number comes last (e.g., 1+2, 2+3, 4+5) and performs at chance when the
larger number comes first (2+1, 3+2, 5+4) can not reasonably be said to have general-
ized the rules of addition, when approaching higher digits that are likelier to be out-
side the training data, the rules of arithmetic fall apart for LLMs. If one learns to add
in general, one should learn that it applies regularly beyond the training set - even if
an advantage on familiar items remains. However, a drastic difference in perfor-
mance between training and test suggests that a given model has not converged on
the rules of the compositional system but is instead being swayed by other infor-
mation. Though mostly linguistic examples will be used, this is also not to imply that
compositional rules are all that is required to explain all verbal behavior - indeed,
linguistic performance is uncontroversially shaped by a range of factors that are very
unlikely to be compositional as spelled out (e.g., frequency effects). Any exhaustive
account of verbal behavior will have to, at the very least, make some space for non-
compositional mechanisms. And, though there is debate about the compositionality
of language, there are those who feel compositionality is an important part of under-
standing how languages work (e.g., see Quilty-Dunn et al., 2023 and responses for
many appeals to compositionality in contemporary literature). But, regardless of
one’s beliefs about the extent of compositionality in language, compositionality is an

Volume 5, Issue 1



Language Development Research 152

especially useful guide in the present moment because it allows us to set a standard
for successfully learning a rule. Such a standard would likely be less necessary were
there more transparency about the data these models are trained on, as it would,
therefore, be widely possible to determine how similar a new set of stimuli is to the
training data (though theoretical questions about the proper similarity metrics would
still remain). Now that we have reviewed some data suggesting that LLMs?® struggle
with basic compositional systems like math and logic, we will now discuss composi-
tionality more closely and how it has caused issues for conceptual frameworks of the
past before relating this to LLMs.

Representational Theory of Mind & Compositionality

Interest in word learning often comes along with an interest in what it means to know
a word. Not just how it relates to some form (e.g., a morpheme) or even purely distri-
butional facts, but rather its meaning. What do words map onto? What are they like?
Since questions about meaning and concepts are so intertwined with other funda-
mental questions in psychology, there is little consensus about the particulars. This
is why talk about concepts is so prone to desiderata-listing, or what one would want a
theory of concepts to do in the first place. An important one is that a theory of con-
cepts is compatible with RTM, or the belief that propositional attitudes (e.g., wanting,
believing, knowing) are relationships between individuals and mental representa-
tions (Fodor, 1975). To be fair, such ideas were old and fairly nontendentitious within
psychology, but before Fodor, no one had thought to acronymize the name. If you add
in the idea that the mind is like a computer, you get the Computational Theory of Mind
(CTM), which says that the internal states of RTM are (classically syntactically) struc-
tured symbols. Under such a view, thinking involves combining and transforming
symbols, and though LLMs are not classical, they still involve structural transfor-
mations. RTM is a “non-negotiable” because, without RTM, there cannot be any real
psychological laws; they instead must ultimately reduce completely and directly to
terms of more basic sciences (e.g., to neuroscientific laws, but potentially ultimately
physical laws; Churchland, 1986). Such an extreme approach may slice questions too
thin (as will be discussed in Double Opaque) and complicate discussion about the
most relevant rules. For example, while studying what has been used as currency
helps in understanding the histories of economies and markets, attempting to provide
translations of economic generalizations into physical descriptions of items and their
transfer may result in missing the forest for the trees (Fodor, 1980). CTM is “non-ne-
gotiable” because it is our “best available theory of mental processes” - that is, com-
puters are our best working models of a physical system that is capable of represen-
tation that can be discussed at a meaningful level (Fodor, 1985). In linguistics, both
are considered deeply related to the compositionality of language. To say that

8This may indeed be a case where issues with LLMs straightforwardly translate to current approaches
focusing on transformers.
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language is compositional is to say that whatever some sentence means is going to be
a function of its constituents plus the rules of syntax (Frege, 1892; Fodor and Lepore,
1992).

1. Monroe married Luis.
2. Luis married Monroe.

Systematicity requires that if you are the type of thinker that can think the thought
expressed by (1), you are also necessarily the type of thinker that can think the
thought expressed by (2). Assuming you know other words, you are also the type of
thinker who can think other thoughts involving Monroe, Luis, and married. In other
words, you also get productivity, or the idea that theres no upper limit on the longest
sentence you could generate, assuming one’s syntax allows for recursion. Composi-
tionality thus guarantees systematicity and productivity respectively (making infinite
use of finite means as per von Humboldt (1836) qua Chomsky (2014)), which has been
useful to both linguists and non- when thinking about language (Fodor & Lepore,
1992). While that may explain the meanings of sentences, that does not seem to tell
us much about the constituents of sentences and how they get their meanings. How-
ever, keeping the constraints of CTM (due to compositionality) in mind will help in
considering the following ideas about meaning, as the main issue will be that they
struggle to allow for compositionality. We will discuss how this relates to one theory
of concepts, Conceptual Role Theories,’ and LLMs and how adding more modalities
is unlikely to solve this problem. But before we continue, we will first consider one
notable theory, the Classical Theory of Concepts, to demonstrate some of the difficul-
ties with definitions and the consequences this has had for conceptual theorizing
since.

Definition and its discontents

One popular and eloquent conceptual theory, the Classical Theory of Concepts, often
associated with Locke (1850) and other British empiricists, is that the meanings of
words allow us to pick things out in the world because they have a sensory (or percep-
tual) basis. This, along with a compositional system, should explain the productivity
(or open-endedness) of language. Sensation provides a foundation for a composi-
tional system to act on; this allows mental states to interact with the world causally.
Thus, a color concept, like ORANGE..wr, can be defined by the sensations triggered
during labeling contexts, cones responding to light with a wavelength of 585 and 620
nanometers. In this example, the meaning of orange...r is the range of sensations that
can cause ORANGE,ir thoughts.

°This is a theory with many aliases: Conceptual/Inferential/Functional Role Semantics, Procedural Se-
mantics. Problems with analyticity aside, assume they are all synonymous with CRT in this case (Block,
1998).
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These primitive concepts can then be used to modify the features of some other con-
cept selectively; for example, ORANGE..,r FRUIT modifies the thought FRUIT (what-
ever they might be) so that any related color sensations are now ORANGEir rather
than something else. In this example, the meaning of oranger.+ may be a complex
concept (ORANGE . FRUIT) rather than a primitive one. Complex concepts may
then, in turn, be combined with other primitive and complex concepts, like KENNEL
FOR ORANGE_.,ir DOGS. The Classical Theory of Concepts is eloquent because it not
only accounts for reference, and hence more “synthetic truths” (truths by virtue of
experience), but also maintains “analytic truths” (truths by virtue of meaning). So, not
only can KENNEL pick out kennels in the world and be used to consider facts about
them (“This is a kennel,” “Julian left Charlie at his favorite kennel.”) but also distin-
guish those facts from other beliefs that are central and necessary for the concept
(“Kennels are shelters,” “Kennels are for dogs,” etc.). Similarly, it explains why ken-
nels in the world reliably cause KENNEL thoughts but only sometimes lead to
CHARLIE thoughts.

Though the Classical Theory is an elegant way of accounting for the referential and
truth-preserving aspects of meaning, nothing gold can stay. Briefly put, its demise
resulted from an inability to unite these two aspects of meaning in a non-circular way.
The Classical Theory posits that a statement may be true for one of two reasons: due
to the nature of the terms themselves and rules of syntax (analytic) or because they
say something true about the world (synthetic). For example, you do not need to look
to the world to determine whether someone being a bachelor makes them an unmar-
ried man, but you do need to check it to determine whether some given individual is
a bachelor (e.g., by asking them or others whether they are married). It is, therefore,
compositional under this view: UNMARRIED MAN composes into BACHELOR, which
can then be decomposed back into UNMARRIED MAN. Setting aside the difficulty this
approach has in defining abstract words like “virtue,” the biggest problem seemed to
be that no one’s ever found a good definition in general (Berkeley, 1881). It is unclear
how you get to JUSTICE from RED and TINNY, but it is also unclear how you get to
seemingly simpler, more concrete meanings like CHAIR. More recently, Quine (1951)
argued that this is because the analytic/synthetic divide is circular: analyticity rests
on an assumption of synonymy between a term and its definition such that they are
interchangeable (e.g., BACHELOR could be subbed in with UNMARRIED MAN in any
sentence and it remains true, and vice-versa). However, determining whether terms
are synonymous requires a notion of necessity that distinguishes accidental coexten-
sion from the required extensions. For example, in “Necessarily all and only creatures
with a heart are creatures with kidneys,” both creatures have the same extension (be-
cause all known creatures with hearts have kidneys), but no one would argue this is
an analytic fact (unlike “Necessarily all and only bachelors are unmarried men.”). To
Quine, this meant there was a vicious circularity in the distinction: analyticity re-
quires synonymy, and synonymy requires interchangeability of terms without a
change in meaning, but how is it determined if terms are interchangeable? If
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synonymy is determined by looking at our experiences in the world, then it cannot be
the basis for analyticity at the pain of circularity. Though Quine’s focus was primarily
on scientists (or rather science) rather than word learners, similar concerns bear on
concepts and therefore heavily influenced that debate.

With analyticity gone, so with it goes a straightforward distinction between matters
of meaning and matters of experience. With the issue being the inadequacy of physi-
cal features for definition and also definition itself, one potential approach is to 1)
allow for some sort of internal states (rather than purely sensational ones) and 2) relax
definition to something more graded. Conceptual Role Theories (CRTs) explores
these possibilities. The goal of this section is not to say that CRT is wrong but that if
LLMs are like them, they leave the same issues unresolved (as in the last section), and
this is evident in their performance on a range of tasks involving composition. The
next section begins by defining CRTs before discussing why they have been argued to
struggle to account for compositionality.

Conceptual Role Theories

Talking about CRTs requires casting a wide net, though, unlike LLMs, CRTs are much
more precisely defined. Generally speaking, CRTs broadly agree that meaning is func-
tional and that what constitutes the character of a mental state is the role it has in
interacting with other mental states. This can be restated psycholinguistically as the
idea that the meaning of a word is its role in a language, or as it is often put, that
“meaning depends on role in a conceptual scheme” (Harman, 1999). For example, we
make an inference when we go from the statement that “p” (“Grass is green.”) and a
separate statement that “q” (“They paint the grass.”) to the statement “p and q” (“Grass
is green and they paint the grass.”). Natural language analogs to logical operators, like
and, are go-to examples of non-referential meaning, and their role in a sentence is
what defines them (Block, 1998). CRTs often extend this idea to all words. Block (1986)
famously used the example of high-school physics, in which the meaning of words
like force, acceleration, and mass are interdefinable (f=ma) within a conceptual
scheme (physics) rather than translated into known words outside this system.* It is
because it treats meaning as relational in this way that some have analogized it to
LLMs since they learn (probabilistic) relations between tokens (Hill & Piantadosi,
2022; Pavlick, 2022). Importantly, this has been used to argue that referential abilities
are not needed since reference is not necessary in CRT approaches. However, that is
not entirely true. CRTs also often make room for other systems that are innate (e.g.,
core cognition like object or magnitude; Carey, 2009) or that ground reference (Block,
1998). These dual-role theories are popular, even amongst those who conceive of the
CRT-relations between roles, like those of tokens in LLMs, as being probabilistic
(Field, 1977). Notably, CRTs differ wildly in how they cash out interactions with the

T have yet to see anyone mention it but this always struck me as bad pedagogy.
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world, so we will leave that aside for now.

The basic issue with CRTs is that if some relations are seen as more central than oth-
ers, some old problems discussed in the previous section are reintroduced (Fodor &
Lepore, 1992). For example, while you can reliably infer something about Caio’s age
from “Caio is 28 years old,” you can also reliably infer something about Caio’s weight
(>10 pounds). While we could say that the former is tied to the symbol and the latter
is tied to the symbol plus auxiliary beliefs (e.g., 28-year-olds are adults for humans,
and adults weigh more than ten pounds), drawing such a line is hard (example
adapted from Fodor, 1984), and requires reintroducing a version (albeit fuzzier) of the
analytic/synthetic split, but it is not clear how that resolves the circularity in question
(Quine, 1960). Unfortunately, unless one can provide an answer to how the lines are
drawn, that means inferential roles are not compositional. Consider the idea that I
enjoy the flavor of ARTIFICIAL STRAWBERRY, and therefore, one of the inferences
licensed by this fact is simply “Victor likes artificial strawberry.” However, until col-
lege, I also happened to hate strawberries and was not typically big on artificial fla-
vors either, so neither of its constituents would have licensed the inference “Victor
likes it.” Why not? Or consider the opposite scenario, wherein I like houses and boats
but find houseboats vulgar and offensive. In this case, an inference is licensed by both
constituents but not the complex concept they enter into, so where does it go? In both
cases, the inferences that can be licensed are not inherited from the utterances’ con-
stituents. In the former, the inference is not present in constituents; in the latter, it is
not composed of its constituents. That is because the inferential roles of both artificial
strawberry and houseboat depend not just on the inferential role of their constituents
but on what you believe about them. In other words, those inferences are synthetic
rather than analytic, and, of course, it is important to separate the two (if one leans
into the divide) to explain why it is people can think the same thing by “dog” despite
likely differing in the synthetic inferences they would entertain about them (e.g., “I'm
a dog person,” “Labradoodles are not real dogs,” and so on). In this sense, CRTs run
into similar sorts of issues as prototype theories (Connolly et al., 2007), which is just
to say that neither are compositional, though there are good reasons to think that our
concepts are (Fodor & Lepore, 1992). LLMs struggle to learn simple compositional
rules for similar reasons: there are so many possible associations between strings of
digits in their training data, and it is not guaranteed that LLMs will land on the set of
associations most strongly related to the compositional rules of arithmetic. The total
context-sensitivity of tokens also likely complicates learning how to handle composi-
tional systems, as how likely four is to follow three should have no effect at all on
arithmetic, and the same holds for the variables and operators in logic.

How Do LLMs Fit in?

Before continuing, it is important to note that LLMs are composed of connectionist
submodels, but this does not necessarily commit it to a particular conceptual
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framework (or, broadly speaking, cognitive framework; see Portelance & Jasbi, 2023).
This is doubly true if one considers connectionist models as implementational rather
than computational (i.e., in the way neurons implement the mind; Fodor & Pylyshyn
1988). Therefore, when claiming LLMs “have” a particular sort of semantics, this
could be read as either a claim about them being capable of instantiating such a se-
mantics (i.e., as a brain might) or as a claim about them being equivalent to a theory
of semantics (i.e., moreso a claim about the mind; Blank, 2023). I am skeptical that
LLMs have CRT-like semantics in both senses or, at the very least, that little is gained
by such an analogy presently. However, it appears the motivation for such claims
seems to be that some consider LLMs to be plausible models of cognition (rather than
simply implementational), but they cannot refer to the world (though see Mandelkern
& Linzen, 2023), so from this basis, some critics (sensibly) argued that their represen-
tations of meaning are prima facie unlike ours (Bender & Koller, 2020). Fortunately,
CRTs allow for aspects of meaning that are non-referential, so perhaps CRTs are what
LLMs have (Hill & Piantadosi, 2022; Pavlick, 2022). I have yet to encounter a more
robust argument for this analogy, but there is already a systematic review of why con-
nectionist models are problematic models of cognition, and I am assuming it is in the
common ground (Fodor & Pylyshyn, 1988; for a reply see Smolensky, 1991 and Smo-
lensky, 1988, and for a reply to those replies see Fodor & McLaughlin, 1990). This pa-
per will therefore focus on the potential that LLMs are implementations of CRTs."!

If we try to consider LLMs as CRTs, the first issue we run into is that the idea of a
conceptual role seems to presuppose a mapping to conceptual structures (Leivada et
al., 2023). Indeed, as we will briefly touch on later, many two-factor theories assume
that there are conceptual systems, like those of perception (e.g., analog magnitude
and parallel individuation) or others that are part of core cognition (see Carey, 2009
for review). LLMs do not have any systems like those, but they can represent tokens
and their related embeddings, so for now, we will assume they may have something
like a conceptual role (in that it is representational and causal) even if they have sig-
nificantly fewer types of conceptual roles or they are fundamentally unlike any of
ours. If we try to translate LLMs into words familiar to the word learning literature
(as will be discussed in Too Global), then an LLM’s hypothesis for the meaning of a
token is its relationship to other tokens. This means that at the end of pre-training,
the hope is that there is a pretty good hypothesis for relationships between tokens.
The conceptual role in question here is the role a token has in predicting the next
token because that is what it contributes to a sentence that contains it. Because of its
mechanics, a token’s meaning is a consequence of how likely it is to carry information
about another token or how likely it is to occur in the context of other tokens (while
keeping its position in the string in mind). As such, though CRTs are not necessarily

Naturally, these arguments will share the mouthfeel of critiques of connectionist models because
CRTs and connectionist models both run the risk of holism, but there are clear divergences (e.g., CRTs
obviously cannot serve as an implementation level theory).
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committed to a predictive processing account generally, LLMs instantiating a CRT run
into similar issues. That is, their representations do not seem to be compositional in
the way concepts are because they are neither systematic nor productive. This is be-
cause an LLM’s resulting hypotheses, despite being very complex, remain closely tied
to their training (Lake & Murphy, 2021; Dziri et al., 2024), as the issues around the
analytic/synthetic distinction should have prepared us for.

If the meaning of cat is what cat contributes to a prediction and it is related to a host
of other words, then what cat means changes based on the current context (even if
wholly irrelevant). Were it to change too drastically based on the current context, that
presents an issue to systematicity. This is an issue because it means that cat would
likely mean slightly different things in “The cat chased the rat” and “the rat chased
the cat.” If the difference were purely syntactic (subject vs object), or even homoph-
ony, that would be completely fine, but it is likely to vary in more ways. For example,
the cat in the former may activate “things cat chase” more than it activates “things
that chase cats,” and ceteris paribus the cat in the latter. It is again important to note
this is not to claim that there are no non-compositional mechanisms that can contrib-
ute to inferential processes more generally, merely that it is still common today to
take seriously the notion that there is some sort of compositional component at play
in language (see Quilty Dunn et al., 2023 and responses). This issue in systematicity,
as we will see, leads to limitations in productivity, so we will now turn to empirical
data showing that LLMs struggle with this, though it is important to keep general is-
sues with benchmarks in mind (Narayanan & Kapoor, 2023).

More Modalities May Run into Similar Issues

A familiar argument we have discussed is that 1) maybe LLMs can represent things
like we do, they just need to be more grounded, and 2) maybe LLMs do not represent
things like we do because they are not grounded. In the case of the former, a solution
may be sought in a two-factor version of CRT and, in the latter, in State-Space Seman-
tics. The problem with the former is that the causal connection is still difficult to cash
out in two-factor theories, and the problem with the latter is that it is rooted in simi-
larity rather than conceptual role (Churchland, 1986, see Fodor & Lepore, 1999 for a
reply). Though I disagree with these approaches personally, I am categorically not
trying to suggest in any way that these approaches to meanings are psychologically or
philosophically worthless or uncontroversially wrong. It just feels relevant that they
also struggle with composition too. This is because the issue at hand is not simply with
the format of the data (text vs. image) but rather the global and holistic nature of these
approaches. Composition simply does not seem to fall out of solely trying to deter-
mine what is likely to happen next or what is similar to what. I will not speak more on
two-factor CRT because there are many versions on offer, and many of those that in-
terest developmental psychologists make recourse to some innate cognitive struc-
tures (e.g., see Carey, 2009 for an example of perceptual systems), which is not helpful
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in this regard since LLMs lack those. Instead, there will be a brief discussion on State-
Space Semantics, its issues, and how they seem to arise in DALL-E 2 (among others).

The primary issue with state-space semantics is that similarity is not much less holis-
tic than predicting the next word. This is because similarity hinges on what primitives
one assumes (Goodman, 1965) and therefore in the absence of such commitments an-
ything can be deemed similar to anything else (Goodman, 1972), which introduces the
risk that any observation can support any hypothesis. Beyond that, it reintroduces the
problems of the Classical Theory, but in a continuous rather than definitional manner
- simply replacing identity with similarity. This results in a similarity space, with
words getting their meaning by virtue of their position in this space. Instead of, e.g.,
GREEN being defined as BLUE PLUS YELLOW, GREEN is simply like BLUE and like
YELLOW in a way that places it near both. Importantly, this similarity space is often
assumed to be sensorimotor/perceptual. In the case of color, the dimensions would
indicate the coding frequency for the reflectance of different wavelengths (Church-
land, 1986). However, it is not clear how these dimensions are individuated and,
therefore, which dimensions are innate. Furthermore, since such approaches are typ-
ically probabilistic, they introduce additional questions about how meanings in such
approaches compose (for discussions, see Armstrong et al., 1983; Fodor & Lepore,
1996; though see Smith & Osherson, 1984 for a response to this line of criticism). But,
like the Classical Theory, they ultimately run into the same issue: there are no good
definitions. Setting these issues aside, we will now consider generative models that
can produce images and how they run into the same sorts of issues we have been
considering.

An Image Is Worth a Thousand Captions

Given that our minds seem to display the systematicity we are after, it is hard for us
to imagine what sort of thinker could think “John loves Mary” but would be incapable
of thinking “Mary loves John." I propose that such a mind, in the cleanest case, could
not distinguish between the two descriptions, whether that means believing only one
interpretation holds regardless of the linear order or believing that both interpreta-
tions always hold. Each sentence may be considered holophrastic (johnlovesmary
and marylovesjohn are different words; importantly, with no internal structure), or
arguments may be ignored, and features may be blended. That seems to be exactly
what DALL-E 2 struggles with (Fig. 1). DALL-E 2 (Ramash et al., 2022) is another trans-
former-based system produced by OpenAl, but instead of predicting continuations of

text, it generates an image that the text provided by the user is likely to be a caption
of.
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Figure 1. (Left) DALL-E 2 output for “A book on a table.” (Right) DALL-E 2 output for
“A table on a book.” Representative of others in the set.

The text encoder in CLIP is based on GPT-2 (Ramash et al., 2022; Radford et al., 2019),
so that is the only point in the model at which it tracks the position of tokens within
the input. The text embedding produced by it at this stage is then fed into a model,
which is tasked with outputting an image embedding based on the text embedding,
with the image embedding finally getting passed to the decoder to guide image gen-
eration. Each step includes a transformer model, but these last two steps also include
diffusion models, which operate by reducing noise from an image towards some sig-
nal (e.g., the caption text, going from an image of static to an image of a cat through
successive denoising; Ramash et al., 2022). Because of this, as Conwell & Ullman
(2022) point out, information about the text’s position or even number may be out-
weighed by any of the steps beyond the initial encoding. This means that though im-
age outputs can give insight into different aspects of meaning, which may be difficult
to probe with text alone, they may not make full use of the information the model
initially has about the text.

Conwell & Ullman (2022) investigated DALL-E 2’s ability to generate images based on
relational prompts (e.g., “the book is on the table”). They generated 75 prompts by
randomly sampling from a set of 15 relations (8 physical, seven agents) and 12 entities
(6 animate, 6 inanimate) and used each to prompt D2. Online participants were then
given a prompt and 3x6 array and asked to select the images that matched. On aver-
age, they found that participants were in 22% agreement with D2 across all relations,
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with 17% agreement on physical relations and 28% on agentic ones. Agreement varied
greatly between relations, with only three relations significantly above 25% chance
(“touching,” “helping,” and “kicking”). Though they did not provide an analysis of the
generated images (other than participant response), the example images indicate a
range of potential problems: producing a novel object, missing an item, and produc-
ing similar images for different relations/prompts. Most importantly, of course, these
are the sorts of mistakes we would not expect people to make. Their drawings are
likely to be worse or so abstract as to be difficult to understand what is what, but it is
unlikely that upon hearing “draw me a cylinder on a cup,” a person (or child) would
regularly forget to draw the cup. While other work with more stimuli and newer mod-
els suggest a modest improvement in depicting spatial relations (around 45% based
on human ratings; Huang et al., 2023), this work used a different approach where par-
ticipants were given image-text pairs and asked to judge their appropriateness rather
than presenting an array of images and asking participants to select ones which de-
picted the prompt. Additionally, no breakdown of performance by particular spatial
relation (e.g., “touching” vs. “on”) spatial relation type (e.g., agentic vs. physical) was
provided by the authors. It is thus unclear whether this improvement is systematic,
or similarly displays the sort of fragility observed by Conwell & Ullman (2022).
Leivada et al. (2023) tested D2 on a range of tests related to grammatical composition-
ality. The ones of particular relevance to the current discussion are failures in Word
Order & Thematic Role (e.g., like in Fig. 1, not distinguishing between “the dog is
chasing the man” and “the man is chasing the dog”) and coordination (e.g., “a man is
drinking water and a woman is drinking orange juice” showed both drinking one or
the other). Similarly, Rassin et al. (2022) demonstrated that DALL-E 2 regularly vio-
lates what they refer to as “resource sensitivity,” or the constraint that each symbol is
given a different role. Though a symbol may be ambiguous (“bat” the animal vs. the
instrument), when it is used in a sentence, it cannot denote various entities at once
(e.g., torefer to both an animal and an instrument in the environment). An interesting
example demonstrating the “leakage” of one token’s set of relationships to another is
what the authors refer to as “second-order stimuli.” For example, their prompt of “a
bird at a construction site” yielded a normal bird and no (construction) crane, but “a
tall, long-legged bird at a construction site” did, along with its homophonous bird
(crane). In this case, presumably, “tall, long-legged” activated CRANEy;;,q while “con-
struction site” biased it towards CRANE onstruction, SO both of crane’s senses become in-
volved in the embedding. This kind of error is harder to explain solely due to “not
getting syntax” because the context (construction site) supports further inferences.
Regardless, even if these issues are only due to not representing the syntactic struc-
ture of the sentences (or knowing anything about English syntax), the systematicity
of words is deeply related to syntax, so that is to be expected.

These issues are likely to be true for other modalities, too, as well as future image-

based systems, assuming they use similar approaches. As for text models, adding
more training data and more parameters will make it harder to tell what they struggle
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with because it increases its coverage. However, it is little consolation to the cognitive
psychologist that adding more and more of the world into the training set makes it
harder to notice the limitations of these models. The question is whether that is how
we do it. The fact that such models struggle with compositionality would be exciting
if that were not already expected. With questions about the nature of concepts in word
learning reviewed, we can now turn to questions about the word learning mecha-
nisms themselves - that is, how are meaning hypotheses tested and updated across
experiences?

Too Global

Most acquisitionists agree that to learn words children must be able to track them
across exposures and use information from different experiences to motivate a mean-
ing hypothesis (Yu & Smith, 2007; Fazly et al., 2010; Siskind, 1996; Trueswell et al.,
2013; Stevens et al., 2017). This is largely uncontroversial because 1) we often use
words in the absence of a referent, and 2) natural language, as well as experiences
involving it, are rife with ambiguity (Quine, 1960; Medina et al., 2011). Much of the
research in this area concerns itself with ostensive labeling (Gleitman & Trueswell,
2020; Wojcik et al., 2022) and thus involves hearing nonsense words (“dax”) paired
with images or video of possible referents (Yu & Smith, 2007; Trueswell et al., 2013;
Woodard et al., 2016). Text-only LLMs do not have access to referential information,
being limited only to text, so it may seem like anything developed within a reference-
based paradigm is wholly irrelevant, but multi-modal models are more common, like
GPT-4 (Achiam et al., 2023) and Gemini (Team et al., 2023) as previously mentioned.
Additionally, a critical debate in the area of early CSWL concerns how much infor-
mation is stored between word-learning contexts and brought to bear on new expo-
sure, which bears relevance to text-only and multi-modal models. In this regard, the
token modeling process of LLMs resembles “global” algorithms, and of the potential
issues with this class of approaches, LLMs 1) solve none and 2) run into the same is-
sues (Stevens et al., 2017; Yang, 2020).

Global and Local Learners

A popular class of cross-situational word learning theories depends on scaling to solve
the problems of ambiguity and absence. These global models propose that learners
aggregate possible referents across situations for a particular word as well as across
the lexicon generally (Yu, 2008). As such, global models make use of all previous word
experiences, as Yu (2008) puts it, to “maximize the likelihood function of observing
the whole data set.” On the one hand, global approaches rely on the very reasonable
assumption that one can learn more from more information. However, there are two
issues with this class of models: they do not explain trial-by-trial behavior in word
learning experiments and (relatedly) do not account for the sort of insight learning
evident from experiments on “fast mapping” (Carey & Bartlett, 1978). Storing more
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information and conducting more computations is more costly, and there is little ev-
idence that young children remember much from a word learning context beyond
their best guess (Trueswell et al., 2013; Woodard et al., 2016). If all information from
previous experiences is stored, then in the absence of the “best guess” (e.g., CAT for
the word cat), young learners should be more likely than not to pick other referents
that tended to be present when a label was uttered. Experimental evidence with kids
suggests this is not what happens; instead, they revert to chance as though they had
no memory of the other referents that were present during labeling. Not only that but
making incorrect guesses that are similar to the correct guess does not seem to in-
crease accuracy (LaTourrette et al., 2022). Though much fast mapping research was
done in the lab and was therefore certainly far less ambiguous than naturalistic learn-
ing contexts, children exhibit stark similar insight learning patterns in referentially
ambiguous contexts (Woodard et al., 2016). They do not gradually approach under-
standing a word’s meaning; instead, it seems more like they are guessing until they
get more evidence for a guess, resulting in an “Eureka!” moment (Woodard et al.,
2016; Medina et al., 2011). Findings along these lines have been used to argue for an
alternative, more local approach to cross-situational word learning.

Local word-learning algorithms assume that learners resolve ambiguity as they en-
counter it and store only their best guess. Such algorithms do not rely on scaling, and,
in fact, at one extreme, such a model may only have memory of 1 hypothesis (True-
swell et al., 2013). This 1-hypothesis model posits that upon hearing a new label
(“div”), the young a learner proposes one hypothesis (e.g., a bottle) based on a host of
ambiguity-resolution mechanisms and stores the label alongside their guess. Upon
encountering the same novel label, they retrieve their hypothesis and check if it is the
best guess in this context as well. If it is, they have learned the word. If not, then they
propose a new one and continue the process until they successfully confirm a hypoth-
esis for that word. An unfortunate consequence of such a drastically limited memory
is that a learner could get stuck in a vicious circle of bat (animals) and bat (baseball
instrument) and never learn that bat can mean either (Stevens et al., 2017). Later mod-
els in this vein have increased the memory to allow for multiple hypotheses to be
tracked while retaining the stipulation that only one hypothesis is made per exposure
(Soh & Yang, 2021; Yue et al., 2023). With the addition of reinforcement learning,
homophones can be accounted for (Stevens et al., 2017).

Nonreferential, Yet Global

As mentioned at the start, LLMs do not track referents (though, see More modalities
may run into similar issues for discussion). A host of arguments as to why they do
not understand language center on it not being able to refer to things in the world
(Bender & Koller, 2020; Pavlick, 2023). But, LLMs do make hypotheses about the rela-
tionship(s) between the tokens, which is all that is required for the present analogy to
hold. The “meaning hypothesis” for LLMs is that tokens are related in the way that
the present parameters assume them to be. With each new experience (a new string),
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they update a host of parameters to shift this hypothesis to one that can better accom-
modate the most recent bit of evidence. The only wrinkle is that in contemporary
LLMs, there are various systems of associations being learned (e.g., masked trans-
former, multi-layer perceptron). However, none of these changes push any of these
models towards more local approaches, as there is no limit placed on how much is
tracked across exposures. As such, it does not meaningfully resolve any of the issues
in the existing debate in the CSWL literature (e.g., that children have limited memory,
difficulties accounting for insight learning). To my knowledge, no one has ever ar-
gued that the issue with global word learning models is that they cannot perform well
in various tasks if given enough memory, a large amount of data, and so on, nor that
such a model could not seem like it works under many circumstances. The argument
has been over how to accommodate particular facts about infants (memory and
amount of exposure) with experimental evidence (showing non-gradual learning pat-
terns). If that is true, LLMs do not add any more to this debate than existing global
approaches already have. But maybe these primarily scale-based approaches in early
CSWL or semantics could resolve issues anyway, given enough data and parameters
and fine-tuning. We will now turn to additional issues posed to interpretation that
likely affect the potential usefulness of LLMs to cognitive scientists.

Practical Meta-theoretical Concerns

A common retort to any assertion that LLMs are just predicting the next word is that
perhaps it is possible an LLM can create a world model. Indeed, a host of overgener-
alizations have been made by suggesting that good performance at a task means it
may be doing something human-like (Bubeck et al., 2023; though see Guest & Martin,
2022; van Rooij et al., 2023). However, we need more reason to think this sort of mod-
eling could construct seemingly specialized modeling systems that correspond to
those that we use to reason about the world. The only thing in its favor is that it could
happen. And, while it could, the problem with conceivability arguments is that so
could a lot of things. It could also not happen. Most importantly, this is a wholly un-
falsifiable line of argument. No one can prove the limitations of the next model be-
cause the next model never actually arrives. Like tomorrow, the next model is forever
out of reach today. Technology advances so quickly that it is certainly easy to worry
that one may be proven wrong in a few months, but being proven wrong is the name
of the game in science. If one formulates a hypothesis such that it can never be falsi-
fied (scaling could fix this, scaling can construct new conceptual abilities, world mod-
els, etc.), then it is difficult to have a productive theoretical argument. There is little
support for this line of argument other than arguing from uncertainty and previous
error. As Fodor (1999) put it, “If the best you can say for your research strategy is ‘you
can never tell, it might pan out,” you probably ought to have your research strategy
looked at.” We will now consider how the opacity of these models practically limits
their usefulness in research and presents further challenges to interpretation.
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Doubly Opaque

LLMs are doubly opaque. As mentioned, it is not clear what LLMs learn without rig-
orous testing (Lake & Murphy, 2022; Dziri et al., 2024; Guest & Martin, 2022), but from
a few such tests, it does appear they are more data-dependent than advertised. Unfor-
tunately, the fact that most LLMs are products adds another layer of opacity, as as-
pects of the training set and even model and pre-training become “proprietary” and
kept private due to the competitiveness of the landscape and the safety implications
of LLMs (OpenAl, 2023). We will first discuss how being a product adds an extra layer
of opacity before touching on how their black box nature complicates interpretation
to begin with. It is important to note that the additional layer of corporate opacity is
not just an isolated incident involving GPT-4. Some of the other big names in LLMs,
Bard (running on Palm 2 (Anil et al., 2023); though also true of some earlier models,
e.g., Thoppilan, 2022) and LLaMMa 2 (Touvron et al., 2023), have followed suit.*?
Given the work cited in sections above, making it harder to access the data it is LLMs
are dependent on is a practical issue researchers studying LLM performance have to
face. As a consequence, researchers are often forced to rely on indirect methods or
assumptions about what is in the training data (e.g., GPT-3 was pre-trained on text up
to 2021). Even so, this discussion is all the more complicated by the fact that as sub-
scription and usage-based products, these LLMs are additionally updated to ensure
better service. For example, Bard was recently updated with “implicit code execution”
so it can develop code to respond to prompts (e.g., about math, see Krawczyk &
Subramanya, 2023). As an opt-in feature, chatGPT optionally offers plugins that make
up for its issues in reasoning and mathematics, like Code Interpreter, which can im-
plement Python code to respond to a prompt (Lu, 2023) and a Wolfram API for e.g.,
solving equations (Wolfram, 2023). So, when we ask Bard to do something, we do not
know whether it is responding by virtue of its ‘pure’ LLMs or by virtue of additional
API calls, and the same is possibly true more generally if any details concerning the
architecture are kept classified due to the competitiveness of the landscape. We also
know some models like chatGPT are updated, e.g., with "improved factuality and
mathematical capabilities” (Natalie, 2023). These updates may be based on end-user
interactions with chatGPT (Schade, 2023), or they may be motivated by analysis of
interaction data (OpenAl, 2023b). As such, it is also possible that, with “glitches” going
viral (like how many n’s are in mayonnaise), the model may receive more data from
users about the topic, or the models could even be fine-tuned in response to these
issues. In either case, the users (often academics) are effectively doing quality control
for multi-billion dollar companies by continuously probing these models for glitches
Or errors.

These issues discussed above relate to a more general problem: how should an LLM’s

2The case of LLaMMa is especially odd considering Meta is attempting to position it as “open” (Touvron
et al., 2023; for issues surrounding openness see Liesenfeld et al, 2023).
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failures be interpreted? That is exactly my concern with using these models as base-
lines or comparisons for human participants: How do we interpret failure? Could it
be failing for one of the reasons mentioned in the previous paragraphs? Not enough
data/parameters? Or is it for more fundamental reasons? Sadly, the problem does not
disappear when approached from the other direction: how do we interpret success?
The data dependence of these models complicates attempts to falsify it. For any fail-
ure to match human performance, one can always claim it is because it was not
trained on enough data or the right sort (multimodal, speech rather than text, etc.).
Or, even if the approach is correct, the particular instantiation of it may not be. This
is because a consequence of code (as opposed to theory) is that one must make various
commitments that may be fundamentally unrelated to the theory in question. The
precise mechanism of tokenization (or segmentation) may not be relevant to under-
standing word learning, but it can affect performance on a range of tasks (Rust et al.,
2021). Of course, segmentation and word learning must interface, and of course, re-
search in either can benefit from considering the other. But the current approach
suggests either starting from the bottom and handling these earlier stages first or
committing to not just a specific theory (e.g., of word learning or segmentation) but
to a set of theories about other processes (which may themselves be contested) in-
volved in completing a general task. The result is that cognitive theories that could be
falsified in principle by any LLM are at perhaps too fine a grain to inform psycholog-
ical theory development. This is perhaps a broader problem of code-as-theory ap-
proaches, but it is especially salient given the complexity of LLMs.

There are some things LLMs need to do that may be separable from others in some
learning contexts, like using Byte-Pair Encoding or how a model determines relation-
ships between tokens in a string. It is hard to decide on which component to credit
with success or failure in a task. In the case of an agreed-upon failure, what is falsified
is too specific. Anyone who has played 20 Questions can immediately recognize the
issue with this approach, and as Allen Newell (1973) famously stated, “You can’t play
20 questions with nature and win.” Unlike 20 Questions, however, even in the case of
an agreed-upon success, much more experimentation is required for any of the big
questions. Going from “If the model does what people do, then the model correlates
with human behavior and/or neuroimaging data” and “The model correlates with hu-
man behavior” being true to “Therefore it does what people do” requires affirming
the consequent, which is not a valid chain of inference (Guest & Martin, 2022). In a
sense, we are then back in the same situation we are already in with people - minus
the ability to introspect. For example, if one considers LLMs (or some distilla-
tion/summary of them) a grammar, it is, at best, a descriptively adequate theory for
the dataset, but the goal of linguistics is to reach an explanatorily adequate theory
(Dresher & Hornstein, 1976). Indeed, recent work has even argued that creating hu-
man-like Al is computationally intractable and provided a formal proof to that end
(van Rooijj et al., 2023). It is unclear how an LLM could explain why the language it
describes is the one it ends up with; it just ends up with it. Finding another black box
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does not feel like much cause for celebration. This is a different scenario from better-
understood models, say n-grams or even Bayesian approaches. Instead, the effective-
ness of transformers is still something that is being worked out by computer scien-
tists, like a lot of deep learning currently. This concludes the section arguing that
these models 1) do not move the needle on existing debates about meaning and 2) are
difficult to interpret for a host of reasons. Because of this, getting any insight from it
is a high-risk gamble. We will now consider the cost of making this gamble.

Too Costly

The “costs” to such a gamble are ethical/moral in addition to literal. My argument will
not be that LLMs are wrong in the abstract but in the particular. As academics, how-
ever, our focus is on the abstract, which can result in particular costs of doing busi-
ness being elided and normalized. In essence, these costs run the genuine risk of be-
ing forgotten as costs. This is doubly true, given how invisible the infrastructure that
supports current models is. This abstraction is a crucial feature of exploitation, but
exploitation is not the only concern as we will see. For the sake of space, the argu-
ments listed are not intended to be comprehensive (though see Weidinger et al., 2021,
for a more thorough review). The focus here will be on 1) privacy concerns, 2) labor
concerns, and 3) climate concerns. What unites these is the sheer data hunger of these
models. Paired with the previous arguments, I feel they suggest the best course of
action is to exhibit caution in using these models and to be willing to justify their use
on a case-by-case basis rather than as a broad programmatic change in how we do
research. At the very least, the data hunger suggests the importance of developing
algorithms for machine translation, among other things, that do not require the con-
struction of more and more “dark Satanic mills” (Blake, 1808) with massive cooling
bills in an age of climate, labor, and privacy anxiety such as ours. Before we discuss
those issues, we will briefly consider whether it is possible (in the particular, not the
abstract) to construct an LLM (rather than an RSLM) for our purposes that can avoid
these ethical costs.

The scale of processing power and the amount of data necessary complicate the de-
velopment of LLMs within an academic context. Given the amount of data used by
current models (GPT-3 had 499 billion tokens, approximately 374 billion words
(Brown et al., 2022); LLaMMa 2 had 2 trillion tokens, ~1.75 trillion words), construct-
ing a dataset of similar size would be especially costly if it had to be audited for iden-
tifiable information, copyrighted text, or hate speech. Multi-modal datasets introduce
even more problems surrounding informed consent (Prabhu & Birhane, 2020; Bir-
hane et al., 2023). Given the present focus on language acquisition, if developing a
massive corpus of child-directed speech is a priority, then that introduces further ob-
stacles: greater scrutiny under IRB due to collecting data from vulnerable populations
since there is likely very limited child-directed text available online (unless tran-
scribed from audio/video), time taken to transcribe and annotate, and the typical
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complications of developmental work (recruiting parents, scheduling, child com-
fort/fussiness). For context, adding together all the words in CHILDES’ English, North
America corpora (MacWhinney, 2000) put together have 13 million non-child words
and 2.5 million child words (calculated in summer 2022). The oldest corpus dates to
1973 (Brown, 1973), which means that since then, roughly 260,000 child-directed
words a year have been added to CHILDES(certainly not uniformly, of course). At that
rate, it would take a thousand years to get about enough data for a child-directed
speech corpus for GPT-3. And, of course, the bottleneck is not just technological. En-
suring a diverse dataset requires that parents from a range of communities feel com-
fortable trusting scientists into their homes and with their child’s data, so this ap-
proach risks either further erasing the linguistic experiences of marginalized groups
or encouraging thinking of such groups extractively. Given the variability of environ-
ments, flexibility will be required on the part of recorders, transcribers, and annota-
tors such that automated approaches may not help. Though such products and ser-
vices will likely not be usable regardless because of unclear privacy and use policies
since the data will be of vulnerable populations in their home. So, it will also be costly,
especially if we ensure that the recorders, transcribers, and annotators are paid fairly
for their time. These are the practical issues surrounding the construction of a more
ethical LLM for academic purposes. This is not to say these issues are insurmounta-
ble, nor in any way meant to discourage the construction of high-quality datasets en-
compassing a diverse range of speakers, languages, and communities. But merely to
highlight that it is critical the field does not engage in “plug and chug” thinking and
attempt to match the speed and scale of current LLMs dataset construction, lest we
risk merely changing who is doing the exploitation and extraction rather than creat-
ing a more beneficent solution. But, regardless of whether an academic LLM is likely
to be developed, currently, LLM research® has consisted primarily of probing models
developed and often hosted by large corporations. The present critiques therefore
hold only until an alternative is developed that resolves these issues.

For example, one promising area of research in developmental psycholinguistics in-
volves training statistical models on more “human-sized data.” Though these would
not necessarily qualify as LLMs given the significantly more modest size of the da-
tasets they are trained on, RSLM may be more apt, as noted in the introduction.
RSLMs are certainly a welcome direction as they stand to minimize data hunger,
which can exacerbate or cause many of the issues that will be discussed. For example,
the recent BabyLM challenge included multiple tracks with different limitations on
training data, with the Strict-small track limited to a ten million-word corpus and the
Strict track to a 100 million-word corpus. Similarly, an earlier RSLM, BabyBERTA,
made modifications to ROBERTA (Liu et al., 2021) and limited the training dataset to
only 5 million words (Huebner et al., 2021). Additionally, Vong et al. (2023) recently
made waves for training a CLIP-based model on paired audio-video data from a

13 And not RSLM or general LM research.
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corpus including transcribed text (37,500 utterances) and video (600,000 frames) from
a single child (6-25 months, 61 hours of recording). RSLMs are beyond the scope of
the present paper, which attempts to focus on clear-cut cases of LLMs, though natu-
rally, some of the potential issues noted for LLMs may be relevant to RSLMs. A proper
survey of RSLMs would be able to go into far greater detail for each model, as RSLM
papers provide much more information about the model and training data. One prob-
lem that uncontroversially remains for both LLMs and RSLMs, however, is how ex-
actly success is determined as discussed in Double Opaque. Currently, the bench-
mark approach is commonly employed to measure success, but such an approach is
entirely dependent on the quality of available benchmarks. If a benchmark were to
contain confounds that a much more limited model could take advantage of, then this
might suggest that generalizing from success on such benchmarks is limited. Indeed,
Martinez et al. (2023) found success on BLiMP (Warstadt et al., 2022; used in BabyLM
(Warstadt et al., 2023)) and Zorro (used to test BabyBERTa; Huebner et al., 2021) using
a 5-gram model. The authors of this paper suggest the LI-Adger (Sprouse & Almeida,
2012) dataset as a better benchmark with fewer linear confounds, but it is important
to keep in mind that as theories develop, we may need to critique and develop bench-
marks to accommodate new confounds we may discover. This comment is certainly
not intended to discourage continued attempts to do more with less, nor is the present
paper aiming its critiques squarely at such approaches, but it is worth keeping in mind
that these practical limitations (i.e., there is no uncontroversial benchmark) will
likely remain. This paper does not seek to critique such approaches outright, as they
are capable of reducing the data-hunger of LLMs, which is likely a central cause of
many of the risks with the development of LLMs that will be discussed in the next
section.

Privacy

One of the primary benefits of transformers is parallelization, which makes
transformer-based architectures faster at processing the same amount of data as ear-
lier models. This, in turn, motivates the construction of larger datasets for training,
with the hope that this will lead to more increases in performance. But these larger
datasets do not come from nowhere. Scraping publicly available data is a pre-existing
issue, and it alone already introduces ethical issues surrounding attribution, existing
bias, and consent more generally (Prabhu & Birhane, 2020). This is because the “move
fast and break things” mentality does not allow for time to ask individuals whether
their data could be used and instead puts the onus on others to opt out. However,
LLMs’ continuous demands for more data may mean that soon, even all the publicly
available text on the internet will not cut it anymore (Villalobos et al., 2022). This
means if scaling continues to be seen as the answer, other sources will have to be
considered. This is especially concerning considering two of the major players in
LLMs handle large amounts of text for their users: Meta via Facebook and Instagram
and Alphabet via Gmail. Though these companies state their current models do not
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use their users' data (Jackson, 2023), they may reach a point where they have to to stay
competitive (or may need to purchase it from others). It may sound unlikely, but some
companies have already begun changing their policies. Zoom recently updated its pri-
vacy policy to state that information from its users’ calls may be used to train a ma-
chine-learning model (Ivanovs, 2023), and Twitter has similarly updated its Terms of
Service to suggest they can do the same despite previously allowing users to opt-out
(Maruf, 2024). Setting those concerns aside, there is a fundamental issue posed by the
internet that has consequences for the data gathered: it is not all nice. This means
datasets can and do include graphic, and even illegal, text and imagery, which can
affect training and, unchecked, reproduce existing biases (Prabhu & Birhane, 2020).
Both these issues suggest a necessity for auditing or developing compensatory correc-
tive systems, however, and this leads to the second cost: labor.

Automation and Labor

There are two labor issues: one has to do with the initial dataset, and the other
has to do with the creation of further datasets. In the case of the former, privacy issues
relate directly to labor and attribution issues. Academic texts are often publicly avail-
able, but like other publicly available texts, this comes with certain conditions - pri-
marily that the article will be credited (typically through citation). Image-generating
transformers highlight this issue in a more straightforward manner, as artists who
had been putting their art online did so under the expectation that their art will not
be used for commercial purposes (e.g., a logo for your lab). However, these image
transformers are 1) used in many ways by end-users who may want to monetize the
outputs of their prompts, and 2) primarily effective thanks to the vast amount of art
produced and put online by humans and, therefore, would perform a significantly
worse if they did not make use of that data. This means many artists see these models
as profiting by providing a service that is built upon their work (in the aggregate) as
well as facilitating and even obfuscating plagiarism. Importantly, obfuscating plagia-
rism becomes an even bigger issue when generative Al is marketed as a replacement
for artists and graphic designers. In such cases, artists can often worry their work is
being stolen to train their replacement.

The second set of issues falls under the umbrella of “data enrichment” labor
(Partnership on Open Al, 2023). This refers to labor intended to improve the perfor-
mance of these models by annotating or creating new data and often takes the form
of annotating data for potential harms or explicating tasks (like coding) in English. In
both cases, US companies run the risk of contributing to ongoing “algorithmic colo-
nization” by suppressing the development of local products abroad while keeping in-
dividuals dependent on the West for these kinds of products and infrastructure (Bir-
hane, 2020). One type of data enrichment involves paying individuals to read, watch,
or look at a lot of content, much of which is likely to be highly graphic in various ways
(e.g., sexually, racially, physically, and so on) to flag whether it violates any laws (e.g.,
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hate speech) or is otherwise undesirable in a model (e.g., violent imagery). Or, in the
case of OpenAl, rather than hiring individuals to do this work, it is instead off handed
to a contractor (like Sama) and outsourced to Kenya, where labor is significantly
cheaper (about $1.46 and $3.74 per hour). To save money, these workers were, of
course, not provided support or access to any counseling services (Perrigo, 2023;
Rowe, 2023). Other kinds of data enrichment labor are also subject to subcontracting.
For example, some data enrichment tasks aim to improve performance of a model in
particular areas (e.g., code, reasoning) and therefore requires creating datasets in
which reasoning is often made explicit or otherwise described in English. OpenAl no-
tably used such annotators in their push to provide code generation through GPT (Al-
bergotti & Matsakas, 2023). Though these issues are, of course, exacerbated when out-
sourcing to contractors in the global south, this growing form of labor is likely to be
subcontracted in the US as well. While pay often starts significantly higher (in the case
of OpenAl, $15 per hour), no benefits are provided (Ingram, 2023), employment is
often precarious, and can be, in the case of data-enrichment jobs for Bard, high-pres-
sure and fast-paced (Chowdhury, 2023), with subcontracted employees having little
to no say in their working conditions (De Vynck, 2023). Domestically and abroad,
LLMs engage in and encourage bad labor practices to attain the level of scale neces-
sary for the performance they would like to advertise. We will now turn to the final
cost we will cover: the environmental costs.

Climate Concerns

LLM companies have, in some cases, decided to abide by best practices and disclose
their estimates of their emissions, but it is important to note that it is difficult to com-
pare estimates without knowing more details about how they were reached (Dodge et
al., 2022; Patterson et al., 2021). LLaMMa 2 reported an estimate of 539 tCO2 con-
sumed during training (Touvron et al., 2023), while external researchers have esti-
mated GPT’s to be 552 tCO2. Regardless, the numbers do look quite high, and that is
because the data hunger naturally translates into many computations being per-
formed over a long period. For context, the lifetime carbon footprint of a mid-size car
(120,000 miles) is 63 tCO2 (Center for Sustainable Systems, 2018, Strubell, 2019). The
average American drove 13,489 miles per year in 2021 (Hardesty, 2023), which means
where a car may take nine years, an LLM takes less than one to emit almost nine times
the carbon. To get a holistic view of the current and potential of LLMs, It is important
to keep in mind that not only are there various companies developing them, but many
of these companies have developed more than one. So far, this article has mentioned
five different models (chatGPT, GPT-3, GPT-4, LLaMMa 2, and PaLM (Bard)), the old-
est of which came out in 2020. It is important to note this estimate is just for pre-train-
ing; they do not account for continued running costs (responding to prompts) and the
various updates that may occur along the way. In the case of the former, it is essential
to keep in mind that these models are not simply “looking up” values in a database
but, rather, are crunching statistics. Practically, this means it is difficult to determine
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what the carbon costs are of a single study with LLMs. However, even if running car-
bon emissions were transparently available, the question of whether and how to
count the carbon emissions during pre-training in these studies would likely remain,
especially as research employing LLMs like GPT-4 to make outsized claims about its
(“cognitive”) abilities may serve to boost their use and perceptions of legitimacy
which may, in turn, contribute to the pre-training of future models. The running costs
are especially relevant if LLMs become a part of daily life as their regular use may
quickly add up. For example, Microsoft and Alphabet have announced their interest
in integrating LLMs into online searches (Reid, 2023; Mehdi, 2023). In 2009, a single
Google search was estimated to be 0.2g of carbon (Hozle, 2009); though there may
have been gains in computational efficiency since then, adding LLMs to the process
may jeopardize these gains. Since this paper was submitted, sustainability reports
have revealed that Alphabet’s carbon emissions have gone up by 48% since 2019
(Milmo, 2024) while Microsoft’s have gone up by 30% from 2020 to 2023 (Hodgson,
2024). These increases will make it significantly harder for both companies to meet
their goals of reaching net-zero emissions by 2030.

It is important to note that many of these companies use carbon offsets or may other-
wise use other strategies or algorithms to optimize energy efficiency (though Bard’s
footprint is unknown, Alphabet is known to use various methods to manage their data
center’s energy usage; Google, 2023). However, there are limitations to strategies that
do not seek to reduce energy usage but instead to either optimize or offset continued
usage. For example, it is unclear whether offsets do what they promise to do, at least
in the immediate timescale. Offsetting can include paying non-profits to plant trees
or distribute energy-efficient gear in the global south. While these approaches may
be great, they are unlikely to offset the carbon in the short run. This is because it can
take decades before a tree offsets the carbon promised by such providers (Fairs,
2021), or because the returns are not as effective as possible since energy consump-
tion in the global north outweighs that in the south; for example, per capita carbon
emissions are 40 times higher in the United States than Kenya (Energy Use Per Person,
2023). Furthermore, some argue that many of the funds that go towards carbon off-
setting go towards projects that would have been carried out regardless, thereby re-
sulting in misallocated resources (Calel et al., 2021). Of course, the biggest concern is
that carbon offsetting does not reduce emissions in the first place (Forster, 2022).
Given the limitations of current offsetting approaches, and the urgency of the climate
crisis, reducing the use of carbon has the highest impact. Finally, it is important to
note that carbon emissions are not the whole story as far as climate costs are con-
cerned. Since data centers are constantly computing, they generate heat and there-
fore require cooling. This requires water, so it is also important to consider the water
extracted from various ecosystems, many of them fairly dry to begin with (Sattiraju,
2020). It is difficult to estimate how much water is used to train and maintain an LLM.
But, this means that a more holistic view of environmental costs includes not only the
carbon offset during pre-training but also a currently-hard-to-estimate estimate offset
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for continued use and fine-tuning in addition to the water used for cooling, especially
if LLMs continue to be integrated into everyday products like online search.

Conclusion

What can LLMs tell us about long-standing debates in word learning? My argument
thus far can be summarized as follows: little more than we could gain from reading
the existing literature. Some may prefer querying an LLM to running an experiment,
constructing their own models, or reading philosophy, and while it is of course not
necessarily impossible some LLM experiment could produce an interesting finding ,
such work is different from theory development. The present issue with LLMs is that
it is not clear how to characterize them, given their novelty and size. My point, how-
ever, is not that LLMs must be like some particular existing theory but rather that
when considering existing debates and the questions they raised, LLMs run into the
same issues most theories in these spaces have run into. They have yet to resolve them
despite hyperbolic claims to the contrary. At best, they sidestep what makes these
questions interesting, and at worst, they ignore psychological plausibility and existing
empirical findings. While NLP researchers are certainly free to decide whether or not
to shape their models based on psychological principles (Lake & Murphy, 2021), we
developmental psycholinguists have no such freedom.

This special issue asks whether LLMs can tell us anything. Most LLM discourse seems
to take this form: what can LLMs do, and what problems could they solve? Joseph
Weizenbaum, one of the however many fathers of Al at this point, said the following
in an interview (ben Aaron, 1985) when asked what the role of computers in education
should be:

"The questioning should start the other way -- it should perhaps
start with the question of what education is supposed to accom-
plish in the first place. Then perhaps [one should] state some pri-
orities -- it should accomplish this, it should do that, it should do
the other thing. Then one might ask, in terms of what it's sup-
posed to do, what are the priorities? What are the most urgent
problems? And once one has identified the urgent problems,
then one can perhaps say, ‘Here is a problem for which the com-
puter seems to be well-suited.” I think that's the way it has to
begin.”

As far as I have seen, no one has articulated why LLMs as such (i.e., GPT-4, Gemini,
etc.)™* are uniquely well-suited to the task of conducting word learning research in

“This is not a critique, as stated repeatedly throughout the paper, of approaches like those in BabyLM
and BabyBERTa. As a reminder, this is because these approaches immediately fail criteria 3 (trained

Volume 5, Issue 1



Language Development Research 174

light of the clear problems they pose to interpretation (noted in Doubly Opaque), and
the potential costs (noted in Too Costly). It is true that they could in the sense that the
future is unknowable, and LLMs certainly are mysterious, much like the brain, and
yes, they seem impressive. All of this could generate inspiration, ideas, or publica-
tions, but I have yet to see a coordinated plan that takes the interpretative challenges
reviewed in Double Opaque seriously. The costs, in my opinion, are especially
marked given the high-risk nature of the decision to integrate proprietary LLMs into
the field broadly and uncritically. This is not a free lunch, and if we are not pleased
with the consequences of taking this bet, we will still have to pay for it. It is a very live
possibility that LLMs teaches us little about language acquisition, and that we have
contributed much more to the erosion of privacy as an individual right, ongoing social
and financial inequality, climate change, and even more (e.g., amplifying prejudice,
misinformation, security concerns (Weidinger et al., 2021)) in the process.

The past would suggest that we refrain from playing with shiny new toys even if it
seems like they can do absolutely anything. However, if you feel you must, please
deliberate over it and ensure it is worth it for that particular case. Consider whether
there are means of conducting the study without using LLMs (e.g., maybe a home-
grown RSLM would work, or an even simpler model). Stay up to date with best prac-
tices in NLP and consider how they may apply to work in our own field (e.g., perhaps
working towards using standardized model cards for RSLMs as is done for LLMs
(Mitchell et al., 2019)). Considering these points may mean honestly asking oneself
whether a potential paper speaks to big questions or is just provocative and easily
preparable. This may require reading and determining what is under debate now as
well as historically and asking whether LLMs completing some task truly tell us any-
thing. If it fails, can it tell us more than it failed? If it appears to succeed, will we allow
it to confirm our biases rather than conducting further tests and refining our bench-
marks? As in conducting any study, it is critical to approach big claims carefully. Us-
ing the best work in developmental psychology may serve as a good guide - that is,
ensuring other possible strategies for completing a task are not available before
providing strong interpretations based on success (Martinez et al., 2023; Frank, 2023).

Finally, it is critical as a field that we become open to critique over our decisions. The
discipline cannot move forward if discussing questions of value, cost, and ethics is
considered rude, irrelevant, or an attack. We, as cognitive scientists, must be open to
more than just discussions about what LLMs can(‘t) teach us about word learning. We
need frank and honest conversations on whether we should, which means being able
to consider the costs listed above as well as others. Yes, this may be difficult, and yes,
it may be emotional, but given the costs, those moments of personal discomfort are
likely well worth sitting with. Deeply deliberating beforehand about whether to use

on an immense amount of data) in the definition given in How LLMs M Ls. These approaches also
attempt to use fewer parameters, and so are relatively better along criteria 2 than LLMs. It is harder to
determine how many parameters is “too much,” though, relative to words or speech.
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such an LLM also better prepares one to receive and respond to critiques of the sort
provided here. Finally, it is imperative that in pursuing any work using LLMs, cogni-
tive scientists take care not to 1) do free quality control for major corporations and 2)
launder the reputation of their products by suggesting they are human-like and there-
fore further contributing to the hype cycle. The former can be done by ensuring any
paper has a point beyond the simple “LLMs can/’t do X.” The latter can be done by 1)
ensuring hyperbolic claims are not made about LLM capacities within the scientific
community or to the press (Shevlin & Halina, 2019) and 2) including some of the costs
as limitations of the methods and approach. While learning from the past is an indi-
vidual decision at the end of the day, it stands to benefit us all.
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Introduction

With the rapid development of large language models (LLMs), many developmental
researchers have begun to see their potential for furthering knowledge of how chil-
dren learn language. To address the question posed in this special issue: “What can(‘t)
Large Language Models (LLMs) tell us about child language acquisition?”, we high-
light the ways in which LLMs differ from child language learners and how these dif-
ferences impact the inferences that can be made from LLMs about how children learn
language.! Our hope is that researchers across fields - including developmental sci-
ence, computer science, linguistics, cognitive science, and artificial intelligence — will
consider and address these differences as they develop LLMs and compare them to
human learners.

One notable contrast between LLMs and human language learners is the amount of
input required for learning. For example, Frank (2023) estimates that to “acquire lan-
guage,” LLMs require 4-5 orders of magnitude more language data than human chil-
dren. How children learn - given this relative dearth of input - is likely due to two key
differences between these two systems: the content of the learning input and the
learning goal.

Recent efforts to compare language models to natural child learning illustrate the im-
portance of going beyond simple prediction of the next word to incorporate features
of learners’ natural input and experience, finding that models that incorporate non-
speech signals and inductive biases are key to linking language models to language
development. For example, Vong and colleagues (2024) demonstrated that a model
trained on correlated visual and linguistic data streams — naturalistic video and audio
data acquired from a head-mounted camera that a child wore regularly from 6 to 25
months - was able to acquire word-referent mappings and generalize object labels to
new referents. While this is an important advance in understanding how infants learn
from their combined visual and auditory input, language learning is much more com-
plex than word-object mapping alone (e.g., Wojcik et al., 2022). In another study,
Lavechin and colleagues (2024) investigated perceptual attunement in infants (i.e.,
the process through which infants become experts at discriminating the sounds of
their native language while losing this ability for sounds not in their language) by ap-
plying a prediction algorithm to clean audiobook data and ecologically valid longform
recordings of children's speech input. They found that, while perceptual attunement
was present in the clean data, it only emerged in the naturalistic data when the

! While we acknowledge that there is a large literature on computational modelling outside of LLMs,
our focus here is on features of LLMs specifically and not computational modelling in general.
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algorithm incorporated language learners’ inductive biases (e.g., a speech prefer-
ence). These results provide important insight about the role of infants’ preference
and expectations in influencing their ability to learn from natural input. As a result,
the authors argue for the importance of model input that reflects learners’ actual ex-
perience, because failing to account for features of real-world, everyday experience
leads to inaccurate conclusions about the complexity of the learning problem and
how human language learners succeed in the face of such a challenge.

The goal of the first widely popular LLMs was to accurately predict words and simu-
late human language given what was gathered from analyzing large bodies of existing
text (Blank, 2023). In contrast, while learning to predict the next word is helpful for
child language learning, the goal of human children is not simply to learn language.
Instead, the ultimate goal of human children is to become active, integrated members
of their social environment (e.g., Casillas, 2023) who can process and respond to input
as it changes across multiple timescales, adapting to in-the-moment communicative
demands. While learning language is in service of this goal, becoming an active mem-
ber of the social environment involves much more than language alone.

Regarding the question of what LLMs can(‘t) tell us about child language acquisition,
we argue that LLMs have limited ability to provide insight into child language acqui-
sition until we can better account for the true complexities of children’s everyday
communicative input. Further, as of now, existing knowledge of the natural input to
the human language learning system is incomplete. While we suggest that large lan-
guage models (LLMs) are limited in what they can tell us about how children learn, the
development and refinement of what we are calling “efficient communication models”
(or ECMs) may get us closer to approximating how humans approach true, multi-
modal learning challenges.

What is the input to large language models? What can they do and what are they
not designed to do?

Using prediction-based processes, LLMs are designed and trained for a wide variety
of uses, including conversation and customer support, linguistic analysis (e.g., se-
mantic & sentiment), evaluation and feedback (e.g., automated grading and com-
ments), debugging and optimizing code, and many others (e.g., Demszky et al., 2023).
To date, none of the well-known models are intended to mirror or model the specific
natural language learning trajectory of human children. Criticizing LLMs for being
poor models of human language learning would be a bit like criticizing helicopters
for being poor models of bald eagles. Nevertheless, LLMs are a new class of entity
exhibiting advanced linguistic competence, and as such, they offer both an
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opportunity to explore principles of language and learning (Futrell & Mahowald,
2025; Piantadosi, 2023), and a collection of computational methods and tools that
could potentially be modified and rearranged in order to produce future viable mod-
els of natural human language learning (see Orhan et al., 2020; Vong et al., 2024).

For language-only LLMs (contrasted with multimodal models currently available, and
discussed more below), tokens are units of meaning: individual words, or words bro-
ken into components (e.g., ambidextrous - ambi & dexterous), or phrases combined
into a single unit (e.g., hit the hay - hit-the-hay). Tokens are converted to vectors in
a high-dimensional space (e.g., 300 dimensions; small-to-large, dark-to-light, good-to-
bad, inanimate-to-animate, etc). These dimensions are discovered from statistics of
natural language; they can be non-linear and their endpoints do not necessarily cor-
respond to human-interpretable words or familiar concepts. Positions in the high-di-
mensional vector space correspond to word meanings, and a sentence can be thought
of as a path through the space. One goal of a language model is to take a given path
through space and predict its future trajectory - to take a sentence or paragraph and
predict what words will likely come next. The process of training LLMs leads them to
encode the transitional probabilities between larger and larger units of meaning
(strings of tokens) in order to make increasingly accurate predictions. The predictions
themselves then become the prize as automatically generated text, which can be boot-
strapped as input into another round of prediction, iteratively generating more and
more complex and sophisticated units of meaning as conversations, essays, entire
books, and more.

While the first several generations of large language models were trained only on to-
kenized text inputs (e.g., LlaMA2, Touvron et al., 2023), in the past couple of years
(and in the time since the first draft of this article), popular “multimodal” models have
been released that operate over several types of information: text, audio, images, and
video (e.g., Gemini Team et al., 2025; Berkovich et al., 2025) and interface with robot-
ics (Gemini Robotics Team et al., 2025; Koubaa, Ammar, & Boulila, 2025).

Predict-next-word is a fair (admittedly approximate) description of the goal when
training language-only LLMs; newer “multimodal” models might be described as to-
ken-context-inference. Some tokens are words and others are features, objects, and
events in a visual scene or video. These models operate over tokens in a substantially
higher-dimension vector space inclusive of visual content — made possible by sophis-
ticated pre-processing in machine vision, and other technical achievements. A sen-
tence of word tokens is a trajectory through vector space and has a visual counterpart
that is a trajectory through another region of this same larger vector space in a region
corresponding to visual features, objects, and events. The context window is the
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number of tokens “actively” considered when predicting the next token. LLaMa2 re-
leased in 2023 had a context window of 4,096 tokens (Touvron et al., 2023). A version
of LLaMa4 released in 2025 has a potential context window of 10 million tokens
(Berkovich et al., 2025). Prediction is one form of inference, and training procedures
increasingly involve more types of inference, e.g., fill-in-the-blank showing the first
and last sentence with the middle sentence missing. Covering part of an image and
inferring what is missing is a visual counterpart to this fill-in-the-blank structure.
Starting from an image and generating a verbal description of the image (or vice
versa) is also a process of inference.

An open-source, natively multimodal LLM, LLaMa4, released in the spring of 2025
(Llama Team, 2025), has specifications that can be used to illustrate the input, goals,
and output of multimodal LLMs. The largest version of LLaMa4 has 2 trillion param-
eters (288 billion active parameters), and is trained on 40 trillion multimodal tokens -
which is not a psychologically plausible amount of information to process, compre-
hend, and remember during the first decade of human life (it would take around
110,000 years for a human to read this much at a rate of 750 tokens per minute). Hu-
man brains have around 100 billion neurons, each with an average of 1000 connec-
tions, although this statistic hides great variability. Depending on the accounting
methods, LLMs and human brains can hypothetically be described as similarly com-
plex, or the human brain could be considered to exhibit a few orders of magnitude
more or less complexity than current LLMs (e.g., for comparison to LLM parameters,
should we count all neurons, only neocortical neurons, only brain areas involved in
communication? Do we count individual neurons, individual synapses, or individual
modifiable proteins or other molecules at each synapse?). Human children are ex-
posed to millions of words each year, but these words are richly embedded in relevant
multimodal interactions, social environments, and spatiotemporal contexts, and it is
another open-ended accounting task to determine how many LLM-input tokens might
correspond to a minute or year of multimodal stimuli presented to a child. As the
transformer architecture is used increasingly to support multimodal models (Gemini
Team et al., 2023; Jiang et al., 2025), new opportunities will arise for using ecologically
valid datasets to train models that communicate.

What is the input to human learners? What are the goals?

The ultimate goal of children’s communicative development, of which language is
one integral part, is to become functional members of their social environments (e.g.,
Casillas, 2023). Next-word prediction (a primary process underlying LLMs) is an im-
portant part of communicative development, but children go beyond this by com-
municating about complex meanings, mental states, beliefs, and goals with others in
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their community. Further, unlike the learning process of LLMs, children’s learning is
shaped by the moment-to-moment pressure to successfully communicate with their
caregivers throughout development (McMurray, 2016).

The input to young learners reflects these complex goals. Child-directed input is mul-
timodal in a quite different sense from multimodal LLMs. Input is deeply multidimen-
sional, incorporating a diverse set of communicative cues. Further, this multidimen-
sional input is highly variable over time and across individuals, communities, and
cultures (Bergelson, Amatuni, et al., 2019; Bergelson, Casillas, et al., 2019; Casillas et
al., 2020; Holler & Levinson, 2019; Kosie & Lew-Williams, 2024a; Piazza et al., 2021;
Ryskin & Fang, 2021; Schatz et al., 2022; Suarez-Rivera et al., 2022; Yu & Smith, 2012).
There is no “one-size-fits-all” characterization of human input, and any model of
learning (language learning included) needs to account for and/or be robust to this
massive variation. Even so, findings in the field of developmental psychology often
emphasize consistency rather than variability across individuals and models of hu-
man learning frequently focus on averages (e.g., the average age of acquisition for a
given word; Kachergis et al., 2022). In order for LLMs to provide insight into human
learning, they must account for the fact that, even in the face of this extreme variabil-
ity, nearly all children around the world learn spoken or signed language. In what
follows, we provide an overview of the complexity of infants’ everyday experience by
briefly highlighting some examples of the multidimensionality of communicative in-
put, describing ways in which it is adapted to infants and children, and identifying
sources of variation in this input.

Speech

In many cultures around the world, caregivers modify their speech during interac-
tions with infants (e.g., Cox et al., 2022; Ferguson, 1964; Fernald et al., 1989; Hilton et
al., 2022; Kuhl et al., 1997; Piazza et al., 2017; Snow & Ferguson, 1977). These modifi-
cations - frequently referred to as “motherese” or “infant-directed speech” (IDS) - in-
clude higher and more variable pitch, shorter utterances, increased repetition, and
simplified vocabulary. Modifications to IDS appear to support infants’ learning by in-
creasing their attention to speech input, enhancing their discrimination of speech
sounds, and helping them to segment words out of continuous speech (e.g., Cooper &
Aslin, 1990; Fernald, 1985; Golinkoff et al., 2015; Graf Estes & Hurley, 2013; Ma et al.,
2011; ManyBabies Consortium, 2020; Soderstrom, 2007; Trainor & Desjardins, 2002).
However, the overall amount of IDS that infants encounter varies across cultures
(Casillas et al., 2020; Cristia et al., 2019; Ochs & Schieffelin, 1984; Shneidman & Goldin-
Meadow, 2012) and, even within a single culture, there is variation in both the amount
and “quality” of IDS (Kosie & Lew-Williams, 2024a; Outters et al., 2020). Variation in
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infants’ experience of infant-directed speech also impacts their preference for this
speech register. For example, infants who experience more IDS in their everyday in-
put show a stronger IDS preference (Outters et al., 2020). Further, caregivers tailor
their use of IDS to their infants’ ages and abilities. While the overall pitch of caregiv-
ers’ speech (a primary feature of IDS) is high when they are interacting with younger
infants, it becomes more adult-like as children get older and produce more mature
vocalizations (e.g., two-word utterances; Amano et al., 2006; Cox et al., 2022). Addi-
tionally, caregivers modify their speech as children learn new words. Roy and col-
leagues (2009) demonstrated, using recordings of the speech directed to a single child
from 9 to 24 months of age, that the mean length of utterances surrounding a word
decreases until the child produces that word and begins to increase afterwards. Sim-
ilarly, Schwab and colleagues (2018) showed that fathers repeat words less frequently
as children’s language skill increases. But caregivers modify IDS from moment to mo-
ment as well, simplifying their speech in response to infants’ babbling, providing
more contingent responses to more mature vocalizations, and increasing pitch when
infants provide positive feedback (Elmlinger et al., 2019; Gros-Louis et al., 2006; Smith
& Trainor, 2008). Thus, in addition to changes in the language (words) that infants
encounter, extra-linguistic features (e.g., pitch and utterance length) vary over time
as well. In sum, even the “speech” input to infants is more than speech alone, is tai-
lored in ways that impact attention and learning, and varies across and within indi-
vidual infants.

Action

As caregivers talk about objects, they frequently act on these objects as well (Karma-
zyn-Raz & Smith, 2022; Meyer et al., 2011; Schatz et al., 2022, 2022; Suanda et al., 2016).
Like speech, infant-directed actions are modified in a variety of ways (including more
enthusiasm, repetition, simplification, larger range of motion, and being performed
close to the infant; Brand et al., 2002) and these modifications appear to enhance both
infants’ attention to actions and exploration of associated objects (Brand & Shallcross,
2008; Koterba & Iverson, 2009; Meyer et al., 2022; Williamson & Brand, 2014). Beyond
enhancing attention and exploration, caregivers’ use of infant-directed action has
been linked to infants’ language learning. Specifically, caregivers’ use of object mo-
tion in synchrony with vowel sounds and words helps infants map labels to objects
(e.g., Gogate & Bahrick, 1998; Matatyaho & Gogate, 2008). Additionally, in order to
learn about actions and their associated labels, infants must be able to segment indi-
vidual action units out of a continuously unfolding stream of activity (e.g., to learn
what “waving goodbye” is, they must be able to find that particular action unit within
all of the motor activity that occurs before and after the hand waving; Friend & Pace,
2011; Golinkoff & Hirsh-Pasek, 2008; Levine et al., 2019). Caregivers’ modifications to
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infant-directed action seem to support this ability - infants more readily identify the
boundaries of action segments when those actions are demonstrated using infant-di-
rected modifications (versus demonstrations that are “adult-directed”; Kosie et al.,
2022). The extent to which caregivers modify infant-directed action varies as well. For
example, Fukuyama and colleagues (2015) demonstrated that, when infants had the
motor skills necessary to perform an action, but were not yet actually performing the
action themselves, caregivers increased the variability of their movements (a feature
of infant-directed action) relative to cases in which the infant already demonstrated
proficiency in the action or did not yet have the motor skill necessary to perform the
task. Thus, it seems that caregivers may tailor their actions to their infants’ abilities,
leading to variation in action input across time and across infants.

Gesture

Gesture, too, is a common feature of everyday caregiver-infant interactions (e.g.,
Goldin-Meadow, Susan, 2005; Kosie & Lew-Williams, 2024a; Rowe et al., 2008;
Schmidt, C. L., 1996; Vigliocco et al., 2019). Like speech and action, caregivers modify
gestures when interacting with infants versus adults. Gestures directed to infants are
much simpler than the gestures that occur in adult-adult interaction and primarily
involve use of deictic gestures, like pointing (e.g., Iverson et al., 1999; Murphy & Mes-
ser, 1977). In interactions with infants, versus adults, gestures are more likely to be
redundant with information contained in speech, reinforcing the message rather
than providing new information (Iverson et al., 1999; Ozcaliskan & Goldin-Meadow,
2005). This gesture-speech redundancy appears to support infants’ word learning in
“typically developing” children as well as those with language difficulties (Booth et
al., 2008; Hollich et al., 2023; Matatyaho & Gogate, 2008; S. Vogt & Kauschke, 2017). In
the longer term, caregivers’ use of gesture is positively predictive of infants’ gesture
use which, in turn, is linked to their language development (Iverson et al., 2008; Rowe
et al., 2008; Rowe & Goldin-Meadow, 2009). However, caregivers’ use of gesture varies
for multiple reasons. For example, caregivers modify and adapt their use of gesture
as infants’ object knowledge and lexical mapping abilities grow over time (e.g., using
more frequent synchrony between words and object motion with younger infants; Di-
mitrova & Moro, 2013; Gogate et al., 2000). Both the type and frequency of caregivers’
gesture use, as well as relations to infants’ communicative development, also varies
across cultures (e.g., Tamis-LeMonda et al., 2012; P. Vogt et al., 2020) and children
growing up in more gesture-rich cultures, like Italy, develop larger and more diverse
gesture repertoires (Iverson et al., 2008).
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Emotion

Caregivers also frequently change their facial movements and tone of voice to convey
emotion. When caregivers address infants, they use exaggerated facial displays of
emotion, sometimes called "emotionese" (Brand et al., 2002; Kosie & Lew-Williams,
2024a; Wu et al., 2021), and a happy vocal tone (Fernald, 1992; Fernald et al., 1989;
Kitamura & Burnham, 2003; Panneton et al., 2023; Singh et al., 2002; Trainor et al.,
2000). Researchers are just beginning to characterize the kinds of emotion displays
that infants observe in their natural environments. For instance, Ogren et al. (2023)
found that despite researchers’ overwhelming focus on canonical facial displays (like
furrowing brows for anger or pouting for sadness), infants rarely see facial configu-
rations that match these patterns in real-world settings. This highlights the im-
portance of descriptive data-driven research on this topic in order to understand how
emotional information co-occurs with speech. Presenting emotional information
concurrently with other communicative cues has several benefits. First, emotional
displays can enhance infants’ attention and engagement. For instance, infants prefer
emotionally charged vs. neutral speech (Kitamura & Burnham, 1998; Panneton et al.,
2006; Singh et al., 2002), actions (Zieber et al., 2014) and faces (LaBarbera et al., 1976;
Reider et al., 2022). Second, emotions provide useful context that can help children
construct complex meanings (Nencheva et al., 2023; Wu et al., 2021). Although we still
have a very limited understanding of how affective displays interact with other com-
municative cues, there is some evidence that vocal emotion may benefit aspects of
children’s language development, such as recognizing words embedded in a speech
stream (Singh, 2008). As is the case with other cues surrounding communication,
emotion displays also vary across individuals (Kosie & Lew-Williams, 2024a) and cul-
tures (Tsai, 2017) both in quantity (e.g., the extent to which caregivers display their
emotions), as well as quality (the specific emotional expressions caregivers use).

Touch

Touch is yet another modality that caregivers systematically use when communi-
cating with infants (e.g., Anisfeld et al., 1990; Feldman et al., 2010; Ferber et al., 2008;
Franco et al., 1996; Hertenstein, 2002; Jean et al., 2009; Stack & Arnold, 1998; Stack &
Muir, 1990). From birth, contact with caregivers has numerous benefits for infants,
including regulating infants’ stress response and increasing positive affect (Feldman
etal., 2002, 2010, 2014; Stack & Muir, 1992) and caregivers use different types of touch
to elicit specific behaviors from their infants (e.g., Hertenstein, 2002; Jean & Stack,
2009; Stack & LePage, 1996). Caregivers also use speech and touch cues in tandem to
enhance communication with infants; their use of speech and touch are frequently
aligned during natural interactions with infants and, when these cues are used
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together, caregiver speech is more exaggerated (i.e., “infant-directed”) and touches
are longer (Abu-Zhaya et al., 2017). Other research demonstrates that caregivers’ sim-
ultaneous use of speech and touch supports infants’ learning of auditory patterns
(Lew-Williams et al., 2019), speech segmentation (Seidl et al., 2015), and word map-
ping (Tincoff et al., 2019). However, caregivers’ use of touch adapts to infants’ chang-
ing behaviors and evolves over time (e.g., Ferber et al., 2008; Jean et al., 2009). The
type of touch that caregivers use also varies across cultures (Franco et al., 1996; Lowe
etal., 2016) and caregivers align speech and touch even more frequently with children
who are deaf and hard of hearing (Abu-Zhaya et al., 2019).

Communication is multimodal

Though we have just described each of these dimensions of communication sepa-
rately, they do not occur in isolation. In fact, our own recent work shows that nearly
60% of the speech that infants hear overlaps with one or more non-speech communi-
cative cue(s) (Kosie & Lew-Williams, 2024a), and there is strong evidence that multi-
modality like this enhances infants’ learning. A substantial body of experimental
work on intersensory redundancy (Bahrick & Lickliter, 2000) has demonstrated that
exposure to multimodal cues helps to direct infants’ attention to relevant features of
input and supports infants’ discrimination of qualities including tempo, rhythm, and
affect (e.g., Bahrick et al., 2002, 2004; Flom & Bahrick, 2007). These effects have been
validated in descriptive, naturalistic research as well. Play bouts in which mothers
simultaneously touch and talk about objects are longer than unimodal bouts and are
more likely to hold infants’ attention (Schatz et al., 2022; Suarez-Rivera et al., 2019;
Suarez-Rivera et al., 2022). In addition to supporting infants’ attention and discrimi-
nation, multimodal input assists young infants’ learning of abstract rules (Frank et
al., 2009) and toddler’s learning of novel words (Booth et al., 2008). Specifically, Booth
and colleagues (2008) found that greater redundancy among communicative cues (in-
cluding speech, gaze, pointing, touch, and object manipulation) during exposure to a
novel word promoted toddlers’ learning of that word. Thus, the multimodality in eve-
ryday communication appears to benefit the infant learner beyond speech or lan-
guage alone.

Depicting - which occurs frequently during everyday communication - involves the
use of multiple cues across modalities to create a physical scene that serves to repre-
sent, or depict, another scene that a person intends to communicate about (Clark,
2016). For example, if someone is talking about the antics of their naughty cat Rex,
they might point to an object on the table, dramatically wave their hand in a gesture
indicating that an object was knocked off of the table, and make a “whooshing” sound.
Together, these components generate a scene that the interlocutor can easily
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visualize in a way that is richer and more precise than if the producer had simply said
“my cat knocked the object off of the table.” In addition to evidence that multimodal-
ity supports attention and learning, it also enhances communication more broadly
through mechanisms like depicting.

One potential way to conceptualize these multimodal cues is as units of information
that facilitate the interpretation of the message being communicated. However, it is
not clear how to conceive of the amount of information gained by each component of
a multimodal event, and it is unlikely that they all contribute equally (i.e., the total
information gained by a multimodal communicative event is likely not simply the
sum of its parts). Somewhat analogous to video where consecutive frames often con-
tain redundancy (Jiang et al., 2025), multimodal input can exhibit varying degrees of
cross-modal correlation and unique information. This leaves open an exciting avenue
for future computational work that seeks to understand how cues are combined to
generate or enhance communicative meanings. Overall, multimodality is a central
component of communication that supports efficiency in processing and learning
and should be accounted for in any model of early learning. As multimodal Al models
advance, it is possible and plausible that they will provide more insight into develop-
ment than large language models alone.

Additional influences on infants’ experience and processing of communicative input

Although the cues we have discussed - speech, action, gesture, emotion, and touch -
underscore the extensive multidimensionality of infants’ natural input, this is not an
exhaustive list of the ways that humans communicate. For example, eye gaze, prox-
imity, and response contingency are all involved in natural communicative interac-
tions and can be modified or tailored in ways that influence learning (e.g., Brooks &
Meltzoff, 2005; Goldstein & Schwade, 2008; Salo et al., 2021). The set of communica-
tive cues in infants’ everyday learning environment spans numerous modalities and
varies both across and within infants.

Beyond just the cues that occur, infants’ experience of communication happens
within a system that is constantly changing (see Thelen & Smith, 1994 for a review).
Factors including infants’ internal states and features of the environment vary at mul-
tiple timescales and influence the way that communicative input is encountered and
processed (Mani & Ackermann, 2018; Outters et al., 2023; Pomper & Saffran, 2019). As
one example, recent evidence suggests that the presence or absence of highly salient
familiar objects may influence infants’ word learning. Pomper and Saffran (2019)
demonstrated that infants were slower and less accurate in looking to a novel object
and learning its name when it was presented alongside a highly salient familiar item.
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When the familiar item was of low salience, infants readily fixated on the novel object
and learned its name, suggesting that something as simple as the identity of surround-
ing objects shapes infants’ processing of communicative input. Infants’ developmen-
tal milestones influence their natural input as well. In addition to changing infants’
view of the world (e.g., Kretch et al., 2014), the manner of infants’ locomotion - crawl-
ing versus walking - elicits different types of verbal feedback from caregivers. Thus,
infants’ language input changes as they acquire a new skill in a seemingly unrelated
domain (i.e., motor development; Karasik et al., 2014).

Within infants’ constantly changing experience, a variety of linguistic and non-lin-
guistic contexts provide stable and predictable cues to support early learning. While
everyday activities in the home (e.g., mealtime, playtime, book sharing) are one com-
monly recognized type of non-linguistic context in which infant learning occurs (e.g.,
Kosie & Lew-Williams, 2024b; Tamis-LeMonda et al., 2019) there is no clear-cut defi-
nition for what does and does not count as “context”. Emotional states, spatial loca-
tions, social and political systems, communities and neighborhoods, and cultural val-
ues and beliefs are all examples of how context arises in infants’ everyday experiences
(Custode & Tamis-LeMonda, 2020; Outters et al., 2023; Rowe & Weisleder, 2020; Roy
et al., 2015; Wu et al., 2021). Context influences infants’ experience in multiple ways:
certain words are likely to occur in specific locations within the home (e.g., “bubbles”
in the bathroom at bathtime or “bye” next to the front door; Custode & Tamis-
LeMonda, 2020; Roy et al., 2015) and caregivers’ use of multimodal cues tends to be
similar from day to day within an activity context but not across different contexts
(Kosie & Lew-Williams, 2024b). The consistency that arises from contexts, broadly
defined, may provide a source of predictability in infants’ otherwise changing envi-
ronment that can be supportive of early learning (e.g., Benitez & Smith, 2012; Roy et
al., 2015; Vlach & Sandhofer, 2011).

Finally, infants and caregivers co-construct the learning environment. A bursting lit-
erature now exists that characterizes infants as active learners who contribute mean-
ingfully to their own learning (e.g., Begus et al., 2014; Elmlinger et al., 2023; Gureckis
& Markant, 2012; Kuchirko et al., 2018; Slone et al., 2019; L. B. Smith et al., 2018; Zet-
tersten & Saffran, 2021). By examining turn-taking and leader-follower dynamics
across modalities, we stand to gain a deeper understanding of how caregivers and
infants jointly shape the features of infants’ everyday experience.

When all of these factors are taken into account, it becomes clear that it is not possible
to characterize everyday input in a way that applies to all infants, or even to an indi-
vidual child, as their input and processing of that input is changing from month to
month, day to day, and even moment to moment. Any model of human language
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learning that does not take into account the complex richness of communicative ex-
perience would be deeply limited in its utility for understanding human language de-
velopment. While there has been progress in diversifying the input to LLMs beyond
language alone, more careful descriptive and computational work is needed to under-
stand the varied and changing nature of input across development and how this input
influences learning in the real world.

How might we conceptualize developmentally grounded efficient communication
models?

In order to develop efficient communication models that map onto human language
development, we need to learn more about the nature of young children’s communi-
cative environments. In particular, developmental scientists will need to devote time,
effort, and resources to the collection of audiovisual corpora that capture children’s
lives. The ideal datasets will have four key features.

First, they will need to harness multimodal communicative behaviors, including
speech, action, gesture, emotion, touch, and more (e.g., Kosie & Lew-Williams,
2024a). This will make it possible to explore the dynamics of eye gaze, physical prox-
imity, body pose, and interactions with objects and events, all of which are among the
many components of successful communication. The potential of this approach can-
not be overstated, as the field will go far beyond industry-generated approaches that
scrape textual data from the internet. As an example: Documenting how well-timed
instances of words can be reinforced with gestures or emotional displays, all within
the context of social routines like mealtimes, will be far more useful to the develop-
ment of plausible models compared to streams of decontextualized unimodal text.
Further, input that is tailored to the learner’s current knowledge and abilities may
scaffold learning better than input that is randomly structured over time.

Second, it will be important to follow the same children over developmental time,
from birth onward (e.g., Long et al., 2024; Sullivan et al., 2021; Vong et al., 2024). This
will make it possible to pinpoint how children make incremental gains in learning,
with trial-and-error behaviors that are inherent in children’s physical, communica-
tive, and social lives. While scientists have carried out excellent experimental work
on infant cognition and sociality, experiments inherently treat development as dis-
continuous. An embracing of continuity, spanning milliseconds and years, will be
needed to create comprehensive models.

Third, rather than focusing on the child alone, or the child and one parent (as is typi-
cal in developmental research), corpora should be representative of children’s rich
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social environment. The presence or absence of caregivers, siblings, friends, and
members of the wider social network can substantially change the nature of chil-
dren's communicative input and impact their language development (e.g., Bulgarelli
& Bergelson, 2024; Kosie et al., 2022; Okocha et al., 2024). Further, children’s language
development is driven by the desire to connect with and be understood by others
(Bloom, 2013). A model that reflects human-like communicative development would
include such social goals and would be trained in a contingent communicative envi-
ronment (with human or artificial agents). Examining the multifaceted influences of
a child's social connections - as they change from moment to moment and over longer
periods of time - will allow us to better approximate how children achieve the goal of
becoming an active member of their social environment.

Finally, scientists will need to prioritize variability across contexts, cultures, and com-
munities (Kline et al., 2018; Singh et al., 2023). By capturing the lives of children and
families from diverse communities, we will be able to frontload the idea that there
are many pathways toward outcomes that matter in context. We will be able to under-
stand the true variation in early language learning, as opposed to attempting to create
one model that learns like the average infant. This approach will yield ‘large’ amounts
of data, but critically, these data correspond to a developmentally plausible amount
of data, enabling us to learn how infant brains and bodies - situated in diverse social
environments - make efficient gains in learning.

Recordings of everyday lives will be only the first step. Beyond this stage, scientists
spanning many fields will need to collaborate on the development of tools that pro-
vide accurate, automated annotation of behaviors of interest (e.g., Weng et al., 2022),
as comprehensive hand coding will be impossible given the volume of datasets com-
ing to our field in the next decade or two. Although many annotation programs cur-
rently exist - spanning domains such as language, emotion, visual object perception,
gestures, bodily movements, proximity, or their combination - few have achieved ac-
curacy on par with human coders. This is because real life does not fit into the neat
categories put forth by the last half-century of psychological research. For example,
basic emotion categories do not map onto the real emotion experiences or displays in
children’s lives (Ogren et al., 2023); and speech does not arrive to the child’s brain in
a noise-free, single-stream, grammatically coherent way, but instead comes from a
noisy kin network with constant restarts and imperfections. Further, most of these
tools have been trained on adult-adult interactions and are not tuned to the specifics
of infant-directed or infant-generated communicative signals. To make the challenge
even harder, infants change a lot over time, and no individual tool will be able to keep
up. Computer scientists will need to engage with psychologists, neuroscientists, and
linguists to achieve higher accuracy with automated annotation.
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These suggestions may appear contradictory to our statement that we need to develop
efficient communication models, as including all of this information seems like it
would actually make LLMs less efficient. However, this may be an example of how
“efficiency” means different things for a human versus a machine. While it is cur-
rently a computational challenge for LLMs to simultaneously integrate multiple
streams of data across modalities, this integration may require substantially less ef-
fort for humans. For example, it has been demonstrated that adults process multi-
modal communication (i.e., speech and gesture combined) faster than unimodal
communication (i.e., speech alone; see Holler & Levinson, 2019 for a review).

To first approximation, an ECM - benchmarked to human communication learning -
is one that can take the same quantity and quality of data input as a child receives over
a relevant developmental window (e.g., birth to age 5) and then communicate as ef-
fectively as a (median) child of that age. With such a benchmark established, effi-
ciency gains can be operationalized by restricting the data input to less than this quan-
tity and achieving similar results - thus achieving and quantifying (in the hypothetical
future) super-human efficiency in the acquisition of communication. However, as-
sessing the models’ communicative ability should go beyond simply predicting lan-
guage and may include, for example, accomplishing more complex social goals
within the context of the child’s everyday environment. While instructions for actu-
ally building such a model are beyond the scope of the current paper (and of the cur-
rent authors), it seems likely that more interactive training would be required, where
a model would not simply receive language and multimodal input, but actually inter-
act with humans or other machines.

With multimodal, longitudinal, densely sampled, contextually grounded, and cultur-
ally diverse datasets at our disposal, and with validated tools for automated annota-
tion of natural behaviors, we will be positioned to take models to the next level, far
beyond existing LLMs. This will herald an era of understanding how machines can be
genuinely intelligent, with reciprocal implications for understanding the nature of
children’s early learning. GEMINI (Gemini Team et al., 2023), as just one example,
has made incredible progress toward incorporating more dimensions of multimodal-
ity into their model (specifically, image, audio, video, and text). Even so, fully com-
prehensive datasets that capture the diversity of natural human communication will
take decades to do right. In the meantime, continued incremental progress in this
endeavor will generate new insights into the dynamic experiences that support chil-
dren’s learning as well as catalyze advances in Al.
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Conclusion

To return to the question posed in this special issue: “What can(‘t) LLMs tell us
about child language acquisition?” we suggest that LLMs do provide insights into po-
tential mechanisms that support language learning, but substantial work remains for
illuminating how children actually learn language from their natural input. For ex-
ample, the success of LLMs demonstrates that large text corpora (even in the absence
of multimodal and social information) contain a lot of information that enables a
model to produce and respond effectively to language. The success of current LLMs
additionally underscores the power of prediction as a mechanism of language learn-
ing. However, just because LLMs can learn language from their restricted textual in-
put, it cannot be inferred that this is how infants learn language via their everyday
input.

The everyday communicative environment of infants and young children is incredi-
bly rich and varied, while the primary source of input to LLMs is textual (and some-
times visual) corpora. Focusing on only one or just a few dimensions of input (like
language alone or language and objects) vastly reduces the richness of experience,
and if we attempt to understand human learning from this simplistic picture of input,
we only learn about what infants can do under restricted and unusual circumstances.
If we want to know what infants actually do do, and avoid making inaccurate conclu-
sions about how infants deal with the true complexity of the language learning prob-
lem (e.g., Lavechin et al., 2024), we need to understand the full complexity of the mul-
timodal, contingent, dynamic input with which they are actively engaged and how
this input supports them in becoming integrated members of their social environ-
ment. While advances in artificial intelligence - as of 2025 - are making progress in
integrating across particular modalities (Gemini Team et al., 2023; Orhan et al., 2020;
Vong et al., 2024), they will not be able to tell us much about how human infants and
children learn until they can be immersed in real-world environments and adopt the
communicative goals of young learners.
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